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CHAP. 08 : BASES DE LA DYNAMIQUE NEWTONIENNE

Objectifs :

- Etablir Pexpression de la quantité de mouvement d’un systéme restreint au cas de deux points sous la forme
p=mv(G).( Lien avec la vitesse du centre de masse d’un systéme fermé. )

- Décrire le mouvement relatif de deux référentiels galiléens.

- Citer une situation ou la description classique de I'espace ou du temps est prise en défaut (ne fonctionne pas)

- Etablir un bilan des forces sur un systéme ou sur plusieurs systémes en interaction et en rendre compte sur un
schéma

- Déterminer les équations du mouvement d’un point matériel ou du centre d’inertie d’un systéme fermé.

- Mettre en équation le mouvement sans frottement et le caractériser comme un mouvement a d constant.

- Etablir I'’équation du mouvement du pendule simple. Justifier 'analogie avec l'oscillateur harmonique dans le
cadre de approximation linéaire.

- Exploiter , sans la résoudre analytiquement, une équation différentielle du mouvement prenant en compte
influence de la résistance de l'air sur un mouvement de chute. : analyse en ordres de grandeur, détermination de
la vitesse limite, utilisation des résultats obtenus par simulation numérique. Fcrire une équation adimensionnée

- Exploiter les lois de Coulomb fournies dans les trois situations : équilibre, mise en mouvement, freinage.
Formuler une hypothése (quant au glissement ou non) et la valider.

- Proposer un protocole expérimental de mesure de frottements fluides.

- Proposer un protocole expérimental permettant d’étudier une loi de force.

- Mettre en auvre un microcontroleur lors d’un test de traction.

Rapport de jury central 2023 : Le jury rappelle qu’il est indispensable de définir le systeme d’étude pour toute
application d’un principe, en thermodynamique aussi bien qu’en mécanique.

Rapport de jury centrale 2019 PC. L’équation vérifiée par V(t) étant obtenue par application dun principe
fondamental de la dynamique, il est indispensable d’expliciter le systeme et le considérer ponctuel, de définir le
référentiel et le considérer galiléen et d’effectuer un bilan des forces.

Jury 2023 : il y a des lacunes certaines en mécanique du point : par exemple, la détermination d’une trajectoire d’un
objet ponctuel seulement soumis a son poids n’est réussie que par 10% des candidats ayant eu a le faire ! ;

I Principes fondamentaux

I.1  Référentiel galiléen
Un référentiel est dit galiléen si les lois de Newton sont vérifiées dans ce référentiel
Exemple de référentiel non-galiléen

J’étudie Le mouvement du lave vitre dans le référentiel de centre O lié
a la personne en chute libre :

Dans ce référentiel 'objet étudié M semble immobile (si on néglige les
frottements)

Si le premier principe s’applique, les forces qui s’exercent sur le lave
vitre doivent se compenser. Or ce n’est pas le cas | La seule force
qui s’applique est le poids de I'objet.

Conclusion : le premier principe ne s’applique pas, le référentiel d’étude
est donc non galiléen.
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Remarques :

“/ Aucun référentiel n’est rigoureusement galiléén. En revanche on peut considérer que certains référentiel sont \
galiléen sur une échelle de temps caractéristique :

* le ref Terrestre peut étre supposé galiléen pour des expériences dont la durée t est faible devant 24 h

* le référentiel géocentrique pour 7, << lan

* le référentiel héliocentrique pour 7, < < 230 Ma

u\ * le ref de Copernic est le meilleur ref gal identifié /

I.2 Les 3 «lois » de Newton

a 1°¢ loi : principe d’inertie

Tout corps soumis a une force résultante nulle est immobile ou en mouvement rectiligne uniforme
N J

Conséquence du principe d’inertie

Soit &7 un référentiel galiléen et &7, un référentiel en translation rectiligne uniforme par rapport a 7. St un
corps est en mouvement rectiligne uniforme par rapport a 471, alors il I'est aussi par rapport a 4 :

R, est donc aussi galiléen.

