Convergence de séries et calculs de sommes

Exercice 1 (* Cou, Cal ©). Nature des séries de terme général :

a)
$$\sin(1/n) - \ln(1 + 1/n)$$

b)
$$\sqrt{n^2 + n + 1} - \sqrt{n^2 + n - 1}$$

c)
$$e^{-n^2}$$

$$d) \frac{1}{n^{1+\frac{1}{n}}}$$

e)
$$\sin(2\pi\sqrt{n^2+1})$$

f)
$$\star \star (n \sin(1/n))^{n^a}$$

g)
$$\frac{1}{n \ln(n)}$$

h)
$$\frac{\ln(n)^{2025}}{n}$$

$$i) \quad \frac{n}{\ln(n)^{2025}}$$

j)
$$\frac{\ln(n)^{2025}}{n^{1.5}}$$

k)
$$\frac{1}{\ln(n)^{2025}n^{1/2}}$$

l)
$$\arctan(n + 2025) - \arctan(n)$$

$$m)\frac{\cos(n^4)}{n^3}$$

n)
$$n^{2025}e^{-\sqrt{n}}$$

o)
$$\sqrt[n]{n+1} - \sqrt[n]{n}$$

$$p) \left(1 + \frac{1}{n}\right)^n - e$$

q)
$$\frac{\tan(1/n^2)}{-\ln(1-1/n)}$$

Exercice 2 (* Cou, Cal). Prouver la convergence et calculer la somme des séries suivantes avec $\theta \in \mathbb{R}$ et $x \in]-1;1[$:

1.
$$\sum \frac{1-e}{e^n}$$

1.
$$\sum \frac{1-e}{e^n}$$
 2. $\sum \left(\frac{2}{n(n+1)} - \frac{5}{3^n}\right)$ 3. $\sum x^n \sin(n\theta)$ 4. $\sum \frac{9}{10^{n+1}}$ 5. $\sum \frac{3^n}{n!}$ 6. $\sum \frac{(-1)^n}{(n+2)!}$

3.
$$\sum x^n \sin(n\theta)$$

4.
$$\sum \frac{9}{10^{n+1}}$$

5.
$$\sum \frac{3^n}{n!}$$

6.
$$\sum \frac{(-1)^n}{(n+2)!}$$

7.
$$\sum \frac{n^2}{n!}$$

8.
$$\sum nx^n$$

trer que, pour tout $x \in \mathbb{R}$, $\sum \frac{(-1)^n x^{2n}}{(2n)!}$ converge de somme égale à $\cos(x)$.

Exercice 4 (** Rai ©). Soit $(u_n)_n$ une suite réelle.

- 1. Si $(u_n)_n$ est positive et que $\sum u_n$ converge. Montrer que $\sum u_n^2$ converge.
- 2. Montrer que la réciproque est fausse.
- 3. Si $\sum u_n$ converge absolument, montrer que $\sum u_n^2$ converge.

Exercice 5 (** Rai, Rec). Soient $(\alpha, \beta) \in \mathbb{R}^{*2}_+$, nature de $\sum \frac{\alpha^n}{\beta^n + n}$.

Exercice 6 (** Rai, Cal). Pour $n \in \mathbb{N}$, on pose $u_n = \sqrt{n} + a\sqrt{n+1} + a\sqrt{n+1}$ $b\sqrt{n+2}$. Déterminer les couples (a,b) pour lesquels la série $\sum u_n$ converge et calculer la somme $\sum_{n=0}^{+\infty} u_n$.

Séries à termes positifs

Exercice 7 (* Rai ©). Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs convergentes. Montrer que $\sum \sqrt{u_n v_n}$ converge.

Exercice 8 ($f \star \star$ Rai, Rec ©). Soit $(v_n)_n$ une suite de réels strictement positifs et r > 0.

