Maths - Feuille d’exos n° 9

Nombres réels et suites numériques

I. L’ensemble R

Ex. 9.1 Pour les ensembles suivants, donner lorsqu’ils existent, 1’en-
semble des majorants, ’ensemble des minorants, le plus grand et le
plus petit élément, la borne inférieure et la borne supérieure.
A:{%,né]N*} B:{%+(—1)",7LGIN*}
1(32— X

C={228 v e [37]} D=Qn[n7]
(a,b) € R%?
E={a+2tneN} F={(-1)ra+2neN}

_ =" *
G = {a +——neNN }

Ex. 9.2 (Cor.)
Vere A,z <a.
Montrer que sup A < a.

Que peut-on dire si Vo € A,z < a?

Ex. 9.3 (Cor.)
{k+2% keN}.
e Montrer que E,, admet une borne inférieure réelle et que
inf £, = min (k + ﬁ)
1<k<n k
e Montrer que Vn € IN*, inf E,, > /4n.
Dans quel(s) cas a-t-on inf £, = v/4n?

Ex. 9.4 [x+] Onnote A= {p+qv2 (p,q) € Z°} CR,
et A* ={x e A x>0}

Soit A une partie non vide de R et o € R tels que

Pour tout entier n &€ IN*, on pose E, =

1. Montrer que A* possede une borne inférieure réelle.

2. Calculer inf A* .

3. Montrer que A est dense dans R.

Indication : on pourra tenter d’adapter les deux premieres
questions a l'ensemble A, = {z € A,z > a} ou a est un réel
quelconque.

Ex. 9.5 Montrer que pour tout n € IN*, on a :

\/n+1—\/ﬁ<ﬁ<\/7—\/n—l.

100

1
En déduire la valeur de F Z TJ
n

n=1

I1. Introduction aux suites

Ex. 9.6 Etudier la monotonie des suites définies par :
u = —1 ()] = n—' w. = n—S €T = —1
n 1+n2 n on n 5N n n2+l+(—l)"

Ex. 9.7 Un particulier emprunte une somme M a sa banque pour un

achat immobilier.

Un mois apres son emprunt, il paye sa premiere mensualité m. Mais il y
a des intéréets sur la somme qu’il a empruntée, de sorte que le montant
restant a rembourser apres sa premiere mensualité est de

S1:MX(]_—|—t)—m

ou t est le taux d’intéret mensuel de son emprunt.

Le méme raisonnement vaut pour les mois suivants, ce qui a pour
conséquence que la suite des montants restant a rembourser est une
suite arithmético-géométrique donnée par

So=M et VYVneO;N—-1],541 =S, x (1+t)—m

ot N est le nombre de mois que dure I’emprunt.

1. Quel est le montant minimal m( de la mensualité garantissant
que la suite S des sommes restant a rembourser est décrois-
sante ?

2. On suppose que m > mgy. Combien de mois va durer I'emprunt ?



3. Application numérique : on suppose que M = 100000€,

t=0,3% = 1000 et m = 2my.
Calculer mg puis le nombre de mois N sur lequel s’étale le rem-
boursement.

Enfin, calculer la derniere mensualité versée par I'emprunteur
(attention! la dernicre mensualité est d’un montant générale-
ment différent des précédentes).

Ex. 9.8

1. Montrer que pour tous réels x et y, on a :
L) + ly) < le+y)] < o]+ [y] +1.
2. Montrer que pour tout réel z on a: [ £|+[ZH | = [«].

ug = 0
VneNu,pw = n—u,
Calculer u,, en fonction de n (on demande une formule expli-
cite).

3. Soit u la suite définie par {

Ex. 9.9 Soit u la suite définie par u,,1 = /2 + u,, up € R.

1. Pour quelles valeurs de ug la suite est-elle définie ?

2. Etudier alors sa monotonie.

3. Pour quelles valeurs de ug la suite est-elle bornée ?

Uo =1
Ex. 9.10 Soit u la suite définie par { w4 = 2 .
Up+2 = A/Un4+1Un

Etudier la suite u, préciser notamment sa limite si elle existe.
Ex.9.11 Soient a, b deux constantes réelles, u une suite réelle vérifiant
Upto+Upi1+u, = 0 et v une suite réelle vérifiant v, o+av, 1 +bv, = 0.