Cnneéquence :

~

les référentiels galiléens sont en translation rectiligne uniforme les uns par rapport aux autres.
Exemple : référentiel associé a un ascenseur en translation a vitesse constante

b 2™ Joi : principe fondamental de Ia dynamique

On définit la quantité de mouvement d’un point M de masse m et de vitesse v dans un référentiel £7 comme :

Remarques : D dépend du référentiel choisi. -
m est ]a masse inertielle

Il
3
<i

Quantité de mouvement de deux points M, et M, de vitesse \71 et \72 dans le référentielle 97"

la quantité de mouvement de 'ensemble {M; et My} est la somme des quantités de mouvement des deux points :

P=D1FP,=m,v,+m,v,

e A

-

OG(m1+m2)zmle\>/[1+sz]_\>/[2

Or par définition du centre de gravité G d’un ensemble de 2 points :

doM,  dOM,

-

En dérivant par rapport au temps : d&(m +m,)=m +m e(m+m,)V.=m, vV, +m,v,
Crivant par rapport au temps : - = 1) = 2 4t 1Ty V=M, VT, Vv,
e N
— - — L, . - -
comme p,,=m,;V,+m,v, onendéduit: p,=m,V;
Remarque :
I'ensemble des deux points se comporte, d’un point de vu dynamique, comme un objet ponctuel placé en G
. - ml Vl+m2V2
de masse m,, =m;+m, et de vitesse Vo=———
my+m,

animation altére

Principe fondamental de la dynamique :

La variation de quantité de mouvement d’un systeme est égale a la somme des forces exteérieures s’exercant sur le

systeme :

Q_ =
dt _zFext

Ve
A



https://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/meca/centredemasse.html
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-

. o . . dv -
Remarque : si m=cste, alors le principe fondamental de la dynamique se traduit par m——-= Z F,.

dt

(mais pas dans le cas de étude d’une fusée par exemple).
¢ 3 loi: principe des actions réciproques

Si A exerce une force sur B, alors B exerce une force sur A de norme égale, de sens opposé et de méme direction :

F, g=—Fy ,

I.3 Limites
«principe »= postulat non démontré et considéré comme valable jusqu’a ce qu’il ait été contredit par
Pexpérience
* En mécanique classique, le temps est absolu. On considérera que cela est vrai si ||[V||[<<c  (dans le réf d’étude)
- Sinon, on utilisera la théorie de la relativité restreinte, ou celle de la relativité générale (Trés largement
hors programme) .
Exemple le caractere absolue du temps est prise en défaut : les corrections relativistes sont utiles pour régler ’horloge
des satellites de positionnement GPS afin qu’ils réalisent des mesures précises (2 107 s pres ) d’intervalles de temps (et
donc de distances )
* En mécanique classique, I’énergie et la matiére sont continues. On considérera que cela est vrai si la taille
caractéristique du systeéme est grande devant le nanometre .
- Sinon, on utilisera la théorie de la mécanique quantique .

II Applications

II.1 Mouvement dans le champ de pesanteur uniforme ZA
a) Cas sans frottements h M

systeme : { masse m } ref: TSG  Bilan des forces: P=mg
On lache sans vitesse initiale une masse m, d’une hauteur h \ 4
PFD ma=mg=a=g

comme Vo=0 le mvtest rectiligne et V=—gte, Z(t):7gt2+h

si axe vers le bas Z(t)zjgtz—h

durée de la chute : fin de chute a T tel que z(T):O=>—%gT2+h:O=>T=1/& dim : ( L )
g

vitesse juste avant 'impacte : [ Vimpace= 9 T=v2 gh J

Limite u modéle : si h — o, Vv,

impace = © On s’attend plut6t a une vitesse limite

b) Cas avec frottements de Ia forme F=—aV (.« n’est pas une constante de raideur )

Bilan des forces  P=m g et F=—aVv

-

dv e . dv g
alors m—=mg-av=>-—+“v=
T it m’ Y
. , —dv _ dv _ o Nelle )
On projette sur l'axe (Oz): T—O{V——g=>E+kV—g ( V——||V||€Z——V€Z a cause du choix du sens de

Paxe)

les sol sont alors de la forme : v(t)=Aexp(—%t)+sol particuliére
m

on identifie le temps caractéristique de variation de la vitesse T=g

Iei, %v,=g=v :% donc v(t)ZAeXp(—%tH% . Et comme v(0)=0 v(0)=Aexp(0)+2d

v(t)=%(1—exp(%t))

o J

\\

(

donc A=—p5= finalement
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Rmgq : ‘K:%
g

vlim :mﬁ

est le temps caractéristique du régime transitoire de chute pour t>57 la vitesse ne varie plus et vaut

4 N

voc a retenir ;.  V  =m % est la vitesse constante atteinte en régime permanent. On Pappelle vitesse limite

Physiquement : les deux forces s’opposent en sens. La force de frottement augmente en norme jusqu’a compenser

. S e . . m N . N . SR
parfaitement le poids a l'instant (approximatif) t= 5T=D5g . a partir de se moment le systéme devient pseudo-isolé

— donc le mouvement devient rectiligne uniforme

c) Cas avec frottements de la forme F=—A vV

<

. et - p=a - N - ., > 2 - -
Bilan des forces:  P=mg et F=—AvV ou v=||V| quonpeutaussiécrire F=—AV U avec U= un

