Maths - DS n°4 - Mercredi 21 janvier, 2 heures

Correction DS n’4

Exercice 1.
Par la méthode du pivot :
321 x 0 -1 =5 x—3y Ly« Li—3L,
112y | ~ (1 1 2 oy
4 3 4 2 0 -1 —4 z—4y Ly« Lz —4L,
(0 0 -1 z4y—=z L« L — Ly
f; 1 1 2 Y
0 -1 -4 z—-4y
0 0 -1 TH+y—z \
> (1 1 Y
0 -1 0 —do—8y+5z) Ly Ly—4L,
0 0 -1 =x+4+y—=z \
10y ) e
1 00 —2xr—5y+3z Ly <+ Ly
> 0 1 0 4ox+48y—>52 Ly <+ —1L3

0 01 —r—Yy+z L3<——L1
Donc A est inversible et son inverse est

-2 -5 3
Al = 4 8 =5
-1 -1 1
Exercice 2.
0 00
1) N°=[ 0 0 0 |=0;s
0 00
200
A-N=| 0 2 0 |=2I.
0 0 2

2) On souhaite calculer AP avec p € IN.
D’apres la question précédente, A = 2[5+ N. Or I3 commute avec toute matrice de M3(RR),
donc d’apres la formule du binome pour les matrices commutantes
p
p N
AP = (213 + N)P = 2PTENE,
ey =3 7)

k=0
De plus, toujours d’apres la question précédente, N? = 03, donc Vk > 2, N¥ = 0.



1

Donc AP = Z( Z )2”_’7“]\/’7C = 2I5 + p2P~'N. Donc

k=0
2-p 0 p
Vpe N, AP =271 —p 2 p
-p 0 2+40p
3) On peut conjecturer que si A est inversible, alors on obtient son inverse en posant p = —1
dans la formule de la question précédente.
1 3 0 —1
Posons donc B = 1 1 2 -1
10 1
) 4 0 0
OnaalorsAB:Z 0 40 |=1I
00 4
On vérifie de méme que BA = I3.
Donc A est inversible et
) 3 -1
A= _
1 1 1
1 1
Exercice 3.
o = 0 Yo € C*
On définit les suites r, = 1 et y € C
Vn € N,z = V2241 — 2 Vn €N, ynio = V2Yni1 — U

1) La suite (z,), o est récurrente linéaire d’ordre 2.
Equation caractéristique : 72 — v/2r + 1 = 0 de discriminant A = 2 — 4 = —2 = (1/2i).
V2EiV2

2
Donc il existe A € R, u € R tels que Vn € N, x,, = 1" (/\ cos (n%) + psin (n%))

Comme par ailleurs xg = 0, on a A = 0.

. in
Donc deux solutions rq 9 = et

2
Et comme x; = 1, on a,u% = 1 donc = V2.
Finalement,
Vn e N, x, = V2 sin (n%)

2) Soit n € IN.
Tpis = V/2sin ((n + 8)%) = /2sin (n% + 27r) = /2sin (n%) =T,.
Donc x est périodique de période 8.

3) On rappelle que y n’est pas la suite nulle puisque yy # 0.
De plus, y est a priori une suite a valeurs complexes puisque yy € C*.
On obtient donc une formule explicite par la méme méthode qu’a la question 1), ce qui
conduit a
VneN,y, = \e''T + pe VT



Pour tout entier naturel n, on a donc y,4g = \e*' T T2 4 pe " F 2T =y

Donc y est périodique de période 8.

Pour montrer que 8 est la plus petite période strictement positive, montrons que y n’est
pas 4- périodique

Ynga = NVT T L e 7 E I = N\ — e T

Montrons par I'absurde que 9,14 # Yn.

Supposons donc que Y4 = Y, ce qui équivaut a

Vn € IN,2\e' T + 2ue "% = 0 < 2y, = 0 ce qui est absurde puisque y n’est pas la suite
nulle.

Donc y est 8-périodique, aucun diviseur de 8 n’est une période de y donc y est périodique

de plus petite période 8.

Exercice 4.
: . Lo 2
Smt'r’ERet(E).y’—l_l_ Zy—r(l—;—x)
Equation homogéne : (Ey) :y — . +x sy =0
A = [ g ) issant Ta forme -
x) = - =—In x%) en reconnaissant la forme —.
142 U

Donc yg = A7) = X\ (1 +22) oit A € R,

Solution particuliére : par la méthode de variation de la constante.
On cherche une solution particuliere sous la forme yp = A(z) (1 + z%).
En réinjectant dans (E) on obtient : X' (1 + 2?) = r (1 + 2?).

Donc N =1 et A =rx.

Conclusion : les solutions de (F) sont les fonctions de la forme
y=A (1 + x2) +rx (1 + x2) = A+rz+ M2 +r2®, on A € R peut étre choisie librement

On cherche les fonctions f : R — R dérivables qui vérifient
1

v € R0 - s o) = () [ sl

1
Ici, f(u)du est un nombre réel, qui dépend de la fonction inconnue.

0
Analyse : soit f une solution du probleme.

1
En posant r = f f(w)du, f est donc solution de y’ — . +:c sy =r(1+ x?).
x
Donc, il eXlste A€ R, telle que f(z) =X+ rx + Azx? + rad.
A
Orr= | fwdu= | \4+7ru+ I brddu=A+ o+ 24+
0 2 3 4
4/\
Donc % = —.
Donc, Vo € R, f(z) = 3p + 16pz + 3ux? + 16pux® (en posant A = 3y, avec 4 € R a choisir
librement).

