
Correction du TP S2.3 : Dosage des ions chlorure par précipitation

1. Dosage conductimétrique

•
$$Ag^{+}_{(aq)} + Cl^{-}_{(aq)} = AgCl_{(s)}$$
; $V_e = 12,3 \text{ mL} <=> C_0 = \frac{C_1 V_e}{V_0} = 1,23.10^{-2} \text{ mol.L}^{-1}$

 $T(NaCl) = C_0 \times F \times M(NaCl) = 1,23.10^{-2} \times 12,5 \times (23,0+35,5) = 8,99 \text{ g.L}^{-1} \ (0,9 \text{ \% en masse})$

• $EI: Cl^{-}(C_0); AgNO_3 \rightarrow Ag^{+}(C_1) + NO_3^{-}(C_1)$

Soit : $n_0(Cl^-) = C_0V_0$; $n_i(Ag^+) = C_1V$; $n_i(NO_3^-) = C_1V$

$$Or \; \sigma = \Sigma \; \lambda^{\circ}(B_i^{zi}) \; [B_i^{zi}] = \Sigma \; \lambda^{\circ}(B_i^{zi}) \; n(B_i^{zi}) / V_T \; et \; f(V) = \sigma \; V_T = \Sigma \; \lambda^{\circ}(B_i^{zi}) \; n(B_i^{zi})$$

Pour $V < V_e$: on remplace les ions $Cl_{(aq)}^-$ par les ions $NO_{3(aq)}^-$ la conductivité est quasi-constante

		$Cl^{-}_{(aq)}$	$+ Ag^{+}_{(aq)}$	= AgCl _(s)	$K^{\circ} = 1/K_{S} = 10^{9,9}$
EI		C_0V_0	C_1V	_	
SE	Γ	$C_0V_0-C_1V$	0	_	

$$\begin{array}{ll} f_l(V) & = a + \lambda^{\circ}(Cl^{-}) \left(C_0 V_0 - C_1 V \right) + \lambda^{\circ}(NO_3^{-}) \, C_1 V \\ & = a + \lambda^{\circ}(Cl^{-}) C_0 V_0 + \left\{ \lambda^{\circ}(NO_3^{-}) - \lambda^{\circ}(Cl^{-}) \right\} \, C_1 V \\ & = a_1 + b_1 \, V \, \, \text{avec} \, \, b_1 = \left\{ \lambda^{\circ}(NO_3^{-}) - \lambda^{\circ}(Cl^{-}) \right\} \, C_1 < 0, \, \text{car} \, \lambda^{\circ}(NO_3^{-}) < \lambda^{\circ}(Cl^{-}) \end{array}$$

Pour $V > V_e$: il n'y a plus de réaction on ajoute des ions $Ag^+_{(aq)}$ et $NO_3^-_{(aq)}$ la conductivité augmente.

$$\begin{array}{ll} f_2(V) & = a + \lambda^{\circ}(Ag^+) \ (C_1V - C_0V_0) + \lambda^{\circ}(NO_3^-) \ C_1V \\ & = a - C_0V_0\lambda^{\circ}(Ag^+) + \{\lambda^{\circ}(Ag^+) + \lambda^{\circ}(NO_3^-)\} \ C_1V \\ & = a_2 + b_2 \ V \ avec \ b_2 = \{\lambda^{\circ}(Ag^+) + \lambda^{\circ}(NO_3^-)\} \ C_1 > 0 \end{array}$$

2. Dosage colorimétrique : utilisation d'un indicateur de fin de réaction

a) Principe de la méthode de MOHR

- Il y a formation d'un précipité rouge brique : $2 \text{ Ag}^{+}_{(aq)} + \text{CrO}_4^{2-}_{(aq)} = \text{Ag}_2\text{CrO}_{4(s)}$.
- Il y a formation d'un précipité blanc : $Ag^+_{(aq)} + Cl^-_{(aq)} = AgCl_{(s)}$ et dans le tube où on ajoute un excès d'ions argent au bout d'un certain volume ajouté apparition de la couleur rouge brique caractéristique de $Ag_2CrO_{4(s)}$.
- Conclusion : on peut dire qualitativement que la réaction des ions chlorure avec les ions argent est plus favorisée que celle entre les ions chromate et les ions argent ; on peut aussi penser que la seconde réaction ne se fait qu'en présence d'un excès d'ions argent par rapport aux ions chlorures qui ont réagi dans la première réaction.