<{

vecteur unitaire dirigé dans le méme sens et la méme direction que le vecteur vitesse

-

dv -
—= —AVV
m it mg VA

v, étant la projection sur l'axe (Oz) du vecteur

m%:—mg—lvvz

% qui est une grandeur algébrique et comme lobjet va

Alors le PFD donne on projette sur (Oz) tjr dirigé vers le haut :

systématiquement vers le bas si on le lache sans vitesse initiale, on a toujours v, = - v

d 1% [ dv 2 )
donc —m—=—mg—/1v(—v)2‘ DAy
dt _dt m )
C’est une équation différentielle non linéaire qui peut facilement se résoudre numériquement voir TP info kilomeétre
lancé
100 :
B0 4
C i
E s
ﬂ I
= '
> f
40 ‘
20 &—& yec frottements
sans frottements
—_
y 5 10 15 20 25
Soluti (t)=v,, th 49, Vin=15> (dé tration h
olution v(t)=v,_ - avec V= ( démonstration hors programme )
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d ) méthode pour trouver la vitesse limite

L dv dv 2
on part de 'équation du mvt sur (Oz) : E+QV =g ou E+Lv =g sclon le type de force de frottement
On s’intéresse au régime permanent au cours duquel la vitesse limite est atteinte donc :  V=v;
, .. ;. . . ;. dvlim
Par définition du régime permanent, la vitesse ne varie plus au cours du temps dans ce régime donc =0
ainsi en régime permanent on a :
Si force de frottement de la forme F=—a v Si force de frottement de la forme F=—AvV:
' N
mg
0+&y,.  =g=v, =—2 A o2 _ _|/gm
m lim1 g lim (04 O+_Vlim_g$vhm_ T
m
- Y

Quand choisir une forme plutdt que Pautre ?

En premiére année ce sera toujours rappelé, en deuxiéme année on pourra utiliser le nombre de Reynolds qui augmente
p ] ppele, p y q g

globalement plus I’écoulement est turbulent autour de l'objet

II.2 Mouvement d’un pendule simple

a FEquation du mouvement

_ _ e “systéme {masse M} hyp : on néglige la masse du fil
i \ ~ onse place en coordonnées polaires car elles sont plus adaptées a la géométrie du systeme
_BDF:

@ | : D .
i AN P=mg et T=—T¢E, laTension du fi
' = On écarte le pendule de @, et on lache sans vitesse initiale :

objectif : Exprimer 6 (t)

“PFD: m-——=P+T

en coordonnées polaires : VﬁdO—MZQ (ee)=te +toe,

d dt
dt

or comme £(t) = cste alors EZEZO onadonc v={6¢,
~ @@
(la notation avec les points au dessus des grandeurs pour désigner une dérivée temporelle est da a Newton, on utilise

cette notation seulement en mécanique , vous pouvez utiliser la notation avec des d/dt pour plus de clarté )

- N dv_d ;s - PN o d o d . .
v:/BBeg et E:E(Bﬂe\e)zeﬂegwea(eﬁ) et E(e{,)z—ﬁer

don% a:‘ii—::eée;—eézej 4

Exprimons le poids dans la base polaire 13:mg cos(6)é,—mgsin(6)e,

Le PFD s’écrit : m(lfé é’H—Béza):mg cos(6)é.—mgsin(6)é,—T €,

r

2
Ainsi le PFD en projection sur €, donne: m&6@é,=—mgsin(6)= a9__9 sin(@) | a savoir retrouver
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b Approximation des petits angles,analogie avec ’oscillateur harmonique

L’équation différentielle n’est pas une équation linéaire a cause de la fonction sin, on ne sait pas la résoudre a la
main..

Par contre un éleve de prépa sait résoudre une équation diff linéaire !

Pour avoir une équation différentielle linéaire il faudrait avoir 0(t) a la place de sin(0(t) ).

Rappel d’optique géométrique :

si0 < <1rad (ou28°) on peut faire Papprox ( dite des petits angles ) :  sin(6)~0

I’équation différentielle du mouvement devient alors dans 'approx des petits angles ;

2 2
(:It‘? =—%0 qu’on peut mettre sous la forme ‘Zit? +%9 =0
e . . Y ey
On reconnait ’équation d’un oscillateur harmonique dont la forme canonique > +w,60=0
t

on identifie donc la pulsation propre : w0=J%

¢ Résolution de I’équation du mouvement et période des oscillations

les solutions sont de la forme @ (t)=A cos (a)ot)+B sin(a)ot)
conditions initiales : 0 (t=0)=0,e AX1+BX0=60,=> A=6,

souvent pas de vitesse initiale : Cz—f(tZO):O avec Cil—f(t)Z—Aa)osin(a)ot)+Ba)0COS(a)0t)

—Aw x0+Bw,x1=0=>B=0 finalement: @ (t)=6,cos(w,t)

Inserer représentation graphique :

Période des oscillations : ( c’est la période propre ) telle que wong—”
0

_ ¢ ) . _Ax’e
T,=2m 5 on peut s’en servir pour mesurer g ! g=

Rmq:

- la période des oscillations ne dépend pas de la masse accrochée

cpdt si la masse est trop faible, on ne peut plus négligé la masse de la corde devant celle du systeme

-si la masse n’est pas assez dense, on ne peut plus négligé les frottements.

