Devoir 2026
PCSI DS n° 10

Corrigé du devoir surveillé

Exercice 1. Cours

1. Enoncer le lemme de Rolle.
Si f : [a,b] — R est continue, que f est dérivable sur |a, b et que f(a) = f(b), alors on a un point ¢ €]a, b|
tel que f'(¢) = 0.
2. Enoncer le théoréme des accroissements finis.
Si f:[a,b] — R est continue et que f est dérivable sur ]a,b[ et que f(a) = f(b), alors on a un point
f(b) — f(a)
b—a
3. Si f,g € C"(I), on a vu que (fg) € C™(I). Préciser ce point en rappelant la formule ( de Leibniz ) qui
donne (fg)™ en fonction des dérivées de f et de g.

(fg)(") _ i (Z)f(k)g(n—k)
k=0

4. Qu’est-ce que le symbole de Kronecker ?

¢ €la, bl tel que f'(c) =

Ce symbole est §; ;, il vaut 1 si ¢ = j et 0 sinon.
5. Qu’appelle-t-on les matrices élémentaires E; ; € M, ,(K)sil <i<net1<j<p?
6. Les matrices de transposition, de dilatation et de transvection sont appelées matrices élémentaires.
Elles correspondent exactement aux opérations élémentaires sur les lignes d’une matrice.
Soit A € M,, ,(K). Multiplier A & gauche par une matrice élémentaire revient a effectuer une opération
élémentaire sur les lignes de A.
(a) Matrice de transposition (ou permutation)
Pour i # j, la matrice de transposition 7; ; est obtenue en échangeant les lignes i et j de la matrice
identité I,,.
Elle correspond a 'opération élémentaire :
L; +— Lj
Si A e M, ,(K), alors :
TijA
est la matrice obtenue en échangeant les lignes 7 et j de A.
(b) Matrice de dilatation
Pour A € K*, la matrice de dilatation D;()) est obtenue en multipliant par X le coefficient diagonal
(i,1) de I,.
Elle correspond a 'opération élémentaire :
Pour toute matrice A :
Di(M)A
est la matrice obtenue en multipliant la ligne ¢ de A par A.

(c) Matrice de transvection

Pour i # j et p € K, la matrice de transvection T; j(u) est obtenue en ajoutant p en position (7, j)
dans la matrice identité.

Elle correspond a ’opération élémentaire :
Ainsi,
Tij(m)A

est la matrice obtenue en ajoutant p fois la ligne j a la ligne ¢ de A.



Exercice 2. Suite récurrente et fonction contractante.

Soit f une fonction définie sur [0,4] par f(z) = V4 + x.

1. Montrer que lintervalle [0,4] est stable par f, et que f admet un unique point fixe « sur [0, 4] que Pon
calculera.
La fonction f est croissante et continue donc [f(0), f(4)] = [2, \/g} Puisque [2, \/g} C [0, 4], Vintervalle
[0, 4] est stable par f.
On cherche a résoudre, pour z € [0,4], 'équation /4 + 2 = z. Elle équivaut, puisque tout est positif
pour z dans cet intervalle, & :

44z =2?,

22 —x—4=0.

Les deux solutions de cette équation du second degré dans R sont 1 = 1=VIT ot Ty = HT‘/ﬁ L’unique

2
solution dans l'intervalle considéré est donc o = HT V17

2. On commence par remarquer que f est dérivable sur [0,4], de dérivée f'(z) = 2~ Cette dérivée est

2/x+4"

a valeurs positives sur [0, 4] et décroissante. Ainsi, pour tout x € [0,4], on a :

1
@) < £0) =
3. La suite (u,,) est définie par

uo € [0,4] et YneN, upt1 = fluy).

1 n
|un, —al < (Z) |ug — a.

On déduit de la majoration de |f’| que f est I-lipchitzienne sur [0, 4].

Montrer que si n € N,

On prouve alors le résultat demandé par récurrence sur n.
Pour n =0, il est vrai.

Supposons qu’il soit vérifié au rang n, on a alors puisque f est lipchitzienne :

[f(un) = f(@)] < 7 Jun —af.

Ceci signifie :
1
un+1*a|§ Z|un70‘|7

d’ott 'on déduit par hypothése de récurrence :

1 /1\"
|Un+1_a|§1(1) |uo — af,

1 n+1
i —al< (7)) o-al

Qu’en déduit-on sur le comportement de (u,)? (uy) est donc convergente de limite c.

Exercice 3. Inverse et puissances d’une matrice

2 2 2 300
1.SiCc=112 2 2 | eMsRetD=| 0 3 0 | € M3z(R), vérifier que CD = DC et calculer en
2 2 2 0 0 3
fonction de p € N* : CP et DP.
Comme D = 3I3,ona CD = DC = 3C.
3 0 0
La matrice D étant diagonale, on a DP = 0 3 0 ou encore DP = 3PI3, cette formule étant
0o 0 3°

aussi valable pour p = 0.

Concernant C, on remarque que C? = 6C donc on prouve aisément par récurrence que l’on a pour tout
peN*: CP=6rP"1C.



