Maths - Chapitre 12
Espaces vectoriels

Dans tout ce qui suit, (IK,+, x) désignera le corps des nombres réels ou le corps des nombres

complexes.

I. Structure d’espace vectoriel

I.1. Introduction et premiers exemples

e Tout vecteur @ du plan peut s’écrire comme une combinaison linéaire i = xi'+ yj de
deux vecteurs non colinéaires 7’et 7': (7 ) est appelée base du plan vectoriel, (x;y) € R?
sont appelées coordonnées du vecteur i dans la base (7).

e Toute solution y d'une équation différentielle linéaire homogene du deuxieme ordre a co-
efficients constants peut s’écrire comme une combinaison linéaire y = Ay, + pys de
deux solutions non colinéaires y; et yp de cette équation différentielle : (y1;y2) est appelée
base de l’espace des solutions, (\; 1) € KK? sont appelées coordonnées de la solution
y dans la base (yi;y2).

e Tout nombre complexe z peut s’écrire comme une combinaison linéaire 2 = r x 14y x1
des nombres 1 et 7 :

Les exemples précédents illustrent le fait que les notions de combinaisons linéaires, de bases
ou encore de coordonnées se retrouvent dans des domaines tres variés des mathématiques, dont
certains n’ont a priori aucun rapport immédiat avec la géométrie.

Ce qui importe en fait, ce sont les opérations que l’on peut faire sur les objets concernés
dans ces exemples : on peut les ajouter entre eux, ou les multiplier par un scalaire (c’est-a-dire

un nombre réel ou complexe), ce sont des éléments de plusieurs espaces vectoriels.

Par ailleurs, tous ces exemples concernent des espaces vectoriels de dimension 2 : pour définir
un vecteur dans ces espaces, il suffit de donner deux scalaires, appelés coordonnées de ce
vecteur. Cette notion de dimension est utilisée dans d’autres domaines que les mathématiques,
parfois avec une autre terminologie : en SI par exemple, on parle plutot de degrés de liberté.

Il existe évidemment des espaces vectoriels de dimension 1, ou 3, ou plus, voire de dimension
infinie ! 168
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I.2. Définition et premiers exemples

Définition 12.1

On dit que (£, +,.) est un espace vectoriel sur K ou encore un K-espace vectoriel si :
e F est muni d'une loi interne notée additivement (+) qui lui confere une structure de
groupe commutatif :V(z,y) € E*, v +y € E, laloi est
possede ... . L. noté Og (ou plus simplement 0) et tout élément x € E
possede
e [ est muni d'une loi externe (\,z) € K x F +— \.x € E. Plus précisément, cette loi
vérifie :
* VO, u) € KB Ve € E,( A+ p).o = Ao+ p.;
*x VA e K, V(x,y) € B2 \.(x +vy) = Ao+ \y;
* VO, p) e K,V € B, (A x p).x =N (ux);
* Vo e E 1g.x = .

Si (E,+,.) est un K-espace vectoriel, les éléments de E sont appelés vecteurs et ceux de K

scalaires.

gf Notation

Les éléments de x € F sont parfois surmontés d'une fleche (Z) pour les distinguer des scalaires,
mais ce n’est pas une obligation. Cette notation est essentiellement utilisée pour les vecteurs
du plan et de 'espace ordinaires.

Le signe . de la loi externe de E est souvent omis.

Ex. 12.1

e (R,+,.) est un R-espace vectoriel ou . est
e (C,+,.) est un R-espace vectoriel ou . est
C s’identifie alors ..................
(C,+,.) est un C-espace vectoriel ol . est .............................
e (RR% +,.) est un R-espace vectoriel en définissant sa loi 1nterne par
et sa 101 externe par
R? s’identifie alors ...
De méme, (R3,+,.) est un R—espace vectoriel en deﬁmssant sa 101 interne par
............................................. et sa loi externe par
]R sidentifie alors ... ..
D’une maniere générale, IK™ est un K-espace vectoriel en définissant sa loi 1nterne par
.......................................... et sa loi externe par

Ex. 12.2
e L’ensemble RN des suites réelles muni des lois :
* V(UH)HEIN € Rwav(vn)neﬂ\l € R]N; (un)nE]N + (Un>n€]N e e
* YA € R, Y(tp)new € RN, A\ (tn)nen =
est un R-espace vectoriel.
De méme, ’ensemble (C]N, =+, ) des suites complexes est un espace vectoriel sur R ou sur
C.

e D’une maniere générale, soit A un ensemble quelconque et F(A, K) I'ensemble des applica-
tions de A dans K. On munit F(A, K) = K des lois :
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* Vf e F(AK), Vg € F(A K), on définit par f 4 g I'application :{ f

* VA e K,\Vf € F(A,K), on définit par A.f I'application :{ ;4 : K

Muni de ces deux lois, F(A, K) est un K-espace vectoriel. En effet . ..................... )

De méme, si (E,+,.) est un K-espace vectoriel quelconque, (F(A, E),+,.) est aussi un
K-espace vectoriel.