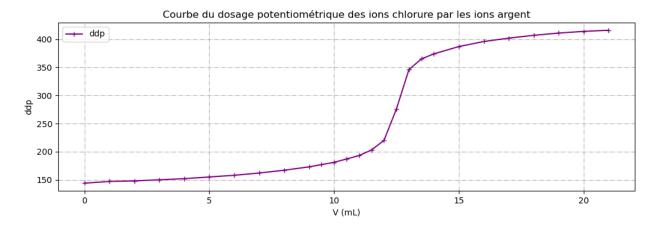
b) Dosage des ions chlorure de la solution S

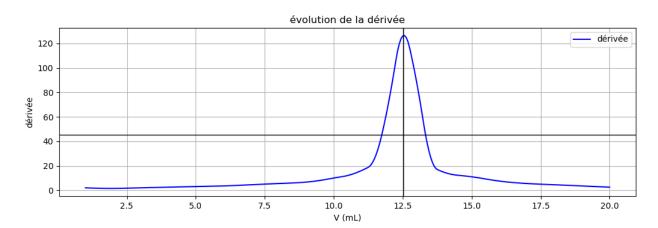
- Équation du dosage : $Ag^{+}_{(aq)} + Cl^{-}_{(aq)} = AgCl_{(s)} K^{\circ} = 1/Ks = 10^{9,7}$
- $V_e = 12.5 \text{ mL}$

•
$$C_0 V_0 = C_1 V_e \iff C_0 = \frac{C_1 V_e}{V_0} = 1,25.10^{-2} \text{ mol.L}^{-1}$$

•
$$n_0(CrO_4^{2-}) = 5 \times 0.05.10^{-3} \times 1.0 = 2.5.10^{-4} \text{ mol et } V_T = V_0 + V_e + V_{IC} = 32.75 \text{ mL}$$

et
$$[CrO_4^{2-}]_{eq} = \frac{n_0}{V_T} = C = 7,6.10^{-3} \text{ mol.L}^{-1}$$
 à l'apparition du précipité rouge de $Ag_2CrO_{4(s)}$


$$soit \ si \ Ks_2 = [CrO_4{}^{2-}]_{eq} \ [Ag^+]^2_{eq} => [Ag^+]_{eq} = \ \sqrt{\frac{Ks_2}{C}} \ = 1,6.10^{\text{-}5} \ mol.L^{\text{-}1}$$


ce qui correspond à
$$V_{\text{excès}}(Ag^{\scriptscriptstyle +}) = (V_{\scriptscriptstyle T}) \frac{\left[Ag^{\scriptscriptstyle +}\right]_{\text{eq}}}{C_{\scriptscriptstyle 1}} = 0,026 \text{ mL} < V_{\text{goutte}} = 0,05 \text{ mL}$$

et comme
$$Ks_1 = [Cl^-]_{eq} [Ag^+]_{eq} = > [Cl^-]_{eq} = \frac{Ks_1}{\left[Ag^+\right]_{eq}} = 1,1.10^{-5} \text{ mol.L}^{-1}$$

ce qui correspond à
$$V_{\text{excès}}(\text{Cl}^-) = (V_T) \frac{\left[\text{Cl}^-\right]_{\text{eq}}}{C_1} = 0,018 \text{ mL} < V_{\text{goutte}} = 0,05 \text{ mL}$$

3. Dosage potentiométrique

• Équation du dosage : $Ag^{+}_{(aq)} + Cl^{-}_{(aq)} = AgCl_{(s)} K^{\circ} = 1/Ks = 10^{9,7}$

et
$$Ve = 12.6 \text{ mL} = C_0 = \frac{C_1 Ve}{V_0} = 1.26.10^{-2} \text{ mol.L}^{-1}$$

• Pour V < Ve => excès de Cl⁻ => [Cl⁻]_{eq} =
$$\frac{C_0 V_0 - C_1 V}{V + V_0 + V_1}$$
 et [Ag⁺]_{eq} = Ks / [Cl⁻]_{eq}

$$E(Ag^{+}/Ag) = E^{\circ}(Ag^{+}/Ag) + 0.06 log \left(\frac{Ks}{[Cl^{-}]_{eq}}\right) = E^{\circ}(Ag^{+}/Ag) - 0.06 pKs - 0.06 log \left(\frac{C_{0}V_{0} - C_{1}V}{(V + V_{0} + V_{1})}\right) = E^{\circ}(Ag^{+}/Ag) - 0.06 pKs - 0.06 log \left(\frac{C_{0}V_{0} - C_{1}V}{(V + V_{0} + V_{1})}\right) = E^{\circ}(Ag^{+}/Ag) - 0.06 log \left(\frac{C_{0}V_{0} - C_{1}V}{(V + V_{0} + V_{1})}\right) = E^{\circ}(Ag^{+}/Ag) + 0.06 log \left(\frac{C_{0}V_{0} - C_{1}V}{(V + V_{0} + V_{1})}\right) = E^{\circ}(Ag^{+}/Ag) + 0.06 log \left(\frac{C_{0}V_{0} - C_{1}V}{(V + V_{0} + V_{1})}\right) = E^{\circ}(Ag^{+}/Ag) + 0.06 log \left(\frac{C_{0}V_{0} - C_{1}V}{(V + V_{0} + V_{1})}\right) = E^{\circ}(Ag^{+}/Ag) + 0.06 log \left(\frac{C_{0}V_{0} - C_{1}V}{(V + V_{0} + V_{1})}\right) = E^{\circ}(Ag^{+}/Ag) + 0.06 log \left(\frac{C_{0}V_{0} - C_{1}V}{(V + V_{0} + V_{1})}\right) = E^{\circ}(Ag^{+}/Ag) + 0.06 log \left(\frac{C_{0}V_{0} - C_{1}V}{(V + V_{0} + V_{1})}\right) = E^{\circ}(Ag^{+}/Ag) + 0.06 log \left(\frac{C_{0}V_{0} - C_{1}V}{(V + V_{0} + V_{1})}\right) = E^{\circ}(Ag^{+}/Ag) + 0.06 log \left(\frac{C_{0}V_{0} - C_{1}V}{(V + V_{0} + V_{1})}\right) = E^{\circ}(Ag^{+}/Ag) + 0.06 log \left(\frac{C_{0}V_{0} - C_{1}V}{(V + V_{0} + V_{1})}\right) = E^{\circ}(Ag^{+}/Ag) + 0.06 log \left(\frac{C_{0}V_{0} - C_{1}V}{(V + V_{0} + V_{1})}\right) = E^{\circ}(Ag^{+}/Ag) + 0.06 log \left(\frac{C_{0}V_{0} - C_{1}V}{(V + V_{0} + V_{1})}\right) = E^{\circ}(Ag^{+}/Ag) + 0.06 log \left(\frac{C_{0}V_{0} - C_{1}V}{(V + V_{0} + V_{1})}\right) = E^{\circ}(Ag^{+}/Ag) + 0.06 log \left(\frac{C_{0}V_{0} - C_{1}V}{(V + V_{0} + V_{1})}\right)$$