1. Si pour tout $n \ge n_0$, $v_{n+1} \le rv_n$ (resp. \ge), montrer que pour tout $n \ge n_0, v_n \le r^{n-n_0} v_{n_0}. \text{ (resp. } \ge)$

Soit $(u_n)_n$ une suite de complexes non nuls tel que $\left|\frac{u_{n+1}}{u_n}\right| \xrightarrow[n \to \infty]{} \ell$.

- 2. Si $\ell < 1$, montrer que $\sum u_n$ converge.
- 3. Si $\ell > 1$, montrer que $\sum u_n$ diverge.
- 4. Montrer que si $\ell = 1$, on ne peut rien conclure.

Exercice 9 (** Rai, Rec). Soit $\sum u_n$ une série à termes positifs. On pose, pour $n \in \mathbb{N}$, $v_n = \frac{u_n}{1 + u_n}$. Montrer que $\sum u_n$ et $\sum v_n$ ont même nature.

Exercice 10 ($f \star \star \operatorname{Rec}$, Rai \mathbb{C}). Soit $\sum u_n$ une série convergente, où $(u_n)_n$ est une suite positive décroissante. Montrer que $nu_n \xrightarrow[n \to \infty]{} 0$.

Exercice 3 ($\oint \star \text{Rec}$, Cou, Cal). Avec l'inégalité de Taylor-Lagrange, mon- Exercice 11 ($\oint \star \text{Cal}$, Rai). On pose $u_n = \frac{n!}{(n/e)^n \sqrt{n}}$ et $v_n = \ln(u_n)$, montrer que la suite $(v_n)_n$ converge. En déduire qu'il existe C > 0 tel que $n! \sim C (n/e)^n \sqrt{n}$.

> **Exercice 12** ($^{\bullet}_{\star\star}$ Rai $^{\circ}$). Soient 1 $(\alpha,\beta) \in \mathbb{R}^{2}$ et $u_{n} = \frac{1}{n^{\alpha} \ln(n)^{\beta}}$ pour $n \geqslant 2$.

- 1. Si $\alpha > 1$, montrer la convergence de $\sum u_n$
- 2. Si $\alpha < 1$, montrer la divergence de $\sum u_n$.

^{1.} Les séries de la forme $\sum u_n$, appelées séries de Bertrand, ne sont pas au programme. Par contre, il est indispensable de savoir étudier leur convergence.

3. Si $\alpha = 1$, étudier $\sum u_n$ avec une comparaison série-intégrale.

Exercice 13 (** Rai ©). Soit $(u_n)_n$ une suite strictement positive, on suppose que $\sqrt[n]{u_n} \xrightarrow[n \to \infty]{} \ell$.

- 1. Si $\ell < 1$, montrer que $\sum u_n$ est convergente.
- 2. Si $\ell > 1$, montrer que $\sum u_n$ est divergente.

Exercice 14 (** Rai ©). Soient $\sum u_n$, $\sum v_n$ et $\sum w_n$ trois séries réelles.

- 1. On suppose que pour tout $n \in \mathbb{N}$, $u_n \leq v_n \leq w_n$ et que $\sum u_n$ et $\sum w_n$ convergent, montrer que $\sum v_n$ converge.
- 2. Redémontrer qu'une série réelle absolument convergente converge.

Exercice 15 (* Cal ©). En admettant que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Après avoir justifier que ces séries convergent, calculer :

1.
$$\sum_{n=1}^{+\infty} \frac{1}{(2n)^2}$$

1.
$$\sum_{n=1}^{+\infty} \frac{1}{(2n)^2}$$
 2. $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$

3.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$$

Divers

Exercice 16 ($f \star \star$ Cal, Rai \odot). 1. Quel est l'ensemble de définition de $\zeta \colon x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^x}$?

- 2. Montrer que ζ est strictement décroissante.
- 3. À l'aide d'une comparaison série intégrale, déterminer les limites de C en 1⁺ et $+\infty$ ainsi qu'un équivalent de ζ en 1⁺.

