
DM02 (à rendre le 1/10)

Problème 1: Comparaison de deux tensions

On considère le circuit représenté ci-dessus.

On notera I_1 l'intensité du courant traversant $R_1 - x$ et I_2 celle du courant traversant R_2 .

Q1) Peut-on appliquer la relation du pont diviseur de tension pour déterminer la tension aux bornes de x ? Justifier la réponse.

Q2) On cherche à calculer toutes les intensités du circuit. Montrer qu'il suffit de résoudre un système de deux équations à deux inconnues pour cela.

Q3) Écrire puis résoudre ce système en prenant I_1 et I_2 comme inconnues.

Q4)En déduire l'intensité dans x.

Q5) On règle la valeur de x pour que I_2 soit nulle. Que vaut alors le rapport $\frac{E_2}{E_1}$?

Q6) Justifier qu'on puisse comparer deux tensions à l'aide de ce dispositif. Que pensez-vous de son utilisation lorsque les tensions sont très différentes ?

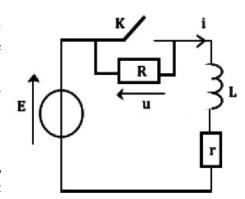
Problème 2 : étincelle de rupture

La tension de claquage est une caractéristique des isolants électriques qui définit la différence de potentiel maximale qui peut être appliquée à une portion d'isolant avant qu'il ne devienne conducteur.

Pour l'air à la pression atmosphérique et à température ambiante, le champ de claquage est de l'ordre de $30 \, kV \cdot cm^{-1}$.

Cela signifie qu'il faut appliquer une tension de 30 kV entre deux points de l'air espacés de 1cm pour qu'un arc électrique apparaisse entre ces deux points.

Lorsque la tension de claquage est dépassée dans l'air, le passage du courant est visible, et le nom d'arc électrique. En langage courant, un arc électrique de faible ampleur est une étincelle.


L'ouverture d'un interrupteur dans un circuit comportant une ou plusieurs bobines peut engendrer une étincelle dite étincelle de rupture. On s'intéresse dans ce problème au comportement d'un circuit simple comportant un générateur de tension continue idéal de force électromotrice E=12~V, une bobine réelle d'inductance propre L=1~mH et de résistance $r=3~\Omega$ ainsi qu'un interrupteur K placés en série comme sur le schéma ci-contre.

Partie A – Surtension aux bornes de l'interrupteur

Lorsque l'interrupteur K est ouvert, on peut modéliser la résistance de l'air par un conducteur ohmique de résistance R « élevée », en parallèle de l'interrupteur comme sur le schéma ci-contre. On appelle u(t) la tension aux bornes de l'interrupteur. On prendra R = 100 k Ω pour les applications numériques

L'interrupteur étant fermé « depuis longtemps », on l'ouvre à t=0.

A.1. Quelle est l'intensité du courant électrique dans le circuit, notée i₀, avant ouverture de l'interrupteur sachant que le régime permanent est établi ? Réaliser l'application numérique.

- **A.2** Donner l'expression de l'énergie accumulée par la bobine avant l'ouverture de l'interrupteur. Faire l'application numérique.
 - A.3. Quelle est la tension u aux bornes de l'interrupteur avant ouverture de l'interrupteur?
 - **A.4.** Déterminer i et u juste après ouverture de l'interrupteur (notés $i(0^+)$ et $u(0^+)$).
- **A.5.** On considère maintenant le régime permanent établi longtemps après ouverture de l'interrupteur. Déterminer i_{∞} et u_{∞} dans le circuit.
 - **A.6.** Déterminer l'équation différentielle vérifiée par i(t) pour t > 0. Commenter.
- **A.7.** Déterminer l'expression de i(t) dans le circuit après ouverture de l'interrupteur. On introduira la constante de temps τ du circuit dont on donnera l'expression et dont on calculera la valeur.
 - **A.8.** Tracer la courbe i(t).
 - **A.9.** Examiner le cas limite où R >> r. Que peut-t-on dire quand R tend vers l'infini?
 - **A.10.** Déterminer la loi u(t). Tracer u(t) et commenter le cas R >> r.
 - **A.11.** Montrer que la tension aux bornes de K est importante à son ouverture. Calculer cette surtension avec $R = 100 \text{ k}\Omega$ En déduire la formation d'une « étincelle de rupture ». si l'ecart entre les deux bords de l'interrupteur ouvert est de l'ordre du centimètre
 - **A.13.** Exprimer puis calculer le temps de réponse T_R du circuit.
 - **A.14.** Faire un bilan d'énergie (entre $t=0^+$ et $t=T_R$) pour estimer l'énergie dissipée par R.
 - **A.15.** Estimer la puissance de l'étincelle de rupture en supposant que l'étincelle disparaît quand $t = T_R$