Programme de colles – Physique PCSI – Semaine du 29/04/2024

Chapitre T3: Second principe de la thermodynamique

- Nécessité d'un critère d'évolution pour imposer le sens de certaines transformations (diffusion de particules, diffusion thermique, etc.)
- Origine de l'irréversibilité d'une transformation : inhomogénéité d'une variable intensive, phénomène dissipatif, réaction chimique/nucléaire.
- 2^e principe de la thermodynamique.
- Interprétation de l'entropie (mesure du désordre).
- ❖ Système thermiquement isolé : *S* croissante.
- Transformation réversible et adiabatique = isentropique.
- ❖ Variation d'entropie : phase condensée $\Delta S = C \ln \left(\frac{T_{\rm F}}{T_{\rm I}} \right)$ et gaz parfait $\Delta S = C_V \ln \left(\frac{T_{\rm F}}{T_{\rm I}} \right) + nR \ln \left(\frac{V_{\rm F}}{V_{\rm I}} \right) = C_P \ln \left(\frac{T_{\rm F}}{T_{\rm I}} \right) nR \ln \left(\frac{P_{\rm F}}{P_{\rm I}} \right)$. Note : Ces formules sont à savoir utiliser mais pas à connaître.
- ❖ Lois de Laplace : expressions <u>et</u> hypothèses d'application.
- Détente de Joule-Gay-Lussac : calcul de l'entropie créée.

Chapitre T4: Machines thermiques

- ❖ Machine thermique : définition, exemple, performance (énergie utile/énergie couteuse)
- Application des 2 principes à une transformation cyclique : bilan énergétique et relation de Clausius.
- \diamond Machines monothermes. Nécessairement $W \geq 0$.
- lacktriangle Moteurs dithermes. Source chaude, source froide, sens des transferts. Définition du rendement et majoration du rendement : $\eta \leq 1 \frac{T_{\rm f}}{T_{\rm c}}$. Égalité si réversible. Les phénomènes irréversibles dégradent le rendement.
- \diamond Théorème de Carnot ; cycle de Carnot en diagramme (P, V).
- * Récepteurs dithermes. Sens des transferts. Principe général : comment force-t-on un transfert de la source froide vers la source chaude.
 - \circ Réfrigérateurs. Efficacité frigorifique ; majoration : $e_{\mathrm{F}} \leq \frac{T_{\mathrm{f}}}{T_{\mathrm{c}} T_{\mathrm{f}}}$. Egalité si réversible.
 - \circ Pompes à chaleur. Efficacité thermique ; calcul $e_{\mathrm{T}} \leq \frac{T_{\mathrm{C}}}{T_{\mathrm{C}} T_{\mathrm{f}}}$. Egalité si réversible.
- Cogénération. Principe. Addition des rendements.

Chapitre T5: Transition de phase

- Changements d'état : généralité et vocabulaire (fusion, solidification, sublimation, condensation, vaporisation et liquéfaction.)
- \diamond Diagramme de phase (P,T).
 - Domaine S, L ou G : équilibre divariant.
 - \circ Courbes d'équilibre, monovariants. $P_{eq}(T)$. Changement d'état isobare \Leftrightarrow Changement d'état isotherme.
 - o Point critique.
 - o Point triple. Fluide supercritique.
 - Cas de l'eau (pente négative pour l'équilibre S-L).
 - Cas des diagrammes avec plusieurs formes allotropiques.
- **\$** Enthalpie massique/molaire de changement d'état. Définition ; ordre de grandeur ; $\Delta h_{sol} = -\Delta h_{fus}$; $\Delta h_{liq} = -\Delta h_{vap}$; $\Delta h_{cond} = -\Delta h_{sub}$
- ❖ Entropie massique de changement d'état. Lien entre le signe et l'évolution du désordre.