Syntheése : soit p € Ret f:x € R~ 3u+ 16px + 3uz? + 16u2°.
Alors, f est continue et dérivable et
Vo € R, f/(x) = 16 + 6px + 48puz?



2x
1+ 22

c'est-a~dire f'(x) —

Donc f'(z) —

f(x) =16p + 6px + 48ux* —
2z

1+ 22

1
16 3 16
Or f(u)du:?)u—l——'u—l-—u—l-—'uzl@z.
0 2 3 4
2z

Donc f est bien solution de Vz € R, f'(z) — T fo(x) = (1+2?%) fol f(u)du.

Finalement, 'ensemble des solutions du probleme posé est

2z
T2 (Bp+ 16pz)(1 + 2?)

f(z) = 16p + 6px + 48ux? — 6ur — 32ux* = 16u(1 + 22).

fixeR— u(3 + 16z + 32* + 16933), ou i € R peut étre choisie librement

Exercice 5.
On définit les suites u, v et w par
2n 1 2n—+1 1 3n 1
VTLE]N’U”:ZE U”:ZE w”:ZE
k=n+1 k=n+1 k=n+1
PARTIE A - Etude des suites u et v
1) Soit n € IN.
2n—+2 2n
1 1 1 1 1
o, = - - = — . les autres t des d
Upi1 — U k§2 ? Py 7 ST + Ml nrl es autres termes des deux
somines s’annulant deux a deux.
D n+1+2n+2—4n—2 1 -0
ONC Upyq — Up = = .
“ 2(n+1)(2n + 1) 2(n+1)(2n + 1)
Donc wu est strictement croissante.
2) Soit n € IN.
2n—+3 2n—+1
1 1 1 1 1
il — Up = - Z = — o1 t t des d
Upt1 — U k;@ ’ Py A 3 + M2 nrl es autres termes des deux
sommes s’annulant deux a deux.
2n+2+2n+3 —2(2n + 3) -1
Donc v, 11 — v, = = < 0.
2(n+1)(2n+ 3) 2(n+1)(2n + 3)

Donc v est strictement décroissante.

Montrons que les suites v et v sont adjacentes.
Soit n € IN.
2n+1 2n
1 1 ;
Uy, — Uy = Z - — - = , les autres termes des deux sommes s’annulant deux
k kK 2n+1
k=n+1 k=n+1
a deux.

Donc lim v, —u, = 0.

n——+0o
Comme, par ailleurs, d’apres les deux questions précédentes, u est croissante et v est dé-
croissante, les deux suites u et v sont adjacentes.

Donc elles convergent vers une méme limite L, ce qu’il fallait démontrer.

PARTIE B - Limite des suites u et v

1)

Soit £ € IN*.

La fonction inverse est décroissante sur R, donc, comme [k;k+1] C R7,

1 1 1
Viekk+lk<t<ktl=Vielkhrl]—s <<t



2) Soit k un entier supérieur ou égal a 1.
Par croissance de l'intégrale, en intégrant sur [k; k + 1] Uencadrement de la question précé-

dente on a :

k41 k41 k+1
‘[ ;ngj lﬁgf Ly
L k+1 L t . k

1
< — < -
TS In(k+1) —In(k) < ? 1

L’inégalité de droite permet d’écrire In(k + 1) — In(k) < T

< In(k+1) —In(k), soit, en posant j =k +1 :

Donc

L’inégalité de gauche permet d’écrire !
k+1
= <) ~In(j - 1)

Comme k > 1, cette inégalité est valable pour j > 2.
Donc, pour tout entier k supérieur ou égal a 2 :

In(k+1) —1In(k) < % < In(k) —In(k — 1)

2n
3) Supposons n >0 : u, = Z T ol, dans la somme, k >n+ 1> 2.
k=n+1

On peut donc utiliser 'encadrement de la question précédente.
Donc, Vn € IN* :

2n 2n

> n(k+1)—In(k) <u, < Y. In(k) —In(k — 1),
k=n+1 k=n+1

Or, dans le membre droit et dans le membre gauche de l'encadrement, les sommes sont
télescopiques. Donc :

Vn e N*,In(2n+1) —In(n+ 1) < u, < In(2n) —1In(n).

Done, par propriété opératoire du logarithme :

2n+1
n+1

4) lim ln(2n+11): lim IH(M):IH(Q).

n——+o0 n + n—-+00 n (1 + l)
n
Donc, d’apres l'encadrement de la question précédente et le théoreme des gendarmes,

‘v’nE]N*,ln( ) < u, < 1In(2)

nl_l)al_loo u, = In(2).

Donc la limite commune des suites u et v est L = In(2).
PARTIE C - Complément
1) D’apres la question A-3), Vn € N, u,, < In(2) < v, d’une part (car les suites u et v sont

adjacentes et convergent vers In(2))

et v, — Uy = .
" "o2n+1
Donc, pour tout entier n, 0 < In(2) — u,, < v, — uy,.

D 1 lité de I’ imation de In(2 t meill —  _~1073.
onc la qualité de 'approximation de In(2) par usoy est meilleure que X500 1 1

2) Le méme raisonnement fait a la question B-3) pour la suite u peut étre fait pour la suite w.

Sl +11) < w, < In(3).

En utilisant alors le théoreme des gendarmes, on obtient

Ceci conduit a Vn € IN*,In

nl_l)r_il_loo w, = In(3)



3) Par exemple :

def u(n):

res = 0

for k in range(n+1,2*n+1):

res += 1/k

return res
Un appel au(500) donne 0.6926474305598198 a comparer avec la valeur 0.6931471805599453
donnée par np.log(2), ce qui confirme que usgo est une approximation par défaut de In(2)

& (mieux que) 1072 pres.