2. On note E = C + D, calculer EP en fonction de p pour p € N*. On applique la formule du binéme :

(C+D)P:zp:
k=0
copropi 3t

=1

p
(C’+Dp3p13+<z
k

[

(C+ D) =3PI5 +

-~

o

—

1
(C+D)P =3PI3+ —

+ /N oI~
M@

NE

P\ A~k rp—k
DP

>6k103pk13

P\ ik—19p—k
(1)) e

()

p kap—k _ ap
(k)63 3)0

6 \i=
1
(C+ D)P =3PI3 8 (643 -3")C
1
(C+ DY =3Iy + 2 (9 =) C

9P45x3P P3P 9P 3P

6 6 6
Concrétement, cela donne : EP = gpg3p 9p+2X3p gpg3p

93P 9P23P 9P B3P
6 6 6

aussi pour p = 0 et deviner qu ‘elle va fonctionner pour p =
matrice ainsi obtenue, z C est bien I'inverse de ¥ =

10+ 13— £C?% - 1Cf13+(—72—677—)c Is.
Finalement, E est inversible d’inverse E—! = 1]3 — 7C
4. Calculer E P en fonction de p pour p € N* : il suffit de
37PI3 + — (97”—3 P)(C.
Exercice 4. Puzssances d’une autre matrice.
1 -1 2
Soit A=(0 1 1
0 0 1
1. On note B = A — I, calculer B2 et B>.
0o -1 2 0 0 -1 0 0
B=|0 0 1|,B2=(0 0 0 |,B*=[0 0
0 0 O 0 0 O 0 0
Exprimer, en fonction den € N, n > 2 : (0) =1, ( )

A" pour n € Net n > 2.

On a A = I3+ B avec B et I3 qui commutent puisque I3B = Bl;

n "—
(k) BFIpk,

w3

Comme pour k > 3, on a B¥ =0, on obtient :

=) 6)

n (

Par exemple a I’aide de la formule du binéme (justifier son utilisation), donner une expression simple de

Montrer que F est inversible, préciser son inverse : on peut remarquer que la formule ci-dessus fonctionne

= —1. Il reste alors simplement a vérifier que la
C+ 315 en calculant : ( C) (C+3I3) =

prouver par récurrence sur p que 'on a F7P =

o O O

n

n(n—1)
9 — .

2

) =

= B donc :

n
B B?

—1
A”:13+n3+%32;
1 —n 2n—@
A"=10 1 n
0 O 1



Exercice 5. Matrices et suites récurrentes
On considére les matrices :

0 —1 0 -1 1 2 1 -1
1 1},9=(1 2 -—1]letda=(-1 0 1
1 1 -1 -1 1 -1 -1 2

P=

=

1. Calculer le produit PQ. En déduire I’expression de l'inverse de P noté P~ 1.
On remarque que PQ = I3 donc P est inversible d’'inverse P~! = Q.

2. On pose D = P~1AP. Montrer que D est une matrice diagonale que ’on calculera et exprimer, pour

1 00 10 0
tout entier n € N, D". Le calcul donne D= |0 1 0| et l'onen déduit: D"= (0 1 0
0 0 2 0 0 27

3. Montrer, par récurrence, que pour tout n € N, A* = PD"P~1,
Pour n =0, on a bien A° =I5 et PD°P~! = P3P~ = PP~ ! =I;.
Supposons la propriété vraie au rang n, on a donc A” = PD"P~!. Or on sait que D = P~'AP donc
PDP~! = PP 1APP~! = A. On en déduit :
A" = A"A = PD"P'PDP™' = PD"DP~! = PD""' P71,

Ainsi, la propriété est héréditaire donc vraie pour tout n € N.

4. On fait donc le calcul pour n € N :

1 0 -1 1 0 0 0 -1 1 2n 2n—-1 1-27
A"=10 1 1 01 O 1 2 —-1]=|1-2* 2-2" 2"-1
1 1 1 0 0 27 -1 -1 1 1-2n 1-2" A

5. On pose ag = by = cg = 1 et on définit par récurrence, pour n € N, les suites (an )nen, (bn)nen et (¢n)nen

par :
ap4+1 = 20y + by —cp
bn+1 = —an+tcn
Cp41 = —Qp — bn + 2Cn

On note, pour tout n € N, U,, la matrice de M3 1(R) définie par :

Up=|{bn

Cn

Montrer que, pour tout n € N, U, 41 = AU, puis que U,, = A"Uj.
On remarque effectivement pour n € N que 'on a :

2 1 -1 an 2a, + b, — ¢y,
AU, =[-1 0 1 by | = —an +cp =Upnq1-
-1 -1 2 Cn —ay, — b, + 2¢,

Prouvons ensuite par récurrence que U, = A"Uy. Pour n = 0, c’est évident puisque A° = I3. Prouvons
I’hérédité, on suppose donc que U,, = A"Up, on a donc puisque U, 11 = AU, :

Upy1 = AA"Uy = AU,

Ainsi, la propriété est héréditaire donc vraie pour tout entier.

6. En déduire 'expression des suites (ap)nen, (bn)nen €t (¢n)nen en fonction de n € N :

an ao 2n 2n—-1 1-2" 1 A
by | =A" b | =1-2" 2—-2" 2" -1 1)=12-2"
Cn co 1-2" 1-2" 2n 1 2-2"



