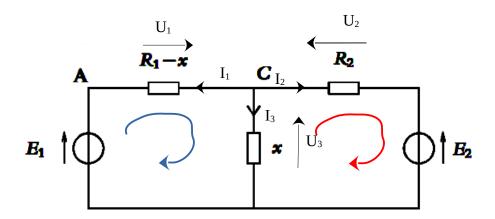
CORRECTION DM02

Exercice 1

a) On ne peut pas appliquer la relation du pont diviseur de tension pour calculer la tension aux bornes de x car l'intensité du courant circulant dans les résistances R_2 et $R_1 - x$ n'est pas la même que l'intensité traversant x



b) Le circuit comprend trois branches donc il faut a priori déterminer trois intensités. Ces trois intensités ne sont pas indépendantes puisqu'elles sont reliées par la loi des nœuds en C (avec les conventions choisies) :

$$I_1 + I_2 + I_3 = 0$$

ainsi $I_3 = -(I_2 + I_1)$ (*)

on peut écrire la loi des mailles dans la maille bleue et dans la maille rouge

$$E_1 + (R_1 - x) I_1 = xI_3$$

$$x I_3 = R_2 I_2 + E_2$$

en remplaçant I_3 par (*), on peut se ramener à un système avec pour inconnues seulement I_2 et I_2 :

$$E_1 + (R_1 - x) I_1 = -x (I_2 + I_1)$$

$$-x(I_2 + I_1) = R_2 I_2 + E_2$$

c) en utilisant la méthode de substitution ou en faisant des combinaisons linéaires de ces deux équations pour éliminer I_1 puis I_2 , on obtient I_1

$$I_1 = \frac{xE_2 - (x + R_2) E_1}{x^2 - R_1 (x + R_2)} \text{ et } I_2 = \frac{xE_1 - R_1 E_2}{x^2 - R_1 (x + R_2)}.$$

L'intensité dans x s'obtient alors par loi des nœuds soit

$$I_3 = I_1 + I_2 = \frac{(x - R_1) E_2 - R_2 E_1}{x^2 - R_1 (x + R_2)}$$

e) Si la valeur de x est telle que I_2 = 0, On a alors $\frac{E_2}{E_1} = \frac{x}{R_1}$

f) La connaissance de x et R₁ permet donc de comparer les deux tensions E₁ et E₂

Il faut s'assurer que $x < R_1$ pour que $R_1 - x > 0$, donc on a forcement $E_2 > E_1$

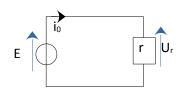
Il est possible d'effectuer cette comparaison si les tensions sont très différentes à condition de disposer de résistances de valeurs très différentes. Les gammes de valeurs de résistance seront donc un facteur limitant pour cette comparaison.

Correction DM02 exercice 2

A.1. Si le régime permanent et stationnaire est établi, la bobine se comporte comme un fil

De plus, si l'interrupteur est fermé, le résistor de résistance R est court-circuité

on peut faire un schéma équivalent



Loi des mailles : $E = U_r$ En utilisant la loi d'Ohm : $E = r i_0$

Finalement
$$i_0 = \frac{E}{r}$$

A.N $i_0 = 4$ A

A.2.

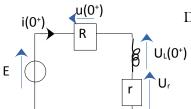
$$E_L = \frac{1}{2} L i_0^2$$
 A.N: $E_L = 8 \cdot 10^{-3} \text{ J}$

A.3. Si l'interrupteur est fermé la tension à ses bornes est nulle : |u(t=0)| = 0

A.4 L'intensité traversant une bobine étant continue : $|i(0^+)=i(0^-)=i_0$

Le schéma équivalent est le suivant :

à $t = 0^+$:

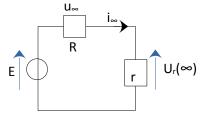


$$\frac{u(0) = KI(0)}{E}$$

$$u(0^+) = R \frac{E}{r}$$

A.5. On considère maintenant le régime permanent établi longtemps après ouverture de l'interrupteur. Déterminer i_{∞} et u_{∞} dans le circuit.

En régime permanent, la bobine se comporte toujours comme un fil, le schéma équivalent est le suivant



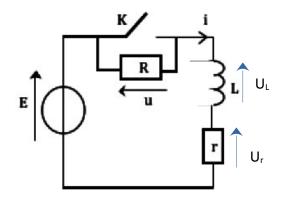
en appliquant le pont diviseur de tension : $u_{\infty} = \frac{R}{r+R} E$

$$u_{\infty} = \frac{R}{r+R} E$$

la loi d'ohm dans R donne:

$$i_{\infty} = \frac{u_{\infty}}{R} = \frac{E}{r+R}$$

A.6. Déterminer l'équation différentielle vérifiée par i(t) pour t > 0. Commenter.



