Espaces vectoriels

|' Maths - Feuille d’exos n° 12

I. Définition, sous-espaces vectoriels

Ex. 12.1 (Cor.)  On considére F = {z +ix,x € R} C C.
Montrer que (F,+,.) est un R-espace vectoriel, mais n’est pas un C-
espace vectoriel.

Ex. 12.2 Parmi les ensembles suivants, lesquels sont des sous-espaces
vectoriels de E = F(R) 7
1) C°(R) 2) {F e '), f, F(t)dt =0}
3){fe b f(0)=rQ1)+1} M{fEEf()—Qﬂ)}
5) {f € C'(R), f'(0) = 0}
Ex. 12.3
1. On se place sur E = R? et on définit
F =Vect ((1;0;1); (1;1;0)) et G = Vect ((0;1;1)).
e Déterminer F'NG.
e Montrer que R* = F & G.

2. On se place sur Ey = M5(R) et on définit

(1) (1))
()3 1)

10
1 1
e Déterminer Fy N Go.
e Montrer que Fy = F5 @ Gs.

Ex. 124  Soit (E, +,.) 'espace vectoriel des fonctions de R dans R.
On considere le sous-espace vectoriel de F défini par

— {f € C°(R), fol f(t)dt = O} (voir exercice 12.2).
Trouver un supplémentaire de H dans C°(R).

Ex. 12.5 (Cor.)  Soit (£, +,.) un K-espace vectoriel, I' et G deux
sous-espaces vectoriels de F tels que ' = F + (. Soit F’ un supplé-
mentaire de F'N G dans F.

Montrer que £ = F' @ G.

Ex. 12.6 Soient F un K-espace vectoriel, A, B et C' trois sous-espaces
vectoriels de F tels que A et B sont supplémentaires dans F et A C C.
Montrer que A et B N C' sont supplémentaires dans C'.

Ex. 12.7 (Cor.)  Soient @, = (1;0;0), tp = (1;1;1),
¢y = (0;1; 1) quatre vecteurs de R3.

Montrer que Vect (i1, ts) = Vect (€7, €).

Ex. 12.8

1. Montrer que Vect ((1;2
dans R?.

2. Montrer que Vect (X) et Vect (1 + X?; X — 3) sont supplémen-
taires dans Ry [X].

e = (3;2;2) et

)) et Vect ((3;4)) sont supplémentaires

I1. Applications linéaires

Ex. 12.9

1. Parmi les applications suivantes, lesquelles sont linéaires ?
fi(riy;2) ERP =2 -2y +32€R
g:(z;y) e R? = 2z +y;1) € R?
h:(z;y) € R (z —y; 2+ y) € R?

2. Déterminer le noyau et 'image des applications linéaires précé-
dentes.

Ex. 12.10 Parmi les applications suivantes, lesquelles sont des formes
linéaires sur F(R)?
(1) f = f(0) (2) fr f(1) -
(4) f = (f(2)°



Ro[X] — R2
r = (P(0); (1)

Montrer que ¢ est linéaire, déterminer son noyau et son image.

Ex. 12.11  Soit ¢ : {

Ex. 12.12  Soient n € N et ¢ 'endomorphisme de R,,[X] défini par

P+ P — P'. Montrer que ¢ est un automorphisme de R,,[X] et que
deg Q

0@ =D, QY.
k=0
Ex. 12.13  Soit F un K-espace vectoriel, f € £ (F), et

o - { ExE — ExFE

A (@wy) = @ty flaety)
Montrer que @ est un automorphisme de £ x F.
Ex. 12.14

1. Soit ¢ € L (R?).
Montrer qu'il existe (a;b; c;d) € R* tels que
V(z;y) € R?, ¢(x5y) = (ax + by; cx + dy).

2. Donner des énoncés similaires pour
e 9 L(R);
e p LIR*RY);
e o< L(R?).

Ex. 12.15  Soient E, F, GG trois K-espaces vectoriels, v : £ — G,
v : ' — G linéaires tels que Imu C Imw.

1. Montrer que si v est injective alors il existe une application
linéaire w : £ — F telle que u = v o w.

2. Montrer que si il existe un sous-espace vectoriel A de F' tel que
Kerve A = F, alors il existe une application linéaire w : £ — F
telle que u = v o w.

Ex. 12.16 (Cor.) FE et F deux K-espaces vectoriels, et u € L (E, F),
veL(FE) tels que vou =Idg.
Montrer que F' = Kerv @ Imu.

Ex. 12.17 Montrer que s : {

Ex. 12.18

Ex. 12.19

Ex. 12.21

Ex. 12.22

Ex. 12.23 (Cor.)

ITI. Applications linéaires particulieres

R* - R est une symé
(z7y) = (x—2y—y)

trie de R2.
Préciser alors les espaces F' et G tels que s soit la symétrie autour de
F parallelement a G.

On se place sur £ = R?.

F = Vect ((1;0;1); (1;1;0)) et G = Vect ((0;1;1)) de sorte a ce que

E =F &G (cf. exercice 12.3).

Déterminer I'expression de la symétrie autour de F' parallelement a G.

Donner 'expression de la projection sur Vect ((—1; 1))
parallelement & Vect ((2;1)).

Ex. 12.20 Déterminer la nature des applications linéaires suivantes :

1. (z;y) € R* — (—mx;y — 22) € R?

2. (z39) € R? — (5% 55) € R?