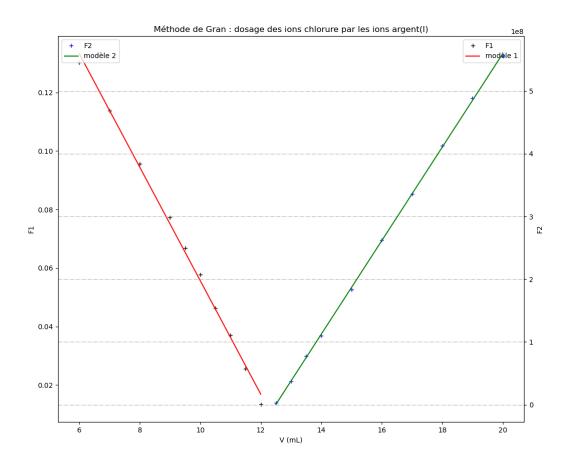
• Pour V > Ve => excès de
$$Ag^+$$
 => $[Ag^+]_{eq} = \frac{C_1 V - C_0 V_0}{V + V_0 + V_1}$

$$E(Ag^{+}/Ag) = E^{\circ}(Ag^{+}/Ag) + 0.06 \log \left(\frac{C_{1}V - C_{0}V_{0}}{V + V_{0} + V_{1}}\right)$$

• Pour
$$F_1(V) = 0$$
: $Ve = 12.9 \text{ mL}$ et la pente : $\alpha_1 = -1.94.10^{-2} = -\frac{C_1}{a \times Ks}$ (cf. ci-dessous)

• Pour $F_2(V) = 0$: Ve = 12,5 mL et la pente : $\alpha_2 = 7,46.10^7 = C_1 \times a$ (cf. ci-dessous)

• Pour V < Ve


$$=> \Delta E = E(Ag^{+}/Ag) - E_{ref} = 0.06 log \left(\frac{a \times Ks \times (V + V_0 + V_1)}{C_0 V_0 - C_1 V} \right) \text{ avec } a = cst = 10^{\frac{(E^{\circ} - E_{ref})}{0.06}}$$

$$=> F_1(V) = \left(V + V_0 + V_1 \right) \times 10^{\left(\frac{-\Delta E}{0.06} \right)} = \left(\frac{C_0 V_0 - C_1 V}{a \times Ks} \right) = \left(\frac{C_0 V_0}{a \times Ks} \right) - \left(\frac{C_1}{a \times Ks} \right) \times V \text{ avec } F_1(Ve) = 0$$

$$=> \alpha_1 = \frac{-C_1}{a \times Ks}$$

• Pour V > Ve => excès de
$$Ag^+ => [Ag^+]_{eq} = \frac{C_1 V - C_0 V_0}{V + V_0 + V_1}$$

$$=> \Delta E = E(Ag^{+}/Ag) - E_{ref} = 0.06 log \left(\frac{a \times (C_1 V - C_0 V_0)}{V + V_0 + V_1}\right) avec \quad a = cst = 10^{\frac{(E^{\circ} - E_{ref})}{0.06}}$$

=>
$$F_2(V) = (V + V_0 + V_1) \times 10^{\left(\frac{\Delta E}{0.06}\right)} = (a \times (C_1 V - C_0 V_0)) = (a \times C_1) V - a \times C_0 V_0$$
 avec $F_2(Ve) = 0$
=> $\alpha_2 = a \times C_1$

•
$$\alpha_1 \times \alpha_2 = -\frac{C_1^2}{Ks} = -1,5.10^6 \iff Ks = -\frac{C_1^2}{\alpha_1 \times \alpha_2} = 2,8.10^{-10} \text{ et pKs} = 9,6$$