1. Montrer sans calculer son terme général que u est périodique de
période 3.

2. Calculer le terme général u,, en fonction de n et retrouver le
résultat précédent.

3. On suppose que la suite v est non nulle et périodique de période
p e IN*.
Montrer qu’il existe un nombre complexe Z = pe’ vérifiant a la
fois I'équation caractéristique (E,) : Z* +aZ + b= 0 et I'équa-
tion Z? — 1 = 0.
Indication : on envisagera plusieurs cas possibles suivant la na-
ture des solutions de (F,).

4. Exhiber une suite récurrente linéaire d’ordre 2 qui soit pério-
dique de plus petite période 5.

1++5
2

Indication : en posant ¢ = le nombre d’or, on pourra

commencer par montrer que

XU+ X+ X2+ X +1= (X2 40X +1) (X2 - £ +1)

Ex. 9.12 Calculer pour n € N*, S, =1+ 114+ 111+ ...+ 1..1
_ ~

n chiffres 1
Ex. 9.13  Soit a et b deux réels strictement positifs. Pour les deux

suites ci-dessous, on demande de montrer I’existence puis de donner
une formule explicite pour le n-ieme terme de la suite :

1. ug=1et Vn € N, upi1 = V/a+ bu2;

2.vp=v1=1et Vn € N, v, =

ITI. Limite d’une suite réelle

Ex. 9.14 (Cor.)
1. Montrer que Vp € IN*, ﬁ <In(p+1)—In(p) <

1\"
(1+3)-
n——+o0o n

2. Calculer lim
1

lim - = +o00.
n—-+oo p
p=1

S 1=

3. Montrer que



Ex. 9.15 Etudier les limites suivantes :
lim n -+ 2sin(n?) lim 2n+ (—1)"n lim nsin (1)
n—r+00 n—+00 n—r+00 2n.,

. on _ 3n ' 1— aQ n i
7L1—1>1—|T—100 el \/E n—1>r—&l-loo 2m 4 3n 'n1—1>1}-100 (1 + CL2) ¢
' 1 2n ‘ 13\" ) 1 n
lim (1—— lim l——= lim (1+ —
n— 00 n n—+o00 n n—+o00 \/ﬁ
1
Ex. 9.16  Montrer que la suite u définie par u, 1 = u?> + ~, up € R

4
est croissante quelle que soit la valeur de ug € R.

Faire une représentation graphique de la suite récurrente.
Pour quelle(s) valeur(s) de ug la suite est-elle majorée ?

Montrer 'existence de lim wu,, puis donner sa valeur.
n—+0o0o

|z] + |2x] + ... + [nz]

Ex. 9.17 Soit x € R. Déterminer lim 5 )
— n——+o0o n

Ex. 9.18 Montrer en utilisant des suites extraites que (sin(%))nem
diverge.

Faire de méme pour (cos (mr + %))ne]N puis pour (f — L\/ﬁj)new.

n
1
Ex.9.19 On considere les suites définies pour n € IN* par u,, = Z =
k=1
et v, = u, + %
Montrer que u et v convergent vers une meéme limite.
1
En déduire un encadrement d’amplitude 3 de la limite commune aux
deux suites.

—Un

Ex. 9.20  Soit u définie par u; =1 et w, 1 = %e
1. Montrer que Vn € IN*, u,, > 0.
2. Montrer que u est convergente et déterminer sa limite.
Unp,
n+1
1. Montrer que la suite u est bornée, convergente et calculer sa

Ex. 9.21 [*]  Soit w définie par ug €]0; 1] et w41 = 1+

limite.
2. Les résultats de la questions précédentes restent-ils valables si
I’on choisit ug réel quelconque ?

R

Ex. 9.22 Gl )

2

1. Donner une construction géométrique de 2,41 a partir de z,.

Soit zg € C et (2, )nen la suite définie par z,,1 =

Etudier cette suite dans les cas oit 20 =0, 20 € R et zp € R”.
Montrer que zp ¢ R = Vn € N, z, ¢ R.

On suppose que z, ¢ R. Etudier la convergence de (z,).
[Indication : écrire les termes de la suite sous forme exponen-
tielle.]