Soit n un entier naturel non nul et £ = M,(R).
. T M- M"

Soit f: M e E— M GEetg:MGEHT.

1. Montrer que f et g sont des endomorphismes de E.

2. Donner la nature géométrique de f et g.
On précisera notamment les sous-espaces caractéristiques des
deux applications.

Soient f et g deux endomorphismes d’un espace vectoriel
E tels que fog=Idg.

Montrer que go f est un projecteur et déterminer la décomposition de
E associée (voir exercice 12.16...).

Soit (FE,+,.) un K-espace vectoriel et p et g deux
projecteurs de F.



1. Montrer que p + ¢ est un projecteur de E si et seulement si
pog=gqop=0.
2. Montrer qu’on a alors ker(p + ¢) = ker p N ker q.

Corrections

Cor. 12.1 : En considérant C comme un R-espace vectoriel, F' = Vect(1 + i) est
donc un sous-espace vectoriel donc un espace vectoriel (sur R).

En considérant C comme un C-espace vectoriel, le vecteur 1414 par exemple est un
vecteur de F'mais i(1+4) = —1+4i ¢ F : donc F n’est pas un sous-espace vectoriel
du C-espace vectoriel C.

Cor. 12.5 : F’ est le supplémentaire de F NG (qui est un s.e.v. de (E,+,.)) dans
F.Donc F =F' & (FNG).
Nous devons démontrer que F' NG = {0} et F' + G =E.
e Soitx e FFNG. 2 € F'=axcFetxeG=a2€ FNG. Doncx € F' et
z € (FNG) doncx=0.
Donc F' NG = {0}.
e Soitz € E. E=F+ G donc 3(u,v) € FF x G, z=u+wv.
u€ Fet F=F &(FnNG) donc J(ug,uz) € F' x (FNG) tels que
U = Uy + us.
Donc & = uy +uz + v avec u; € F' et ug +v € G (car G est un e.v.).
Donc E = F' + G.
Finalement on a démontré que E = F' & G.

Cor. 12.7 : Notons E = R?, F' = Vect (u, u2) et G = Vect (e1, e2). Démontrons
que F' = G par double inclusion :
e FF C G :soit u = Au; + pug € F. Montrons que u € G, c’est-a-dire
montrons qu'’il existe (z;y) € G tels que u = xe; + yes. Cherchons done
(z;y) € R? tels que

Adp = 3z
A150;0) + p(15151) = 2(3;2;2) +y(0; 1;1) & { p = 2z+y
" = 2z+vy
A+ p
YT T3
A g —2A
YT T3

Donc tout vecteur de F' est un vecteur de G : F' C G.
e G C F :so0it e = ze; +yea € G, montrons qu'il existe (\; u) € R? tels que
e = Auj + piug. Cherchons done (A; p) € R? tels que

Adp = 3z
A1;0;0) + p(151;1) = 2(3;2;2) +9(0; 1;1) < /i = 2x+y
Iz = 2x+4vy

A= z—y

~ {u = 2z+4y

Donc tout vecteur de GG est un vecteur de F : G C F.
Comme F C G et G C F, on conclut que F' = G.

Cor. 12.16 : Nous devons démontrer que KervNImu = {0} et Kerv+Imu = F.
e Soit y € Kerv NImu. y € Kerv donc v(y) = 0. Or y € Imu, donc
Jdz € E,y = u(x).
On a alors, vou(z) = v(y) =0 =2 car vou = Idg. Donc y = u(0) = 0.
On a démontré que Kerv NImu = {0}.
e Soit y € F. Soit y1 = u(v(y)) = uov(y).
ATTENTION : on sait que v o u = Idg mais on ne sait rien sur v o v. En
particulier, il est tout a fait possible que y; # y.
Posons de plus, y2 = y — y1 de sorte a ce que y = y1 + yo.
Par définition, y; = u(v(y)) € Imu. De plus, comme v ou =Idg
u(y2) = v(y —y1) = v(y) —v(y1) = v(y) —vouov(y) =v(y) —v(y) =0
Donc yo € Kerv.
On a démontré que Kerv + Imu = F.
Finalement, F = Kerv & Im u.

Cor. 12.23 :

1. p+ ¢ est un projecteur si et seulement si (p+¢q) o (p+¢q) =p+q.
Or(ptqlo(p+q)=pep+poqgt+qop+qoq=p+q+pog+qop.
Donc p + ¢ est un projecteur si et seulement si poq = —qop.

Sens direct : on compose a gauche par p :
pog=—qop=popog=poqg=-—poqop=—(—gop)op=gqop.
Orpog=—qop=qop=qop=0=pogq.

Réciproquement : pog=qgop=0=poqg=0=—-0= —qop.

On a donc bien p + ¢ est un projecteur de E < pog=qgop=0.

2. Soit x € Ker(p+q). Alors p(z) + ¢(z) = 0 donc p(x) = —q(z). On compose
par p :
pop(z) =p(x) = —pogq(x) =0. Donc x € Kerp.

De méme en composant par q :

gop(zr) =0=—qoq(x) =—q(x). Donc z € Kergq.

Donc = € Ker(p+ ¢q) = 2 € Kerp N Kerg.

Réciproquement, de facon évidente, si x € Ker pnKer g, alors (p+¢q)(x) =
p(x) +q(z) = 0.

Donc Ker(p 4+ ¢q) = Kerp N Kerg.



