Maths - Chapitre 6
Nombres complexes : équations et géométrie

I. Utilisations en géométrie

Les formules concernant le module et 'argument des nombres complexes permettent une grande
variété d’applications géométriques. Nous en donnons ici quelques exemples.
On rappelle que le plan est rapporté a un repere (0;% 7)) orthonormal direct et que l'affixe d'un

point M (z;y) dans ce repere est le complexe z = = + iy.

I.1. Angle de vecteurs

Proposition 6.1

Etant donnés deux vecteurs non nuls @ et o d’affixes respectives z et 2z’ on a
(a; ¥) = Arg (z2) [27]

ou (u; ¥) désigne 'angle orienté entre les vecteurs 1 et .

[ Démonstration ]

Corollaire 6.2 (Vecteurs colinéaires)

Deux vecteurs u(z) et ¥/(z') sont colinéaires si et seulement si zz' € R.

Corollaire 6.3 (Vecteurs orthogonaux)

Deux vecteurs u(z) et ¥/(z') sont orthogonaux si et seulement si zz' € iRR.

Corollaire 6.4 (Points alignés)

Trois point A(z4), B(zp) et C(z¢) sont alignés si et seulement si (z4 — Zg5) (24 — 2¢) € R.

I.2. Transformations du plan complexe

On identifie les points du plan et leur affixe, et les vecteurs du plan et leur affixe.
Autrement dit, pour z € C

e «le point z du plan complexe » signifie « le point M du plan d’affixe 2z » ;

e «le vecteur z du plan complexe » signifie « le vecteur v du plan d’affixe z ».
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e Soit ¢ € C. La transformation z — 2z + ¢

du plan complexe est

e La transformation z — z du plan com-

plexe est

e Soit A € R*. La transformation z — Az du
plan complexe est

Ex. 6.1 (Cor.)  Soient A(a), B(b) et C(c) trois points du plan complexe.

1) Donner une condition nécessaire et suffisante sur a, b et ¢ pour que ABC' soit un triangle
équilatéral direct.

/ o , . N . . . 2im
2) Montrer que cette condition est équivalente & a + jb+ j%c =0 avec j =¢es .
3) En déduire une condition nécessaire et suffisante pour que ABC soit un triangle équilatéral.

4) Existe-t-il des triangles équilatéraux a coordonnées entieres ?
[Indication : on admettra que v/3 est irrationnel ]

I1. Utilisations en algebre

II.1. Racine réelle n-ieme d’un réel positif

Proposition 6.5

Pour tout n € IN*, la fonction x € R, — 2" € R est bijective.

[ Démonstration ]

Définition 6.6 (Fonction racine n-iéme)
Pour tout n € IN*,

Z‘ER_A,_HZ'%:{L/EER_F

est la bijection réciproque de z € Ry — 2™ € R,.

I1.2. Racines complexes n-iemes de 'unité
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Théoréme 6.7 (Racines n-iemes de I'unité)

Quel que soit n € IN*, 'équation z € C,z" = 1 possede exactement n racine(s), toutes de
2ikm

module 1. L’ensemble des solutions de cette équation est U,, = {e n,ke0;n— 1]]} cU.

[ Démonstration ]

f Important !
e Nous venons de voir que nf =0[2x] <60 ... ... :
— C

z = 2"

e D’apres le théoreme précédent, 'application n’est pas une bijection

sin > 1 (puisque 1 a n antécédents).

En conséquence, elle n’admet pas de bijection réciproque.

La fonction y — /Yy = y% est définite uniquement sur R,.

Ex. 6.2 Placer les racines complexes n-iemes de 'unité dans les cas suivants

Racines cubiques : n = 3 Racines quatriemes : n =4  Racines sixiemes : n = 6

(o N
& Méthode
Etant donnés n € IN* et ¢ € C*, I’équation 2" = ¢ a exactement n solutions.
Pour la résoudre, on procede de la fagon suivante
e on écrit ¢ sous forme trigonométrique : Ip € R, Iy € R, ¢ = pe';
e onen déduit |z 1 2" = ...

e on termine en explicitant les différentes valeurs possibles pour 6§ = arg(z) :

=S
N /)

Ex. 6.3 Résoudre I'équation 2% = 1+1

[Cor. 6.3 j

I1.3. Equations du second degré dans C
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Théoréme 6.8

Etant donnés a £ 0, b et ¢ trois nombres complexes, ’équation az?+bz+c = 0 d’inconnue

z € C et de discriminant A = b? — 4ac possede :

e une solution double zy = ;— siA=0;

_biésiA=627éO.

e deux solutions distinctes z4 =

[ Démonstration ]

-
);\éé Méthode

Pour résoudre une équation du second degré a coefficients complexes :

e on calcule le discriminant A = b* — 4ac;
e si A =0, on a immédiatement la solution double;

e si A # 0, on cherche la partie réelle et la partie imaginaire de I'un des deux complexes

2 =
d vérifiant 62 = A en résolvant le systéme c’est-a-dire en adaptant au

o7 = 14|

cas n = 2 la méthode de résolution des équations du type 2" = c.

