Correction DS n°2

Exercice 1.

$$(E_1): z^2 - (2+i)z - 1 + 7i = 0$$

$$\Delta = (2+i)^2 - 4 \times (-1+7i) = 4 - 1 + 4i + 4 - 28i = 7 - 24i$$

Cherchons $\delta = a + ib$ tel que $\delta^2 = \Delta$.

$$\begin{cases} a^{2} - b^{2} = 7 \\ 2ab = -24 \\ a^{2} + b^{2} = \sqrt{7^{2} + 24^{2}} = \sqrt{49 + 576} = 25 \end{cases} \Leftrightarrow \begin{cases} 2a^{2} = 7 + 25 \\ ab < 0 \\ 2b^{2} = 25 - 7 \end{cases} \Leftrightarrow \begin{cases} a^{2} = 16 \\ ab < 0 \\ b^{2} = 9 \end{cases}$$

On choisit par exemple $\delta = 4 - 3i$.

Donc E_1 a deux solutions qui sont

$$z_1 = \frac{2+i+4-3i}{2} = 3-i$$
 et $z_2 = \frac{2+i-4+3i}{2} = -1+2i$

$$(E_2): z^3 + (4-2i)z^2 + (19-14i)z + 30 - 20i = 0$$

z = -2 est racine évidente.

On peut donc factoriser le premier membre de (E_2) par z+2 : plus précisément

$$z^{3} + (4-2i)z^{2} + (19-14i)z + 30 - 20i = (z+2)(z^{2} + 2(1-i)z + 15 - 10i).$$

Donc
$$(E_2) \Leftrightarrow (z+2)(z^2+2(1-i)z+15-10i) = 0 \Leftrightarrow$$

$$z = -2$$
 ou
$$z^2+2(1-i)z+15-10i = 0$$

$$\Delta = 4(1-i)^2 - 4 \times (15-10i) = -8i - 60 + 40i = -60 + 32i.$$

Cherchons $\delta = a + ib$ tel que $\delta^2 = \Delta$.

$$\begin{cases} a^{2} - b^{2} &= -60 \\ 2ab &= 32 \\ a^{2} + b^{2} &= \sqrt{60^{2} + 32^{2}} = 4\sqrt{15^{2} + 8^{2}} = 4\sqrt{289} = 68 \end{cases} \Leftrightarrow \begin{cases} 2a^{2} &= 8 \\ ab &> 0 \\ 2b^{2} &= 128 \end{cases} \Leftrightarrow \begin{cases} a^{2} &= 4 \\ ab &> 0 \\ b^{2} &= 64 \end{cases}$$
On choisit par exemple $\delta = 2 + 8i$.

Donc (E_2) a trois solutions, $z_0 = -2$ ainsi que

$$z_1 = \frac{-2 + 2i + 2 + 8i}{2} = 5i$$
 et $z_2 = \frac{-2 + 2i - 2 - 8i}{2} = -2 - 3i$

$$(E_3): (z-1)^4 = 1$$

Il est immédiat, d'après la forme de l'équation (E_3) que $z-1 \in \mathbb{U}_4$.

Il y a donc quatre solutions à l'équation qui sont

$$S = \{1+1; 1+i; 1-1; 1-i\} = \{2; 1+i; 0; 1-i\}$$

$$(E_4): e^z = \sqrt{3} - i$$

On met $\sqrt{3} - i$ sous forme trigonométrique :

$$|\sqrt{3} - i| = \sqrt{3 + 1} = 2.$$

Donc
$$\sqrt{3} - i = 2\left(\frac{\sqrt{3}}{2} + i \times \frac{-1}{2}\right) = 2e^{-i\frac{\pi}{6}}$$
.

On cherche alors z=a+ib sous forme algébrique, et par propriétés du cours :

$$e^a = 2$$
 donc $a = \ln(2)$ puis

$$e^{ib} = e^{-i\frac{\pi}{6}} \text{ donc } b = -\frac{\pi}{6} + 2k\pi, k \in \mathbb{Z}.$$

Finalement, les solutions de (E_4) sont les complexes de la forme $z = \ln(2) - i\frac{\pi}{6} + 2ik\pi$ où $k \in \mathbb{Z}$.

