Maths - DM n°5 - Pour le lundi 2 février,

Correction DM n°5

Exercice 1.

1) F et G sont de maniere évidente inclus dans E.
La fonction nulle est a la fois paire et impaire donc appartient a F' et a G.
Enfin, toute combinaison linéaire de fonctions paires est paire. En effet, soit u € F et v € F,
AeRet peR. Alors :
Ve € R, M+ po)(—z) = Mu(—z) + po(—x) = Mu(x) + po(z) car v et v sont paires.
Donc Au + po est elle aussi paire.
On démontre de méme que G est stable par combinaison linéaire.

Donc F' et GG sont deux sous-espaces vectoriels de F.

2) Soit u une fonction a la fois paire et impaire.
Alors, Vo € R, u(—x) = u(z) car u est paire.
Mais aussi, Yz € R, u(—x) =
Donc Vz € R, u(z) = —u(x) : donc pour tout z réel, 2u(x) = 0.

—u(x) car u est impaire.

Donc w est la fonction nulle.

Donc la seule fonction a la fois paire et impaire est la fonction nulle.

3) Analyse : soit f € E et supposons qu'il existe une fonction Py € F et une fonction Iy € G
telles que f = Py + I.
Alors, d'une part Vo € R, f(x) = Ps(x) + I¢(z).
D’autre part, Vo € R, f(—x) = Pr(—x) + [;(—x) = Ps(x) — If(z) car Py est paire, et I; est

impaire.
En sommant ces deux relations, on a donc Vx € R, Py(z) = M
Et par soustraction, on obtient Vo € R, If(x) = M
Donc, si Py et I existent, elles sont uniques et données par les deux relations précédentes.
R - R R - R
Syntheése : soit f € E et notons P : — et Iy : — f(—
y / pd L f@ s @) = f()
2 2
Alors :
e P est une fonction paire : en effet, pour tout réel z,
f=2) + f(=(=2)) _ flz)+ f(=x)
Pf(_x): 5 = 5 :Pf(I).
e [; est une fonction impaire : en effet, pour tout réel z,
f(=z) = f(=(=2))  —f(@)+ f(=2)
If(_x) - = = —If(l’).

o f = Py + ;. En effet, pour tout réel z,

o) + () = LI SO I JE@ S0 _

Donc il existe une fonction Py € F' et une fonction Iy € G telles que f = Py + Iy, de plus

ces deux fonctions sont uniques.

4) La question précédente prouve que £f = F'+G. La question 2) prouve de plus que la somme



est directe.
Donc
E=FaG
5) Applications numériques : explicitons les fonctions Py et I; dans les cas suivants

a) f =exp : pour tout réel x,

Pi(z) = % = ch(x) et
et — e
I(a) = S5 = sh(a)

Donc Py, = ch et Iy, = sh.

b) f =z € : pour tout réel z,
eix + e—ix )
Ps(z) = — = cos(z) = Re (') et
Ip(x) = % = isin(z) = iZm ().

Donc Py = cos et I = ¢sin.

¢) f=x+2—3x+52%+ 23 : pour tout réel z,
 2-3x+5ba*+2°+2+3x+ 527 —2°

Py(x) 5 = 2+ ba? et
2—-3 52 3 -2 -3z — 5a? 3
I;(z) = T+or"+x . T 7+ _ 344
d) f=x+— | j_ : pour tout réel x,
ex

Yt e tan L

P — 1+e 1+e — 14+e eT4+1 _ =
e’ 1 e’ —1

Iy = f — Py par définition, donc If(x)

T 1ter 2 2(Lter)

Exercice 2.

PARTIE A
On considere Iéquation différentielle (E) : (1 — 22)y”(x) — 323/ (x) — y(x) = 0 et on recherche les
solutions x — y(x) définies et C? sur 'intervalle I =] — 1;1[.

1) Soit y une solution de (E) et posons x = sin(t) et z(t) = y(x) = y(sint).
Sur J = |52 -
Z/(t) = cos(t)y'(sint)
et 2"(t) = —sin(t)y/(sint) + cos?(t)y” (sint)
Or (1 —2%)y"(z) = cos?(t)y"(sint) = 3zy'(x) + y(x) = 3sin(t)y'(sint) + y(sint).
Donc cos®(t)y"(sint) — sin(t)y/(sint) — 2sin(t)y'(sint) — y(sint) = 0.
En multipliant cette égalité par cost et en identifiant les z, 2z’ et z” dans 'expression on
obtient que z est solution de I’équation différentielle

(E') : cos(t)z"(t) — 2sin(t)z'(t) — cos(t)z(t) =0 sur J = ]_—W z[ .
2) Soit z une solution de (E’) et posons ¢(t) = cos(t)z(t). Sur J :
¢'(t) = —sin(t)z(t) + cos(t)2'(t)
et ¢"(t) = —cos(t)z(t) — 2sin(t)2'(t) 4 cos(t)z"(t).



