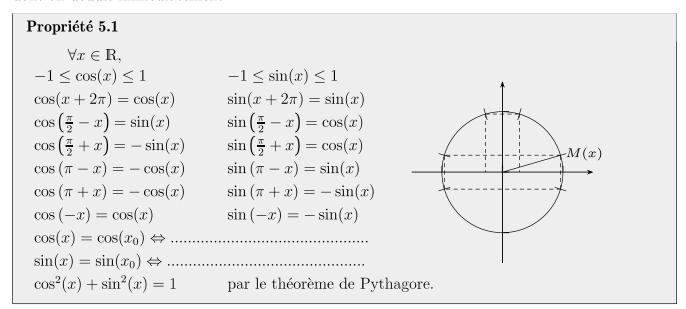
Trigonométrie

I. Rappels

I.1. Définition, Angles associés

On suppose connue la définition des fonctions trigonométriques à l'aide du cercle trigonométrique dont on déduit immédiatement :



Ex. 5.1 Donner la valeur exacte de $A = \cos\left(\frac{588\pi}{3}\right)$ $B = \sin\left(\frac{-89\pi}{6}\right)$ $C = \cos\left(\frac{105\pi}{4}\right)$ $D = \cos\left(\frac{7\pi}{8}\right)$

Définition 5.2 (Fonction tangente)

La fonction tangente est définie par $\tan = \frac{\sin}{\cos}$. Son domaine de définition est $\mathcal{D}_{\tan} = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$. L'application tan est impaire, π -périodique.

Ex. 5.2 Soit x un réel tel que $\cos(x) = \frac{3}{5}$.

- 1) Dessiner le cercle trigonométrique et placer sur ce dessin cos(x) et les positions possibles des points du cercle associés à l'angle x.
- 2) Donner la valeur de $\cos(\pi + x)$, $\cos(x \pi)$, $\sin(\frac{\pi}{2} x)$, $\sin(x \frac{3\pi}{2})$.
- 3) **Dans cette question**, on suppose que $x \in]-\pi;0]$: calculer $\sin(x)$ et $\tan(x)$.
- 4) **Dans cette question**, on suppose que $x \in]0; \pi]$: calculer $\sin(x)$ et $\tan(x)$.

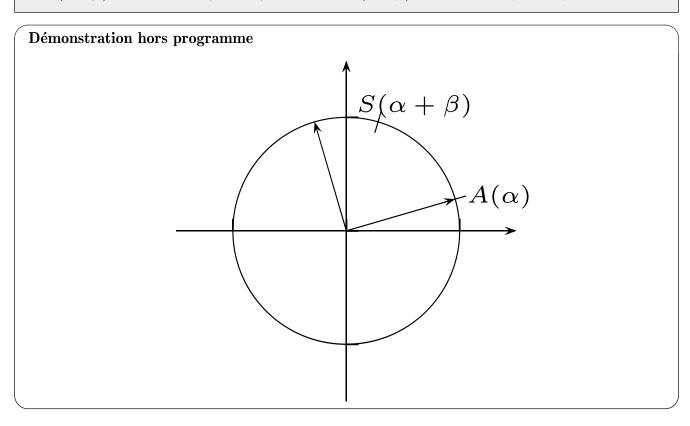
I.2. Formules d'addition

Propriété 5.3 (Formules d'addition)

$$\forall \alpha, \beta \in \mathbb{R},$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha \qquad \sin(\alpha - \beta) = \sin \alpha \cos \beta - \sin \beta \cos \alpha$$



Ex. 5.3 Résoudre les équations suivantes d'inconnue x réelle : $\overline{(E_1)}$: $\cos(2x) + \cos(x) = 0$ $\overline{(E_2)}$: $\tan(x) = 2\sin(x)$

Corollaire 5.4 (Formules d'addition de la fonction tan)

Lorsque ces expressions sont définies,

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \quad \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

Démonstration

Corollaire 5.5 (Formules de duplication)

Lorsque ces expressions sont définies,

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$

$$\sin(2x) = 2\sin(x)\cos(x) \qquad \tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

Démonstration

$$\underline{\mathbf{Ex.}} \ 5.4 \ \mathrm{Soit} \ f: \left\{ \begin{array}{ccc} I & \to & J \\ x & \mapsto & \sqrt{1-x} + \sqrt{1+x} \end{array} \right. .$$

- 1) Quel est l'ensemble de définition I de f?
- 2) Justifier que, pour tout réel x dans I, il existe un unique réel $t \in [0; \pi]$ tel que $x = \cos(t)$. Cet unique réel t est noté $\operatorname{Arccos}(x)$.
- 3) Montrer que $f(\cos(t)) = \sqrt{2} \left(\sin\left(\frac{t}{2}\right) + \cos\left(\frac{t}{2}\right) \right)$.
- 4) En déduire que