Exercice 2.

1) Montrons tout d'abord que $\forall x \in]0; +\infty[, \ln(1+\frac{1}{x}) < \frac{1}{x}]$

Pour cela, étudions la fonction $f: x \in]0; +\infty[\mapsto \ln(1+\frac{1}{x}) - \frac{1}{x}]$ et montrons qu'elle est strictement négative.

$$f$$
 est définie et dérivable sur \mathbb{R}_+^* comme somme et composée et $\forall x \in]0; +\infty[, f'(x) = \frac{-1}{x^2} \times \frac{1}{1+\frac{1}{x}} + \frac{1}{x^2} = \frac{x+1-x}{x^2(1+x)} = \frac{1}{x^2(1+x)}.$

Donc f' est strictement positive sur \mathbb{R}_{+}^{*} (qui est un intervalle), donc f est strictement croissante sur \mathbb{R}_{+}^{*} .

Or
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \ln\left(1 + \frac{1}{x}\right) - \frac{1}{x} = 0.$$

Donc f est strictement négative sur \mathbb{R}_+^* ce qui prouve que

$$\forall x \in]0; +\infty[, \ln\left(1 + \frac{1}{x}\right) < \frac{1}{x}$$

De même, en posant $g(x) = \ln\left(1 + \frac{1}{x}\right) - \frac{1}{x+1}$ qui est définie et dérivable sur \mathbb{R}_+^* , on a :

$$g'(x) = \frac{-1}{x(x+1)} + \frac{1}{(x+1)^2} = \frac{x-x-1}{x(x+1)^2} = \frac{-1}{x(x+1)^2}$$
 qui est négative sur \mathbb{R}_+^* .

Donc g est décroissante sur cet intervalle et $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \ln\left(1 + \frac{1}{x}\right) - \frac{1}{x+1} = 0$.

Donc g est positive sur \mathbb{R}_+^* ce qui finit de prouver que

$$\forall x \in]0; +\infty[, \frac{1}{x+1} < \ln\left(1 + \frac{1}{x}\right) < \frac{1}{x}$$

2) D'après la question précédente, $\sum_{k=1}^{n} \frac{1}{k} > \sum_{k=1}^{n} \ln\left(1 + \frac{1}{k}\right)$.

Or
$$\sum_{k=1}^{n} \ln\left(1 + \frac{1}{k}\right) = \sum_{k=1}^{n} \ln\left(k + 1\right) - \ln(k) = \ln(n + 1) - \ln(1)$$
 par télescopage.

Or $\lim_{n \to +\infty} \ln(n+1) = +\infty$ donc, d'après le théorème des gendarmes,

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k} = +\infty$$

3) Nous avons déjà démontré à la question précédente que
$$\forall n \in \mathbb{N}^*, \ln(n+1) < \sum_{k=1}^n \frac{1}{k}$$
.

Montrons l'autre partie de l'encadrement.

D'après la question 1),
$$\forall x \in]0; +\infty[, \frac{1}{x+1} < \ln(1+\frac{1}{x}).$$

Donc
$$\sum_{k=2}^{n} \frac{1}{k} < \sum_{k=2}^{n} \ln\left(1 + \frac{1}{k-1}\right)$$
, ce qui conduit, comme à la question précédente, après

$$\forall n > 2, \sum_{k=2}^{n} \frac{1}{k} < \ln(n).$$

Or la somme commence à l'indice k=2, donc en ajoutant 1 aux deux membres,

$$\forall n > 2, \sum_{k=1}^{n} \frac{1}{k} < 1 + \ln(n).$$

Enfin, dans le cas où n=1, cette inégalité est en fait une égalité. On a donc finalement,

$$\forall n \in \mathbb{N}^*, \ln(n+1) < \sum_{k=1}^n \frac{1}{k} \leqslant 1 + \ln(n)$$

4)
$$\left(1 + \frac{1}{n}\right)^n = \exp\left(n\ln\left(1 + \frac{1}{n}\right)\right)$$