Donc 'équation (E’) satisfaite par z se traduit pour ¢ par :
¢"(t) = 0.
On a donc ¢/(t) =b € R et ¢(t) = a + bt, (a;b) € R?.
3) Vo €] — 1;1[, Arcsinz € ] 5 2[ = cos (Arcsin x) > 0.
Or ¥z €] — 1; 1, sin (Arcsin z) = x et cos (Arcsinz) = 4/1 — sin? (Arcsinz) = /1 — 22,
4) Nous avons, Vt € J, ¢(t) = a + bt, (a;b) € R? et si z est solution de (E') alors ¢(t) =
cos(t)z(t). Donc I'ensemble des solutions de (E’) est inclus dans {t by L (g0 b) € IR2}.

cost’

Une vérification immédiate permet de plus de montrer que toutes ces fonctions sont effec-
tivement solutions de (E').
De méme, Vt € J, z(t) = <L (a;b) € R? et si y est solution de (E) alors z(t) = y(sint).

cost’

Donc I'ensemble des solutions de (E) est inclus dans { z ~—s SEbAresing _ atb Aresmz (4 ) € R? |
COS Arcsinx / 1—Z'

Une vérification immédiate permet de montrer que toutes ces fonctions sont effectivement

solutions de (F).

Finalement, I’ensemble S des solutions de (E) est :

a+ b Arcsin x
S=30r+—~ —— ., (a;b ERQ}
{ A ()
PARTIE B

On considere une fonction f solution de (E).

1) fest C*(]—1;1[, R) par hypothese. Or d’apres (E), f(z) = w est somme, produit
et quotient de fonctions C*(] — 1;1[, R) - le dénominateur ne s’annulant pas sur I, donc f”
est C1(] — 1;1[,R), donc f € C3(] — 1;1[, R).

Ceci ouvre la voie a une démonstration par récurrence dont nous venons de faire 'initiali-
sation.

Hérédité : supposons que f soit C"(] — 1;1[,R). D’apres (E), f"(z) = w est
somme, produit et quotient de fonctions C"'(] — 1;1[, R) - le dénominateur ne s’annulant
pas sur I, donc f” est C" (] — 1;1[, R), donc f € C"™'(] — 1;1[, R).

Conclusion : la propriété est initialisée aux rangs n = 0, 1, 2 (puisqu’une fonction de classe
C? est aussi par définition de classe CY et C') et héréditaire a partir du rang 2, elle est vraie
pour tout n € IN.

Donc f est C*(] — 1;1[, R).

2) Nous venons de voir que f est C*°(] — 1;1[,R), donc d’apres la formule de Taylor-Young, f
possede un DL, (0) pour tout n € IN.

n

3) On pose f(z) = Zai:ﬁi + o (z").
T—r
i=0
Utilisons la formule de Taylor-Young en O :

Z 20y o @,
z—0
Par umclte du developpement limité
f9(0)

Vie[lin],a = 7

4) Montrons que

vne N, (1 —a) f"* () — (2n + 3)af" V(@) — (n+1)°f") () = 0



Initialisation : pour n = 0, (1 — 22)f@(z) — 32fW(x) — fO(z) = 0 est 'équation
différentielle (£) satisfaite par f.

Hérédité - supposons la formule vraie au rang n et dérivons la :

(1=a?) f09) (2) =22 fO2 () = (2n+3)a f 2 (2) — (2n+3) fO D (2) = (n+1)2 ) (2) = 0
& (1 -2 f03)(z) — 2n+5)zf 2 (z) — [(2n+3) + (n + 1)?] f+D(2) = 0

& (1=2?) 1 (z) — 2(n+ 1) + 3)af D) (2) — [(n+ 14 1) [ (z) =0
Conclusion : la propriété est initialisée pour n = 0 et héréditaire a partir de ce rang, par

récurrence elle est vraie pour tout n € IN.

En prenant x = 0 dans la formule précédente, on obtient
Vn € N, f+2(0) = (n + 1)2f™(0). Divisons par (n + 2)! :

(n+2) n—+1)2 £(n) n 1: :
Vn € N, f(n+2)(!0) = (n!(—:ml—&)-lgc(n—l—(g)) & Vne N a, o= %an en utilisant la question 3-.
La formule de récurrence précédente conduit donc suivant la parité de n a :
p
[ ]2 -
=l 27 (pl)
[ J2i +
i=0
p—1
[ [2i+1
=0 (2p)!
a2p - D ap = 22p<p')2a0
BE

PARTIE C

Pour obtenir le DLy, 41(0) de z +— A5SME on prend a =0 =ag et b= 1 = a;.
V1

>
2 2
Arcsinz __ N 2p(p') x2p+1+ 0 (x2n+l)'

Done \/1—x2 N Z (2p —+ ]_)' z—0

p=0

e Pour obtenir le DLy, (0) de x ;2, onprenda=1=aget b=0=a.

e Pour obtenir le DLy, 1(0) de x — Arcsin x, on primitive celui de x —

N
n |
Donc 11 :Z (2p)!  + o (™).

1

l1—x

>

= 2p)!
Donc Arcsinz = Z (2p) 2201

p=0

2n—+1
o )