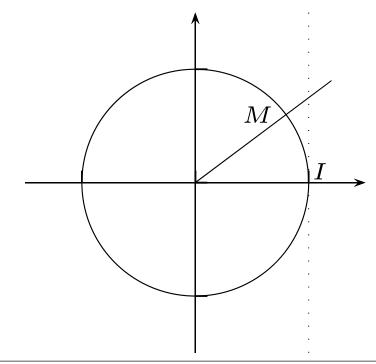
$$\forall x \in I, f(x) = 2\cos\left(\frac{\operatorname{Arccos}(x)}{2} - \frac{\pi}{4}\right)$$

I.3. Dérivées des fonctions trigonométriques

Lemme 5.6 (Nombre dérivé de sin en 0)

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Démonstration hors programme



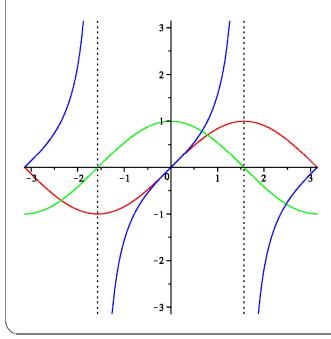
Propriété 5.7 (Fonctions dérivées de cos, sin et tan)

Les fonctions cos, sin et tan sont dérivables sur leur ensemble de définition et sur ces ensembles $\cos' = -\sin \quad \sin' = \cos \quad \tan' = 1 + \tan^2 = \frac{1}{-3}$

 $\cos' = -\sin \qquad \sin' = \cos \qquad \tan' = 1 + \tan^2 = \frac{1}{\cos^2}$ On a de plus $\lim_{x \to -\frac{\pi}{2}^+} \tan x = -\infty \text{ et } \lim_{x \to \frac{\pi}{2}^-} \tan x = +\infty.$

Démonstration

Fonctions trigonométriques



Valeur de x	$-\pi$	$\frac{-\pi}{2}$	0	$\frac{\pi}{2}$	π
Signe de $-\sin(x)$					
Variations de cos					
Valeur de x	$-\pi$	$\frac{-\pi}{2}$	0	$\frac{\pi}{2}$	π
Signe de $\cos(x)$					
Variations de sin					
Valeur de x	$-\pi$	$\frac{-\pi}{2}$	0	$\frac{\pi}{2}$	π
Signe de $\frac{1}{\cos^2(x)}$					
Variations de tan					

Ex. 5.5 Étudier la fonction $g: x \in \mathbb{R} \mapsto \frac{\sin(x)}{2 - \cos(x)}$.

Tracer rapidement sa représentation graphique.

II. Formules diverses

II.1. Linéarisation

Corollaire 5.8 (Formules de linéarisation)

Quels que soient les réels a et b,

$$\cos(a)\cos(b) = \frac{\cos(a+b) + \cos(a-b)}{2}$$

$$\sin(a)\sin(b) = \frac{\cos(a-b) - \cos(a+b)}{2}$$

$$\sin(a)\cos(b) = \frac{\sin(a+b) + \sin(a-b)}{2}$$

Démonstration

Ex. 5.6 Calculer
$$I = \int_0^{\pi} \cos(x) \cos\left(\frac{\pi}{3} - x\right) dx$$
.

II.2. Formules de factorisation

Corollaire 5.9 (Formules de factorisation)

Quels que soient les réels a et b,

$$\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\cos(p) - \cos(q) = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

$$\sin(p) + \sin(q) = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\sin(p) - \sin(q) = 2\cos\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

Démonstration

Ex. 5.7 Résoudre les équations suivantes :

$$\overline{(E_1):\sin(3x)+\sin(5x)}=\sin(4x)$$
 $(E_2):\cos(x)-\cos(2x)+\cos(3x)=1$

II.3. Angle moitié

Corollaire 5.10

Soit x un réel tel que $\tan(x)$ et $\tan(\frac{x}{2})$ soient définis.

On pose $t = \tan\left(\frac{x}{2}\right)$.

$$\cos(x) = \frac{1-t^2}{1+t^2}$$

$$\sin(x) = \frac{2t}{1+t^2}$$

$$\tan(x) = \frac{2t}{1-t^2}$$

Démonstration

Ex. 5.8 On se place dans le plan orienté muni d'un repère orthonormal direct.

On note O l'origine du repère, I le point de coordonnées (1;0) et J le point de coordonnées (0;1).

Pour tout réel t, on définit le point M_t du plan de coordonnées $\left(\frac{1}{1+t^2}; \frac{t}{1+t^2}\right)$.

Montrer que, quel que soit le réel t choisi, M_t appartient au cercle de diamètre [OI].

Réciproquement, est-ce que tous les points de ce cercle peuvent s'écrire M_t pour un réel t bien choisi?