4) $\left(1 + \frac{1}{n}\right)^n = \exp\left(n\ln\left(1 + \frac{1}{n}\right)\right)$. En utilisant l'encadrement de la question 1), et la stricte croissance de la fonction exp, on peut donc écrire:

$$\forall n \in \mathbb{N}^*, \exp\left(\frac{n}{n+1}\right) < \left(1 + \frac{1}{n}\right)^n < \exp\left(\frac{n}{n}\right)$$

peut donc ecrire:
$$\forall n \in \mathbb{N}^*, \exp\left(\frac{n}{n+1}\right) < \left(1 + \frac{1}{n}\right)^n < \exp\left(\frac{n}{n}\right)$$
Or $\lim_{n \to +\infty} \frac{n}{n+1} = \lim_{n \to +\infty} \frac{n+1-1}{n+1} = \lim_{n \to +\infty} 1 - \frac{1}{n+1} = 1$.
Donc, d'après le théorème des gendarmes,

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e$$

- 5) On souhaite calculer, pour tout réel r, la limite $L_r = \lim_{n \to +\infty} \left(1 + \frac{r}{n}\right)^n$.
 - Si l'on suppose r > 0, la démonstration de la question précédente s'adapte aussi à cette

En effet,
$$\left(1 + \frac{r}{n}\right)^n = \exp\left(n\ln\left(1 + \frac{1}{\frac{n}{r}}\right)\right)$$
.

En utilisant l'encadrement de la question 1) (qui n'est valable que pour x > 0, et c'est le cas ici en posant $x=\frac{n}{r}$), et la stricte croissance de la fonction exp, on peut donc écrire :

$$\forall n \in \mathbb{N}^*, \exp\left(\frac{n}{1+\frac{n}{r}}\right) < \left(1+\frac{r}{n}\right)^n < \exp\left(r\right)$$

Or
$$\lim_{n \to +\infty} \frac{n}{1 + \frac{n}{r}} = \lim_{n \to +\infty} \frac{1}{\frac{1}{n} + \frac{1}{r}} = r$$
.

Donc, d'après le théorème des gendarmes,

$$\lim_{n \to +\infty} \left(1 + \frac{r}{n}\right)^n = e^r$$

• Pour
$$r = 0$$
,
$$\lim_{n \to \infty} \left(\frac{1}{n} \right)^n - \lim_{n \to \infty} \frac{1}{n} = 0$$

• Pour
$$r = 0$$
,

$$\lim_{n \to +\infty} \left(1 + \frac{0}{n} \right)^n = \lim_{n \to +\infty} 1^n = 1.$$
• Enfin, pour $r < 0$:

$$\left(1 + \frac{r}{n}\right)^n = \exp\left(n\ln\left(1 + \frac{r}{n}\right)\right) = \exp\left(n\ln\left(\frac{n+r}{n}\right)\right)$$

C'est-à-dire:
$$\left(1 + \frac{r}{n}\right)^n = \exp\left(-n\ln\left(\frac{n}{n+r}\right)\right) = \exp\left(-n\ln\left(\frac{n+r-r}{n+r}\right)\right) = \exp\left(-n\ln\left(1 - \frac{r}{n+r}\right)\right)$$
.

Or pour n suffisamment grand (on cherche la limite lorsque $n \to +\infty$), $-\frac{r}{n+r} > 0$ puisque r est négatif.

Une démonstration similaire à celle du premier point permet alors de démontrer que, là encore,

$$\lim_{n \to +\infty} \left(1 + \frac{r}{n}\right)^n = e^r$$

• Enfin, comme $e^0 = 1$, on peut affirmer que pour tout réel r,

$$\lim_{n \to +\infty} \left(1 + \frac{r}{n}\right)^n = e^r$$

Exercice 3.

1)
$$u_1 = \sqrt{2-2} = \sqrt{0} = 0.$$

 $u_2 = \sqrt{2+0} = \sqrt{2}.$
 $u_3 = \sqrt{2+\sqrt{2}}.$

- 2) Pour x un réel quelconque, on a d'après le cours $\cos(2x) = 2\cos^2(x) 1$.
- 3) Montrons par récurrence que pour tout entier $n \in \mathbb{N}$, $\cos\left(\frac{\pi}{2n}\right) = \frac{u_n}{2}$. Initialisation:

Pour
$$n = 0$$
: $\cos\left(\frac{\pi}{2^0}\right) = \cos(\pi) = -1$ et $\frac{u_0}{2} = -1$.