Exercice 17 (** Rai, Rec). Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite telle que $u_1>0$ et pour tout $n \in \mathbb{N}^*$, $u_{n+1} = \frac{3n-1}{3n}u_n$.

- 1. Étudier la convergence de $(u_n)_n$
- 2. Posons $v_n = \ln(n^{\frac{1}{3}}u_n)$ pour $n \in \mathbb{N}^*$, à l'aide d'une série, montrer que $(v_n)_n$ converge.
- 3. En déduire un équivalent de $(u_n)_n$
- 4. $\sum u_n$ converge?

Exercice 18 (** Rai). Soit $\sum u_n$ et $\sum v_n$ deux séries avec $\sum v_n$ une série à termes strictement positifs.

- 1. Si $\sum v_n$ diverge, on pose $S_n = \sum_{k=0}^n u_k$ et $S'_n = \sum_{k=0}^n v_k$.
 - (a) Si $u_n = \mathcal{O}(v_n)$, montrer que $S_n = \mathcal{O}(S'_n)$
 - (b) Si $u_n = \mathcal{O}(v_n)$, montrer que $S_n = \mathcal{O}(S'_n)$
 - (c) Si $u_n \sim v_n$, montrer que $S_n \sim S_n'$
- 2. Si $\sum v_n$ converge, on pose $R_n = \sum_{k=n+1}^{+\infty} u_k$ et $R'_n = \sum_{k=n+1}^{+\infty} v_k$.
 - (a) Si $u_n = \mathcal{O}(v_n)$, montrer que $R_n = \mathcal{O}(R'_n)$
 - (b) Si $u_n = \mathcal{O}(v_n)$, montrer que $R_n = \mathcal{O}(R'_n)$
 - (c) Si $u_n \sim v_n$, montrer que $R_n \sim R'_n$

Exercice 19 (* * ** Rec). Soit $^2 \sigma: \mathbb{N} \to \mathbb{N}$ une bijection.

- 1. Soit $\sum u_n$ une série réelle à termes positifs convergente. Montrer que $\sum u_{\sigma(n)}$ converge et que $\sum_{n=0}^{+\infty} u_{\sigma(n)} = \sum_{n=0}^{+\infty} u_n$.
- 2. Soit $\sum u_n$ une série absolument convergente, montrer que $\sum u_{\sigma(n)}$ converge absolument et que $\sum_{n=0}^{+\infty} u_{\sigma(n)} = \sum_{n=0}^{+\infty} u_n$.
- 3. Soit $\sum u_n$ une série réelle convergente mais non absolument convergente comme $\sum \frac{(-1)^n}{n+1}$ (dont on peut montrer que sa somme est
 - (a) Montrer que $^3 \sum u_n^+$ et $\sum u_n^-$ sont toutes les deux divergentes.
 - (b) Soit $x \in \mathbb{R}$, construire $\sigma \colon \mathbb{N} \to \mathbb{N}$ une bijection telle que $x = \sum_{n=0}^{+\infty} u_{\sigma(n)}.$
 - (c) Construire $\sigma \colon \mathbb{N} \to \mathbb{N}$ une bijection telle que $\sum_{k=0}^{n} u_{\sigma(k)} \xrightarrow[n \to \infty]{} +\infty$. On peut aussi construire σ telle que $\sum_{k=0}^{n} u_{\sigma(k)} \xrightarrow[n \to \infty]{} -\infty$.
- 4. Conclure que les séries c'est vachement bizarre quand même.

^{2.} Sont autorisés à chercher cet exercice seulement ceux qui ont déjà fait au moins 9 exercices de ce TD.

^{3.} Si $x \in \mathbb{R}$, $x^+ = \max(x, 0)$ et $x^- = -\min(0, x)$ sont les parties positives et négatives de x, $x = x^{+} - x^{-}$ et $|x| = x^{+} + x^{-}$.