
Devoir 2026

PCSI DS n◦ 10

Corrigé du devoir surveillé

Exercice 1. Cours

1. Enoncer le lemme de Rolle.

Si f : [a, b]→ R est continue, que f est dérivable sur ]a, b[ et que f(a) = f(b), alors on a un point c ∈]a, b[
tel que f ′(c) = 0.

2. Enoncer le théorème des accroissements finis.

Si f : [a, b] → R est continue et que f est dérivable sur ]a, b[ et que f(a) = f(b), alors on a un point

c ∈]a, b[ tel que f ′(c) =
f(b)− f(a)

b− a
.

3. Si f, g ∈ Cn(I), on a vu que (fg) ∈ Cn(I). Préciser ce point en rappelant la formule ( de Leibniz ) qui
donne (fg)(n) en fonction des dérivées de f et de g.

(fg)
(n)

=

n
∑

k=0

(

n

k

)

f (k)g(n−k)

4. Qu’est-ce que le symbole de Kronecker ?

Ce symbole est δi,j , il vaut 1 si i = j et 0 sinon.

5. Qu’appelle-t-on les matrices élémentaires Ei,j ∈ Mn,p(K) si 1 ≤ i ≤ n et 1 ≤ j ≤ p ?

6. Les matrices de transposition, de dilatation et de transvection sont appelées matrices élémentaires.
Elles correspondent exactement aux opérations élémentaires sur les lignes d’une matrice.

Soit A ∈Mn,p(K). Multiplier A à gauche par une matrice élémentaire revient à effectuer une opération
élémentaire sur les lignes de A.

(a) Matrice de transposition (ou permutation)

Pour i 6= j, la matrice de transposition Ti,j est obtenue en échangeant les lignes i et j de la matrice
identité In.

Elle correspond à l’opération élémentaire :

Li ←→ Lj

Si A ∈Mn,p(K), alors :
Ti,jA

est la matrice obtenue en échangeant les lignes i et j de A.

(b) Matrice de dilatation

Pour λ ∈ K
∗, la matrice de dilatation Di(λ) est obtenue en multipliant par λ le coefficient diagonal

(i, i) de In.

Elle correspond à l’opération élémentaire :

Li ←− λLi

Pour toute matrice A :
Di(λ)A

est la matrice obtenue en multipliant la ligne i de A par λ.

(c) Matrice de transvection

Pour i 6= j et µ ∈ K, la matrice de transvection Ti,j(µ) est obtenue en ajoutant µ en position (i, j)
dans la matrice identité.

Elle correspond à l’opération élémentaire :

Li ←− Li + µLj

Ainsi,
Ti,j(µ)A

est la matrice obtenue en ajoutant µ fois la ligne j à la ligne i de A.
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Exercice 2. Suite récurrente et fonction contractante.

Soit f une fonction définie sur [0, 4] par f(x) =
√
4 + x.

1. Montrer que l’intervalle [0, 4] est stable par f , et que f admet un unique point fixe α sur [0, 4] que l’on
calculera.

La fonction f est croissante et continue donc [f(0), f(4)] =
[

2,
√
8
]

. Puisque
[

2,
√
8
]

⊂ [0, 4], l’intervalle
[0, 4] est stable par f .

On cherche à résoudre, pour x ∈ [0, 4], l’équation
√
4 + x = x. Elle équivaut, puisque tout est positif

pour x dans cet intervalle, à :
4 + x = x2,

x2 − x− 4 = 0.

Les deux solutions de cette équation du second degré dans R sont x1 = 1−
√
17

2 et x2 = 1+
√
17

2 . L’unique

solution dans l’intervalle considéré est donc α = 1+
√
17

2 .

2. On commence par remarquer que f est dérivable sur [0, 4], de dérivée f ′(x) = 1
2
√
x+4

. Cette dérivée est

à valeurs positives sur [0, 4] et décroissante. Ainsi, pour tout x ∈ [0, 4], on a :

|f ′(x)| ≤ f ′(0) =
1

4
.