Propriété 12.2
Pour un K-espace vectoriel (E,+,.), V(\,z) e K x E :

0 0z=0g: 0.2.5.0:£0)L=0.2.:0.2.5.0.2. =0z
L] )\.OE—OE .................................................
Do =lz = A=00uAT . Az) = AT .0p =0 A=00u (AT \).x=1gr=2=0g

Ex. 12.3 Montrer que la commutativité de la loi + est une conséquence des autres axiomes de la
structure d’espace vectoriel.

[ Cor. 12.3 )

Ex. 124 E = {(x;y; 2) € R? 2y = 0} est-il un R-espace vectoriel ?
[Cor. 12.4 ]

I.3. Combinaisons linéaires

Définition 12.3 (Combinaisons linéaires)

Etant donnés un K-espace vectoriel E et une famille U = (uq, us, ..., u,) de vecteurs de E,
on dit que u est une combinaison linéaire des vecteurs de U ou une combinaison

linéaire de U si

I Az An) € K™ = D> Nty = Aty + Mgtz + o+ Ayt

=1

I1. Sous-espaces vectoriels

Dans tout ce qui suit, (E,+,.) est un K-espace vectoriel.

II.1. Définition
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Définition 12.4
Soit F' un sous-ensemble de E. On dit que F' est un sous-espace vectoriel de (F,+,.) si :
e Op el
e V(\,u) € K2 V(z,y) € F2\x + py € F : I est dit stable par combinaisons
linéaires.

Remarque

| {04} et E sont des sous-espaces vectoriels de (£, +,.).

I1.2. Théoreme fondamental

Théoréeme 12.5

Si F' est un sous-espace vectoriel de (E, +,.), alors (F,+,.) est un espace vectoriel.

[ Démonstration

4 Méthode
Pour prouver qu'un ensemble (muni de lois...) est un espace vectoriel, on montrera souvent

qu’il est un sous-espace vectoriel d'un espace vectoriel connu.

Ex. 12.5
e Montrer que l'ensemble F' = {(z;x),2 € R} est un sous-espace vectoriel de R? :

e Montrer que pour une fonction a € C°(R), I'ensemble des solutions de 1'équation différen-
tielle ¢’ + a(x)y = 0 est un sous-espace vectoriel de F(R).

e Montrer que I'ensemble des solutions d’une équation différentielle linéaire homogene (d’ordre
quelconque) est un sous-espace vectoriel de IKE.

e Montrer que l'espace vectoriel des polynomes a coefficients dans K est un sous-espace vec-
toriel de 'espace vectoriel des suites KN,

I1.3. Sous-espace vectoriel engendré
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Proposition 12.6

Etant donnée une famille U = (ug, ug, ..., u,) de vecteurs de E, l’ensemble des combi-
naitsons linéaires de U est un sous-espace vectoriel de E appelé sous-espace vectoriel
engendré par U.
On le note Vect U.

[ Démonstration ]

5;\:“\1’ Méthode

Pour prouver qu’un ensemble est un espace vectoriel, on peut tenter de I'écrire comme sous-

espace vectoriel engendré par une famille.

Ex. 12.6
e L'ensemble F' = {(z;z),z € R} = ................. est le sous-espace vectoriel de R? engen-
G I T 5 P
e Dans R?, Vect ((0;0;1); (0;1;0)) est 'ensemble des vecteurs de la forme...................
e Pour une fonction a continue sur R, 'ensemble des solutions de I'équation différentielle
y' + a(x)y = 0 est le sous-espace vectoriel de F(R) engendré par ................cooo...
e Soit (a;b) € R2.
L’ensemble des suites de RN satisfaisant la relation de récurrence w, o = at, 1 + bu, est
le sous-espace vectoriel de RN engendré par ........... ... .

I1.4. Intersection de deux sous-espaces vectoriels

Proposition 12.7

L’intersection F'N G de deux sous-espaces vectoriels F' et G de E est un sous-espace vectoriel
de E.

[ Démonstration j

Ex. 12.7 Donner toutes les suites u vérifiant @ la fois u, o = 3upi1 — 2uy, et uyro = Upi1 + 2u,.
Donner toutes les suites suites v vérifiant a la fois v,o = 3v,11 — 20, et vy10 = 20,11 + 3V,

[Cor. 12.7 ]

II.5. Somme de deux sous-espaces vectoriels

Définition 12.8

Soient F' et G deux sous-espaces vectoriels de F.
On appelle somme de F et de G 'ensemble H = {u+v,u € F,v € G}.
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Notation

| Lasomme H des sous-espaces vectoriels F' et G est notée H = '+ .