Loi des mailles : $E = U_r + U_R + U_L$

En utilisant la loi d'Ohm : $E = r i(t) + R i(t) + U_L$

En utilisant la relation tension-courant pour la bobine :

$$E = ri(t) + Ri(t) + L\frac{di}{dt}$$

On peut la mettre sous la forme :
$$\frac{E}{L} = \frac{r+R}{L}i(t) + \frac{di}{dt}$$

C'est une équation différentielle linéaire à coefficients constants du premier ordre

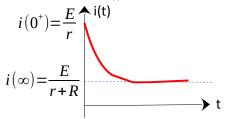
A.7. Solution particulière
$$i_p = \frac{E}{R+r}$$

Solution générale : $i(t) = \frac{E}{R+r} + \lambda e^{\frac{-t}{\tau}}$ On peut identifier un temps caractéristique $\tau = \frac{L}{r+R}$

A.N $\tau = 10^{-8} s$

Condition initiale: $i(0^+) = \frac{E}{r} \Leftrightarrow \frac{E}{R+r} + \lambda = \frac{E}{r} \Rightarrow \lambda = \frac{E}{r} - \frac{E}{r+R} = \frac{ER}{r(r+R)}$ donc $i(t) = \frac{E}{R+r} + \frac{R}{(R+r)r} Ee^{\frac{-t}{r}}$

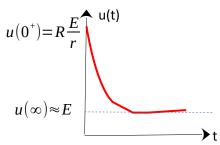
A.8. Tracer la courbe i(t).



A.9. Quand R tend vers l'infini, le temps caractéristique tend vers 0 et l'intensité finale tend vers 0

A.10. Déterminer la loi u(t). Tracer u(t) et commenter le cas R >> r.

D'après la loi d'Ohm pour la résistance R: u(t) = Ri(t) donc $u(t) = R\frac{E}{R+r} + \frac{R^2}{(R+r)r} E e^{\frac{-t}{T}}$



A.11. À l'ouverture $u(0^+) = E \frac{R}{r}$ comme r et faible R importante, la tension sera importante.

A.N: $u(0^+)=400\,kV$ c'est largement plus grand que la tension du réseau EDF (230 V)

A.12. A.N $u(0^+)=400\,kV$ cette tension peut faire claquer l'air sur $\frac{400}{30}=13,3\,cm$ ce qui est largement plus grand que l'espacement entre les deux bornes d'un interrupteur en général. **Une étincelle de rupture apparaît donc.**

A.13.
$$T_R \approx 5\tau$$
 A.N: $T_R \approx 5 \times 10^{-8}$ s

A.14. Bilan de puissance : $Ei = Ri^2 + ri^2 + u_li(t)$ soit $Ei = (R+r)i^2 + \frac{d}{dt}\left(\frac{1}{2}Li(t)^2\right)$ On suppose qu'à T_R

$$\mathbf{E}_{R} = \int_{0^{+}}^{T_{R}} Ri(t)^{2} dt = \int_{0^{+}}^{T_{R}} R\left(\frac{E}{R+r} + \frac{R}{(R+r)r} E e^{\frac{-t}{r}}\right)^{2} dt = \frac{RE^{2}}{(R+r)^{2}} T_{R} + 2R^{2} \frac{E^{2}}{r(R+r)^{2}} [-\tau e^{\frac{-t}{r}}]_{0}^{T_{R}} + R^{3} \frac{E^{2}}{r^{2}(r+R)^{2}} [\frac{-\tau}{2} e^{-2\frac{t}{r}}]_{0}^{T_{R}} + R^{3} \frac{E^{2}}{r^{2}(r+R)^{2}} [\frac{E^{2}}{r^{2}(r+R)^{2}} [\frac{E^{2}}{r^{2}(r+R)^{2}}]_{0}^{T_{R}} + R^{3} \frac{E^{2}}{r^{2}(r+R)^{2}} [\frac{E^{2}}{r^{2}(r+R)^$$

A.15. Estimer la puissance de l'étincelle de rupture en supposant que l'étincelle disparaît quand $t = T_R$ Toute l'énergie absorbée par R est dissipée en une durée T_R on a donc $P_e = \frac{E_R}{T_R}$

A.N $P_R \approx 1,610^5 \,\mathrm{W}$ ce qui est un ordre de grandeur très important (une machine à laver consomme une puissance de l'ordre de 100 W)