3. La suite (un) est définie par

u0 ∈ [0, 4] et ∀n ∈ N, un+1 = f(un).

Montrer que si n ∈ N,

|un − α| ≤
(

1

4

)n

|u0 − α|.

On déduit de la majoration de |f ′| que f est 1
4 -lipchitzienne sur [0, 4].

On prouve alors le résultat demandé par récurrence sur n.

Pour n = 0, il est vrai.

Supposons qu’il soit vérifié au rang n, on a alors puisque f est lipchitzienne :

|f(un)− f(α)| ≤ 1

4
|un − α| .

Ceci signifie :

|un+1 − α| ≤ 1

4
|un − α| ,

d’où l’on déduit par hypothèse de récurrence :

|un+1 − α| ≤ 1

4

(

1

4

)n

|u0 − α|,

|un+1 − α| ≤
(

1

4

)n+1

|u0 − α|.

Qu’en déduit-on sur le comportement de (un) ? (un) est donc convergente de limite α.

Exercice 3. Inverse et puissances d’une matrice

1. Si C =





2 2 2
2 2 2
2 2 2



 ∈ M3(R) et D =





3 0 0
0 3 0
0 0 3



 ∈ M3(R), vérifier que CD = DC et calculer en

fonction de p ∈ N
∗ : Cp et Dp.

Comme D = 3I3, on a CD = DC = 3C.

La matrice D étant diagonale, on a Dp =





3p 0 0
0 3p 0
0 0 3p



 ou encore Dp = 3pI3, cette formule étant

aussi valable pour p = 0.

Concernant C, on remarque que C2 = 6C donc on prouve aisément par récurrence que l’on a pour tout
p ∈ N

∗ : Cp = 6p−1C.
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2. On note E = C +D, calculer Ep en fonction de p pour p ∈ N
∗. On applique la formule du binôme :

(C +D)p =

p
∑

k=0

(

p

k

)

CkDp−k

(C +D)p = Dp +

p
∑

k=1

(

p

k

)

6k−1C3p−kI3

(C +D)p = 3pI3 +

(

p
∑

k=1

(

p

k

)

6k−13p−k

)

C

(C +D)p = 3pI3 +
1

6

(

p
∑

k=1

(

p

k

)

6k3p−k

)

C

(C +D)p = 3pI3 +
1

6

(

p
∑

k=0

(

p

k

)

6k3p−k − 3p

)

C

(C +D)p = 3pI3 +
1

6
((6 + 3)p − 3p)C

(C +D)p = 3pI3 +
1

6
(9p − 3p)C

Concrètement, cela donne : Ep =





9p+5×3p

6
9p−3p

6
9p−3p

6
9p−3p

6
9p+5×3p

6
9p−3p

6
9p−3p

6
9p−3p

6
9p+5×3p

6



.

3. Montrer que E est inversible, préciser son inverse : on peut remarquer que la formule ci-dessus fonctionne
aussi pour p = 0 et deviner qu’elle va fonctionner pour p = −1. Il reste alors simplement à vérifier que la
matrice ainsi obtenue, 1

3I3− 1
27C, est bien l’inverse de E = C+3I3 en calculant :

(

1
3I3 − 1

27C
)

(C+3I3) =
1
3C + I3 − 1

27C
2 − 1

9C = I3 + (13 − 6
27 − 1

9 )C = I3.

Finalement, E est inversible d’inverse E−1 = 1
3I3 − 1

27C

4. Calculer E−p en fonction de p pour p ∈ N
∗ : il suffit de prouver par récurrence sur p que l’on a E−p =

3−pI3 +
1

6
(9−p − 3−p)C.

Exercice 4. Puissances d’une autre matrice.

Soit A =





1 −1 2
0 1 1
0 0 1



.

1. On note B = A− I3, calculer B2 et B3.

B =





0 −1 2
0 0 1
0 0 0



, B2 =





0 0 −1
0 0 0
0 0 0



, B3 =





0 0 0
0 0 0
0 0 0



.