Théoréme 12.9

F + G est un sous-espace vectoriel de E.

[ Démonstration ]

Ex. 12.8 On note U l'ensemble des suites géométriques de raison 2 et V 'ensemble des suites
constantes.

Montrer que U et V sont deux sous-espaces vectoriels de (R]N, =+, ) et que U 4+ V est 'ensemble
des suites vérifiant wu, 0 = 3ty — 2uy,.

[Cor. 12.8 ]

I1.6. Somme directe de sous-espaces vectoriels

Définition 12.10

Etant donnés deux sous-espaces vectoriels F' et G de E, on dit que la somme F 4 G est
directe si

Ve F+G,dxe FFAlye G,z=x+vy

Notation

Si la somme F' + G est directe, on note F' @ G la somme des sous-espaces vectoriels F' et G
de E.

Proposition 12.11

La somme F' + G est directe si et seulement si F' NG = {0g}.

[ Démonstration ]

I1.7. Sous-espaces vectoriels supplémentaires

Définition 12.12

Soient F' et G deux sous-espaces vectoriels de F.

On dit que F' et G sont supplémentaires dans F si F'® G = E, autrement dit si

F+G = FE
FNG = {0}
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Ex. 12.9 Montrer que Vect ((1;1)) et Vect ((1; —1)) sont supplémentaires dans R?.
Montrer qu'il en est de méme de Vect ((1;1)) et Vect ((—3; —2)).

[Cor. 12.9 ]

Remarque

Cet exemple montre qu'un sous-espace vectoriel ' admet plusieurs sous-espaces sup-

plémentaires G dans F. En conséquence, on ne peut jamais dire que G est te
supplémentaire—de+, mais seulement qu’il est un supplémentaire de F'!

Remarque

D’apres la définition de la somme directe, si F' et GG sont supplémentaires dans F, tout
vecteur de F se décompose de facon unique comme somme d’un vecteur de F
et d’un vecteur de G.

III. Applications linéaires

Etant donné un corps (KK, +, x) (pour nous K = R ou K = C), on se donne (E,+,.), (F,+,.) et
(G, +,.) des K-espaces vectoriels.

III.1. Définition

Définition 12.13

Soit f une application de F dans F. On dit que f est une application linéaire ou un

morphisme d’espaces vectoriels si

V(A p) € K2,V (ws0) € B2, f (u+ pv) = M (w) + uf (v)

Corollaire 12.14

4 Démonstration

L On prend (\;p) =............dans la définition précédente.

cﬁ’ Notation

On note £ (E, F) 'ensemble des applications linéaires de E dans F' et £ (E) l'ensemble des
applications linéaires de F dans FE.
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Définition 12.15

e Les applications de £ (F) sont appelés endomorphismes de E.

e Les applications bijectives de L (E, I') sont appelées isomorphismes et les bijec-
tions de £ (F) sont appelées automorphismes.

e On appelle forme linéaire de £ toute application de L (£, K).

Notation
| L’ensemble des automorphismes de F est noté GL(E). 1l s’agit de 'abréviation de Groupe
Linéaire.
R? — R?
Ex. 12.10 ¢ : . Montrer que ¢ est une application linéaire.
Bx. 2104 {(fﬂ;y) = (T4y;r—y) que ¢ bp

[ Cor. 12.10 ]

ITI.2. Structure de £ (L, I)

Théoréme 12.16

L (E, F) muni de I'addition d’applications et de la multiplication par un scalaire est un K-

espace vectoriel, sous-espace vectoriel de F(E, F).

[ Démonstration ]

II1.3. Composition

Proposition 12.17

La composée de deux applications linéaires est linéaire.

[ Démonstration ]

Remarque

Notamment, la composée de deux endomorphismes est un endomorphisme, la composée de

deux isomorphismes est un isomorphisme et la composée de deux automorphismes est un

automorphisme.

II1.4. Réciproque d’une application linéaire bijective

Proposition 12.18
Si f € L(E, F) est bijective alors f~' € L (F, E).
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[ Démonstration ]

Remarque

Notamment, dans le cas de GL(E) la loi o est une loi de composition interne qui confere &

(GL(E), o) une structure de groupe : la composée de deux automorphismes est un automor-
phisme, 'identité est I'élément neutre de la composition et tout automorphisme possede un

symdétrique pour la composition qui est sa bijection réciproque.