Hérédité:

Supposons que pour *n* entier donné, on ait $\cos\left(\frac{\pi}{2^n}\right) = \frac{u_n}{2}$.

Alors, $\cos\left(\frac{\pi}{2^n}\right) = \cos\left(2\frac{\pi}{2^{n+1}}\right) = 2\cos^2\left(\frac{\pi}{2^{n+1}}\right) - 1$ d'après la question précédente.

Par ailleurs, $n+1 \geqslant 1$, donc $\frac{\pi}{2^{n+1}} \leqslant \frac{\pi}{2}$ et par conséquent $\cos\left(\frac{\pi}{2^{n+1}}\right) \geqslant 0$.

On en conclut donc que $2\cos^2\left(\frac{\pi}{2^{n+1}}\right) = \frac{u_n}{2} + 1 = \frac{u_n + 2}{2}$

puis que
$$\cos\left(\frac{\pi}{2^{n+1}}\right) = \sqrt{\frac{u_n + 2}{4}} = \frac{\sqrt{u_n + 2}}{2} = \frac{u_{n+1}}{2}$$

puis que $\cos\left(\frac{\pi}{2^{n+1}}\right) = \sqrt{\frac{u_n+2}{4}} = \frac{\sqrt{u_n+2}}{2} = \frac{u_{n+1}}{2}$ Conclusion: la propriété est initialisée au rang 0, héréditaire à partir de ce rang, donc $\forall n \in \mathbb{N}, \cos\left(\frac{\pi}{2^n}\right) = \frac{u_n}{2}$

4) La question précédente permet d'affirmer que $\forall n \in \mathbb{N}, u_n = 2\cos\left(\frac{\pi}{2n}\right)$.

Or
$$\lim_{n\to+\infty} 2\cos\left(\frac{\pi}{2^n}\right) = 2\cos(0) = 2$$
 (car cos est continue). Donc $\lim_{n\to+\infty} u_n = 2$.

Exercice 4.

1) $h(x) = \operatorname{Arctan}\left(\frac{x}{\sqrt{1-x^2}}\right)$ est définie si et seulement si $1-x^2 > 0$. Or $1 - x^2 > 0 \Leftrightarrow x^2 < 1 \Leftrightarrow x \in]-1;1[$.

Donc l'ensemble de définition de h est D =]-1;1[.

2) h est la composée de Arctan, dérivable sur \mathbb{R} et d'un quotient de fonctions dérivable sur D, donc est dérivable sur D.

De plus, $\forall x \in D$:

$$h'(x) = \frac{\sqrt{1-x^2} - x \times \frac{-2x}{2\sqrt{1-x^2}}}{1-x^2} \times \frac{1}{1+\frac{x^2}{1-x^2}}$$

$$= \sqrt{1-x^2} \times \frac{1-x^2+x^2}{(1-x^2)^2} \times \frac{1-x^2}{1-x^2+x^2}$$

$$= \frac{\sqrt{1-x^2}}{1-x^2} = \frac{1}{\sqrt{1-x^2}}$$

3) D'après la question précédente, $\forall x \in D, h'(x) = Arcsin'(x)$.

De plus D =]-1;1[est un intervalle.

Donc il existe un réel r tel que $\forall x \in D, h(x) = Arcsin(x) + r$.

Or pour x = 0, h(0) = Arctan(0) = 0 et Arcsin(0) = 0 donc r = 0.

Donc

$$\forall x \in]-1; 1[, Arcsin(x) = Arctan\left(\frac{x}{\sqrt{1-x^2}}\right)$$

Exercice 5.