Exprimer, en fonction de n ∈ N, n ≥ 2 :
(

n
0

)

= 1,
(

n
1

)

= n,
(

n
2

)

= n(n−1)
2 .

2. Par exemple à l’aide de la formule du binôme (justifier son utilisation), donner une expression simple de
An pour n ∈ N et n ≥ 2.

On a A = I3 +B avec B et I3 qui commutent puisque I3B = BI3 = B donc :

An =

n
∑

k=0

(

n

k

)

BkIn−k
3 .

Comme pour k ≥ 3, on a Bk = 0, on obtient :

An =

(

n

0

)

I3 +

(

n

1

)

B +

(

n

2

)

B2

An = I3 + nB +
n(n− 1)

2
B2;

An =





1 −n 2n− n(n−1)
2

0 1 n

0 0 1



 .
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Exercice 5. Matrices et suites récurrentes

On considère les matrices :

P =





1 0 −1
0 1 1
1 1 1



 , Q =





0 −1 1
1 2 −1
−1 −1 1



 et A =





2 1 −1
−1 0 1
−1 −1 2



 .

1. Calculer le produit PQ. En déduire l’expression de l’inverse de P noté P−1.

On remarque que PQ = I3 donc P est inversible d’inverse P−1 = Q.

2. On pose D = P−1AP . Montrer que D est une matrice diagonale que l’on calculera et exprimer, pour

tout entier n ∈ N, Dn. Le calcul donne D =





1 0 0
0 1 0
0 0 2



 et l’on en déduit : Dn =





1 0 0
0 1 0
0 0 2n



.

3. Montrer, par récurrence, que pour tout n ∈ N, An = PDnP−1.

Pour n = 0, on a bien A0 = I3 et PD0P−1 = PI3P
−1 = PP−1 = I3.

Supposons la propriété vraie au rang n, on a donc An = PDnP−1. Or on sait que D = P−1AP donc
PDP−1 = PP−1APP−1 = A. On en déduit :

An+1 = AnA = PDnP−1PDP−1 = PDnDP−1 = PDn+1P−1.

Ainsi, la propriété est héréditaire donc vraie pour tout n ∈ N.

4. On fait donc le calcul pour n ∈ N :

An =





1 0 −1
0 1 1
1 1 1









1 0 0
0 1 0
0 0 2n









0 −1 1
1 2 −1
−1 −1 1



 =





2n 2n − 1 1− 2n

1− 2n 2− 2n 2n − 1
1− 2n 1− 2n 2n



 .

5. On pose a0 = b0 = c0 = 1 et on définit par récurrence, pour n ∈ N, les suites (an)n∈N, (bn)n∈N et (cn)n∈N

par :






an+1 = 2an + bn − cn
bn+1 = −an + cn
cn+1 = −an − bn + 2cn

On note, pour tout n ∈ N, Un la matrice deM3,1(R) définie par :

Un =





an
bn
cn



 .

Montrer que, pour tout n ∈ N, Un+1 = AUn puis que Un = AnU0.

On remarque effectivement pour n ∈ N que l’on a :

AUn =





2 1 −1
−1 0 1
−1 −1 2









an
bn
cn



 =





2an + bn − cn
−an + cn

−an − bn + 2cn



 = Un+1.

Prouvons ensuite par récurrence que Un = AnU0. Pour n = 0, c’est évident puisque A0 = I3. Prouvons
l’hérédité, on suppose donc que Un = AnU0, on a donc puisque Un+1 = AUn :

Un+1 = AAnU0 = An+1U0.

Ainsi, la propriété est héréditaire donc vraie pour tout entier.

6. En déduire l’expression des suites (an)n∈N, (bn)n∈N et (cn)n∈N en fonction de n ∈ N :





an
bn
cn



 = An





a0
b0
c0



 =





2n 2n − 1 1− 2n

1− 2n 2− 2n 2n − 1
1− 2n 1− 2n 2n









1
1
1



 =





2n

2− 2n

2− 2n



 .
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