Ll

IV. Révisions

Ex. 9.23 Donner une formule explicite pour y : R - Kouwu: N — K
en envisageant successivement les deux cas K =R ou K = C :

lL.y=y—1letu,1=u,—1

2. Y ==y +yet uyo = —Upi1 + Uy

Ex. 9.24 Soit n € N.

Calculer S, = Z ( ? )et T, Z (—1)]( ?

0<j<k<n 0<j<k<n

k k
En déduire la valeur de E .| et E )
: ' ( J ) ( J

0<j<ksn 0<j<k<n
j pair J impair

Ex. 9.25 [x| Mines Telecom MP 2018

(n+1)2

1
T

)
)

Pour tout entier n € IN, on définit u,,

k=n2



La suite (uy), oy possede-t-elle une limite ? Peut-on calculer cette li-
mite ?

Ex. 9.26 [*]  En remarquant que Vx € [0; 1], z* < x, montrer que

n

Vn € ]N*,Z | cos(k)| = T

Corrections

Cor. 9.2 : Par définition, a est un majorant de A. Donc A, non vide et majoré,
possede une borne supérieure qui est le plus petit de ces majorants, en particulier
inférieure ou égale & a. Si Vo € A, x < «, on a encore sup A < . Le méme raison-
nement que précédemment reste valable.

Attention cependant, il est possible que sup A = «. L’inégalité stricte n’est donc
pas vérifiée pour la borne supérieure. Par exemple, si A = {1 — %, n e ]N}, on a

Ve e A,x <1, mais supA =1 car lim (1 — l) =1.
n—-+oo n
Cor. 9.3 :
e FE, est minoré par 0 et admet donc une borne inférieure. De plus, si
k2n+1,alorsk+%>k2n+l. Orpourkzmonak—i—%zn—i—l.
Donc la borne inférieure est atteinte pour k < n, c’est-a-dire :

inf £, = inf (k—i—ﬁ)
1<k<n k

e Etudions la fonction f(z)
fllx)=1-15.
f(x )>0<:>1> & x> /nsur RY.
Donc f passe par un minimum en z = /i, valeur pour laquelle f(x) =

f(vn)=2vn.
Donc Vn € IN*,inf E,, > v/4n.

=z + 2. Elle est définie et dérivable sur R et

n
= inf (k—i— —) est la
1<k<n k
borne inférieure d’'un ensemble fini et qu’elle est donc atteinte, il faut que
le minimum de la fonction f soit atteint c¢’est-a-dire que n soit un carré.

Pour qu’il y ait égalité, dans la mesure ou inf F,

Cor. 9.14 :

1. Lemme : Vz €] — 1;4o0,In(1+2) <z
En effet, en définissant la fonction f : x €] — 1;400[ In(1l + ) —  qui
est dérivable et continue mir son intervalle de définition, on a :
. ’ — I

Vo €] — 1;4oc], f/(z) = Tz 1= T2
Donc f est croissante sur | — 1; 0] et décroissante sur Ry, elle passe donc
par un maximum en 0 qui vaut f(0) =In(1) = 0 ce qui acheve la démons-
tration du lemme.

OrVp e N*In(p+1) —In(p) = ln(p";l) zln(1-|- %) <
bien a | — 1; 4-00]).

qui est du signe de —z.

1
— (qui appartient
p

R « o . +1-1Y) _

De méme Vp € WN* In(p + 1) — In(p) = _hl(pil) = _1n(pp+l ) -
—ln(l + m) . )
Donc Vp € N*, In(p + 1) — In(p) > — — — €l - 15+,

onc Vp € N* In(p+ 1) — In(p) P (car 1 €] +00[)

1 n
2. lim (1+—) = lim en(+%),

n—+0o n n—r-+o0o

Or d’apres la question précédente, Vn € IN*, o < 1n(1 + %) < %

1
En utilisant le théoreme des gendarmes on obtient donc lim (1 + —) =
n—-+oo n

e.

3 n
1
3. D’apres la premiére question, - (p+1) —Inp) = In(n+1)

; p Z;

(télescopage).

Or lim In(n + 1) = +4o0o donc d’aprés le théoreme des gendarmes

n—-+oo
n
. 1
Jm D, = o

p=1