- 1) $\cos(2x) = 2\cos^2(x) 1 = P_2(\cos(x))$ en posant $P_2(X) = 2X^2 1$.
- 2) En utilisant les nombres complexes :

$$\cos(3x) = \Re e(e^{3ix})
= \Re e((e^{ix})^3)
= \Re e(\cos^3(x) + 3\cos^2(x) \times i\sin(x) + 3\cos(x) \times (i\sin(x))^2 + (i\sin(x))^3)
= \cos^3(x) - 3\cos(x)\sin^2(x)$$

Donc, $\forall x \in \mathbb{R}, \cos(3x) = \cos^3(x) - 3\cos(x)\sin^2(x)$.

3) D'après la question précédente, pour tout réel x, en utilisant le fait que $\sin^2(x) = 1 - \cos^2(x)$, on a :

$$\cos(3x) = \cos^3(x) - 3\cos(x)(1 - \cos^2(x)) = 4\cos^3(x) - 3\cos(x) = P_3(\cos(x))$$
en posant

$$P_3(X) = 4X^3 - 3X$$

4) On suppose que $n \ge 2$.

Rappel:

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

En effectuant la somme de ces deux dernières relations, on a donc :

$$\cos(a+b) + \cos(a-b) = 2\cos(a)\cos(b).$$

Donc, en remplaçant a par (n-1)x et b par x, on a, pour x réel quelconque :

$$2\cos((n-1)x)\cos(x) = \cos((n-1)x + x) + \cos((n-1)x - x) = \cos(nx) + \cos((n-2)x).$$

5) Par récurrence double :

Initialisation: $cos(0 \times x) = cos(0) = 1 = P_0(cos(x))$ en posant $P_0(X) = 1$.

$$\cos(1 \times x) = \cos(x) = P_1(\cos(x))$$
 en posant $P_1(X) = X$.

Enfin, on a aussi obtenu $P_2(X) = 2X^2 - 1$ et $P_3(X) = 4X^3 - 3X$.

 $H\acute{e}r\acute{e}dit\acute{e}: supposons que pour deux entiers n et n+1 donn\acute{e}s, cos(nx)$ et

 $\cos((n+1)x)$ puissent s'écrire en fonction de $\cos(x)$ uniquement.

Alors, d'après la question précédente,

$$2\cos((n+1)x)\cos(x) = \cos((n+2)x) + \cos(nx)$$

Donc $\cos((n+2)x) = 2\cos((n+1)x)\cos(x) - \cos(nx) = 2P_{n+1}(\cos(x)) \times \cos(x) - P_n(\cos(x))$.

En posant donc $P_{n+2}(X) = 2XP_{n+1}(X) - P_n(X)$, on vient donc de prouver que $\cos((n+2)x)$ s'écrit en fonction de $\cos(x)$ uniquement, plus précisément que

$$\cos((n+2)x) = P_{n+2}(\cos(x)).$$

est borné par -1 et par 1.

Conclusion: la propriété est initialisée aux rangs 0 et 1, héréditaire à partir de ces rangs, donc, $par\ r\'ecurrence\ double$, la propriété est vraie pour tout entier n.

De plus, l'hérédité a permis de montrer que la fonction P_{n+2} vérifie :

$$\forall n \in \mathbb{N}, \forall X \in \mathbb{R}, P_{n+2}(X) = 2XP_{n+1}(X) - P_n(X)$$

6)
$$P_4(X) = 2XP_3(X) - P_2(X) = 2X(4X^3 - 3X) - 2X^2 + 1 = 8X^4 - 8X^2 + 1$$

 $P_5(X) = 2XP_4(X) - P_3(X) = 2X(8X^4 - 8X^2 + 1) - 4X^3 + 3X = 16X^5 - 20X^3 + 5X$

7) On veut montrer que les valeurs de $P_n(X)$ sont comprises dans l'intervalle [-1;1] lorsque X est lui aussi dans cet intervalle. Supposons donc que $X \in [-1;1]$. cos est une bijection de $[0;\pi]$ dans [-1;1]: donc il existe $x \in [0;\pi]$ tel que $\cos(x) = X$. Donc $P_n(X) = P_n(\cos(x)) = \cos(nx)$ appartient bien à l'intervalle [-1;1] puisque $\cos(nx)$