- /

Ex. 6.4 Résoudre sur C Péquation 222 — (1 4+ 5i)z — 2(1 —4) = 0.
[Cor. 6.4 ]

I1.4. Relations coefficients-racines

Théoreme 6.9

Si 21, zp € C sont les solutions de I'équation az%+ bz +c = 0 avec a # 0, b et ¢ trois nombres

complezxes alors

Vze C,az’ +bz+c=a(z — 21)(z — 29), 21+ 29 = ——, zlxz2:£
a a

[ Démonstration ]

I1.5. Factorisation d’un polynome

Définition 6.10 (Polynome)
On appelle polynéme & coefficients réels (ou complexes) toute expression P(z) du type

n

P(zx) = Z apz”

k=0

ol (ay)kefo;n) est une famille de nombres réels (ou complexes).
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Le plus grand entier k € [0;n] tel que ax # 0 est appelé degré du polynéme P(z).
Le degré du polynome nul (P = 0) est par convention égal a —oo.

Souvent, la variable x n’est pas écrite : on parle simplement du polynéme P.

Théoréme 6.11

Soit P un polynome a coefficients réels ou complexes et a une racine (réelle ou complexe) de
P.

Autrement dit, soit a tel que P(a) = 0.

Alors il existe un polynéme @ tel que P = (X — a)Q.

[ Démonstration ]

p
g\;r Méthode : Résolution des équations polynomiales de degré supérieur a 3

Le théoreme précédent permet d’affirmer que si on connait une solution a d’une équation
polynomiale
P(z)=0

alors on peut réécrire cette équation (z — a)Q(z) = 0.
Ceci conduit a la méthode suivante : pour résoudre une équation polynomiale de degré supérieur
a3

e on cherche une « racine évidente » a de 'équation P(z) = 0;

e on factorise P de sorte a ce que I'équation devient (x — a)Q(x) =0 < | ou

e on recommence le méme procédé sur 'équation Q(z) = 0.

Ex. 6.5 Résoudre I'équation d’inconnue 2z € C : (F) 2% 4223 —2—-2=0.

I11.6. Propriétés de ’exponentielle complexe

Nous avons défini page 45 I’exponentielle complexe par Vz € C, e* = eRe(2) x eTm(2),

En voici quelques propriétés :

Propriété 6.12 (Propriétés de ’exponentielle complexe)

V(z;2') € C?:

! !
e ¢f X ¥ =et?

1 _
o—zzez
&
!
= =7
€
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=1 & dkeZ,z=2ikn
& 2z =0[2in]
o & =¢” &z =2 [2in]

Propriété 6.13
Vz € C,
Re(z) .

o Jef] = &R,
e arg(e®) =ZIm (z) [27].

[ Démonstration ]

f Important !

L’équation e* = ¢ € C* possede une infinité de solutions complexes, la partie imaginaire de z

étant définie a 27 pres.

/ A , \
% Méthode : Equations du type ¢* = ¢ € C*
La propriété précédente donne une méthode de résolution des équations du type e* = ¢ € C* :

en effet, résoudre I’équation revient a résoudre le systeme

{ |ez| _ e'Re(z) — |C|

arg (e*) = ZIm(z) = arg(c) [27]

Ex. 6.6 Résoudre les équations d’inconnue z € C :
(Ey):ef=—T7 (Ey):e*=5—12i

[Cor. 6.6 ]

ITI. Correction des exercices

Cor. 6.1 :

1) ABC est équilatéral direct si et seulement si C' est I'image de B dans la rotation de centre
A d’angle .
Donc ABC est équilatéral direct si et seulement si ¢ —a = €'5(b — a).

2) A partir de ’équation précédente, on obtient :
c—a=¢e3b—a) & (5 —1)a—eSb+c=0
& ja+7*b+c=0
& a+jb+j%c=0
3) ABC' est un triangle équilatéral si et seulement si c¢’est un triangle équilatéral direct OU
indirect. D'ou :
ABC est un triangle équilatérals (a + jb + j5%¢) (a + 720+ jc) = 0.
En développant on obtient
ABC est un triangle équilatérals a? + b? + ¢ — ab — ac — be = 0.
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4) Traitons uniquement le cas direct, le cas indirect étant obtenu par permutation de deux
sommets du triangle.
Supposons que b et ¢ soient a parties réelles et imaginaires entieres, alors
—Re (b) + V3Im (b) — Re (¢) — V3Im (c)
a=—jb—jic= 2

LI (b) — V3Re (b) + Zm (c) + V3Re (c)

2
Donc, pour que Re (a) soit entier, il est nécessaire que Zm (b) = Zm (c) (car v/3 est irra-

tionnel).
De méme, pour que Zm (a) soit entier, il est nécessaire que Re (b) = Re (c).

Donc les seuls triangles équilatéraux a coordonnées entieres sont ceux réduits a un point !
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