II1.5. Noyau et image d’une application linéaire

Définition 12.19
Pour toute application f € L (E, F), on définit :
e le noyau de f noté Ker f comme 'ensemble Ker f = {u € E, f(u) = 0p};
e 'image de f notée Im f comme l'ensemble Im f = {v € F,3u€ E, f(u) =v} =
{f(u),ue E}.
Autrement dit,
le noyau de f est l'image réciproque par f du vecteur nul de F' (c’est-a-dire 'ensemble des
antécédents de 0p)
I'image de f est I'ensemble des wecteurs de F ayant un antécédent par f dans E

c’est-a-dire I'image directe de E par f.

II1.6. Propriétés de 'image et du noyau

Théoreme 12.20
Etant donnés f € £ (E, F) et V un sous-espace vectoriel de E, on a :

1) Ker f est un sous-espace vectoriel de E et f(V') est un sous-espace vectoriel de F';

2) en particulier, Im f est un sous-espace vectoriel de F;
3) f injective & Ker f = {0};
4) f surjective < Im f = F.

[ Démonstration j

Ex. 12.11 Montrer que ¢ € £ (R?) définie dans le précédent exemple est un automorphisme de R

[ Cor. 12.11 )
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IV. Applications linéaires particulieres

Dans tout ce paragraphe, K = R ou K = C, F un K-espace vectoriel, F' et G sont deux sous-espaces

vectoriels supplémentaires de F.

IV.1. Rappel

Par définition (voir définition 12.10), tout vecteur de £ = F @ G se décompose de maniére

unique en la somme d’un vecteur de F et d’un vecteur de G.

IV.2. Les homothéties

Définition 12.21
On appelle homothétie de rapport A € K I'appli-

i E — FE
cation h, :
T = Ar

Propriété 12.22

e Vz € E, hi(xz) =2 (hy est 'identité) et ho(z) = 0 (ho est I'application nulle) ;
e si\#£0, hy € GL(E) et h;l :h%_

IV.3. Les projections

Définition 12.23

On appelle projection sur F parallelement a G
FE=F&G — E

I’application p :
T =T +To — I

Propriété 12.24

o Vz; € F,p(21) =1 et Voo € G, p(x2) =0;
e pe L(E),pop=p,Imp=F =Ker(ld — p) et Kerp = G;

[ Démonstration j

Proposition 12.25 (Caractérisation des projections)

Soit f € £ (E).

f est une projection si et seulement si f o f = f (on note aussi f? = f).
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[ Démonstration ]

R? — R?
' a:—2y.2y—x).
(T3y) = ( T3

1) Montrer que f est un endomorphisme de R?.

Ex. 12.12 Soit f {

2) Montrer que f est une projection.

3) Donner ses sous-espaces caractéristiques (c’est-a-dire les sous-espaces vectoriels F' et ).

[ Cor. 12.12 ]

IV.4. Les symétries

Définition 12.26
On appelle symétrie par rapport a F
parallelement & G Dapplication s
{E —FaG — E

T=x1+Ty — X1 — To

Propriété 12.27
e Si p est la projection sur F' parallelement a G alors s =2p —Id et p = %

e s€GL(E), sos=1d, F =Ker(s —1Id) et G = Ker(s +1d)

[ Démonstration ]

Proposition 12.28 (Caractérisation des symétries)

Soit f € L (E).

f est une symétrie si et seulement si f o f = Id (on note aussi f? = Id).

[ Démonstration j

R? — R?
(:y) — (2z+y;—3z—2y)

1) Montrer que f est un endomorphisme de R?.

Ex. 12.13 Soit f : {

2) Montrer que f est une symétrie.

3) Donner ses sous-espaces caractéristiques (c’est-a-dire les sous-espaces vectoriels F' et ).
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[Cor. 12.13 ]

V. Compléments/exemples

Ecriture sous forme de sous-espace vectoriel engendré d’un sous-espace défint par
une ou plusieurs équations

Ex. 12.14 Soit E = R?, F = Vect((1; —1;1);(2;1;0)) et G = {(x;y;2) € E, 2 +y + 2 = 0}.
1) Ecrire G comme espace vectoriel engendré par une famille de vecteurs a préciser.
2) Montrer que G est un sous-espace vectoriel de E de deux manieres différentes :

a) en utilisant le résultat de la question précédente;
b) en écrivant G comme le noyau d'une application linéaire a préciser.

3) Décrire précisément les vecteurs de F'NG.

4) Donner un vecteur de F' qui n’appartient pas a G et un vecteur de G qui n’appartient pas
a F.

[ Cor. 12.14 j

Obtention d’une équation ou d’un systéme d’équations caractérisant un sous-espace
vectoriel engendré

Ex. 12.15 Soit £ = M3(R) et A = ( _01 g ), B = ( _01 } ), C = ( _11 } ) trois vecteurs de
E.

Soit I' = Vect(A; B; C) et G = Vect(A4;C).

Donner un systeme d’équations caractérisant F'.

Donner un systeme d’équations caractérisant G.

[Cor. 12.15 ]
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