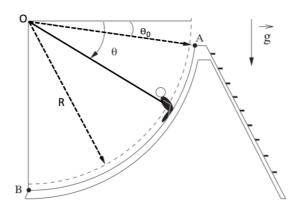


Question 1

Un enfant, que l'on assimilera a un point matériel M de masse m, glisse sur un toboggan décrivant une trajectoire circulaire de rayon R.

L'enfant, initialement en A $(\theta = \theta_0)$, se laisse glisser (vitesse initiale V_A nulle) et atteint le point B avec une vitesse V_B .

On supposera le référentiel terrestre galiléen et les frottements négligeables.



1/ Indiquer les directions du poids \vec{P} et de la réaction \vec{N} du support sur l'enfant.

2/ Représenter la base locale $(\vec{u}_r, \vec{u}_\theta, \vec{u}_z)$ et montrer que la vitesse de l'enfant a pour expression $\vec{V} = R\dot{\theta}\vec{u}_{\theta}$.

3/ Déterminer l'expression de l'accélération \vec{a} .

4/ Déterminer l'expression du moment cinétique $\vec{L}_{\mathcal{O}}$ de l'enfant par rapport au point O.

5/ A l'aide du théorème du moment cinétique, établir l'équation différentielle vérifiée par $\theta(t)$ sans chercher à la résoudre.

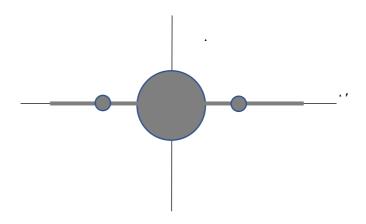
6/ En utilisant la conservation de l'énergie mécanique entre A et un point quelconque M, montrer que la vitesse en tout point M a pour expression : $\vec{V}(M) = \sqrt{2gR(\cos\theta_0 - \cos\theta)}\vec{u}_{\theta}$.

7/ En déduire V(B).

Question 2

Le moment d'inertie, par rapport à un axe Δ passant par son centre, d'une sphère de masse M et de rayon R a pour expression $I_{\mathit{Sphère}/\Delta} = \frac{2}{5} MR^2$. De même, pour une barre de masse m et de longueur L et de rayon r, $I_{\mathit{Barre}/\Delta} = \frac{mL^2}{12}$.

On considère le système suivant constitué d'une sphère, d'une barre de longueur L et de rayon r et de deux masses M' situées à une distance d_0 de l'axe Δ assimilées à des masses ponctuelles.



1/ Déterminer l'expression du moment d'inertie $I_{/\Delta}$ de l'ensemble dans sa rotation autour de Δ .

2/ L'ensemble est lancé avec une vitesse angulaire initiale ω_0 . On suppose les frottements négligeables.

Si la distance des deux masses M' devient $d' = kd_0$, k étant une constante positive, déterminer la nouvelle expression I' du moment cinétique.

3/ En déduire la nouvelle vitesse angulaire ω' .

4/ Le système est désormais susceptible de tourner autour de l'axe Δ' , la distance entre les deux masses étant toujours d_0 . Déterminer l'expression du moment d'inertie du système par rapport à ce nouvel axe de rotation Δ' .

On rappelle que le moment d'inertie d'une barre de masse m et de rayon r par rapport à son axe de symétrie Δ' a pour expression $I_{/\Delta'}=\frac{mr^2}{2}$.

5/ Montrer que pour avoir $I_{/\Delta}=I_{/\Delta'}$, le rayon de la barre doit satisfaire la relation $r=\sqrt{\frac{L^2}{6}+\frac{4M'}{m}d_0^2}$