La période des oscillations ne dépend pas de ’angle initiale ce qui peut semble contre intuitif !
Ce n’est plus vrai si 'angle initiale 0, << 25° (on n’est plus dans 'approximation des petits angles).

Histoire des sciences : Utilisation scientifique du pendule pour mesurer la masse des montagnes
Pierre Bouguer
En 1736, il part en expédition au Pérou avec Charles-Marie de La Condamine afin de mesurer un arc du méridien au
niveau de I'équateur. A son retour en 1743, grace aux résultats obtenus, il donne une meilleure description de la forme
de la Terre. Ce travail est publié en 1749 sous le titre I.a Figure de la Terre. Pierre Bouguer mesure aussi a l'aide d'un
pendule la gravité a différentes altitudes et est le premier a essayer de quantifier la poussée horizontale des montagnes
sous l'effet de la gravitation. Il observe une différence entre la force de gravité mesurée sur un haut plateau et celle
calculée en fonction de l'altitude de celui-ci : 'attraction gravitationnelle des reliefs semble plus faible comme s'il y avait
un manque de maticre, comme si les montagnes étaient creuses. Cette différence sera expliquée en 1889 par Clarence
E. Dutton qui imagine une racine aux montagnes, plus légere que les roches environnantes (cf. ISOSTASIE).
uper article
https://planet-terre.ens-lyon.fr/ressource /pendule-pesanteur-altitude.xml


https://planet-terre.ens-lyon.fr/ressource/pendule-pesanteur-altitude.xml
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Quel que soit le lieu ou Bouguer effectue sa mesure, il utilise un pendule qui a toujours exactement la méme longueur
(36 pouces 7,019 lignes), calibrée grace a une regle en fer mesurée tres précisément une fois pour toute. Puis il compare
les oscillations du pendule a celles d'une horloge qu'il regle sur le ciel par des observations journalieres. 11 ne juge donc
pas des variations de la pesanteur par la différence dans la longueur du pendule mais par le nombre d'oscillations
effectuées en 24 heures. La méthode revient au méme, comme nous allons le voir, mais il est beaucoup plus aisé de
compter un nombre d'oscillations que d'avoir a déceler une variation de longueur de quelques centiemes de lignes
(dixiemes de millimetres) !

Au cours de son séjour au Pérou, Bouguer a effectué une série de mesures pendulaires, a trois altitudes différentes : au
niveau de la mer, 2 Quito et a Pichincha (tableau ci-dessus). Si la gravité suit la loi de Newton en 1/1% la variation
relative de la pesanteur (la variation de la force centrifuge avec laltitude étant négligeable) est en « raison doublée des
distances », soit Ag/g=—2h/R (ou h est I'altitude et R le rayon de la Terre). En effet, si g est la pesanteur au niveau de la
mer et g' la pesanteur a I'altitude h, la variation de pesanteur s'écrit (nous négligeons ici l'effet de la rotation journaliére)

—2hg
R

GM_ _ GM _ . 1 1)~
R2 g (1+%)2

que la diminution de la pesanteur déduite des mesures pendulaires réalisées a Quito et a Pichincha est bien réelle,

L _ﬂ — - — =
9=9 — 9 (Rth)

Bouguer remarque
importante, mais qu'elle ne suit pas exactement ce rappotrt, ce qui pose de sérieuses questions : « Mais pourguoi nos
expériences nous donnent-elles done constamment un rapport qui n'est pas tout a fait conforme ¢ Faut-il attribuer a quelgue ervenr de notre
part cette différence ; ou serait-il vrai que dans le voisinage des grosses masses comme la Terre, la loi dont il s'agit ne fut observée que d'une
maniere imparfaite

Bouguer se sert de ce résultat pour montrer que la diminution de la pesanteur avec l'altitude dépend de certaines
circonstances. Si, par exemple, la densité de la montagne était les 4/3 de la densité moyenne de la Terre, la pesanteur a
Quito serait égale a celle qu'on éprouvait au niveau de la mer. Si la densité de la montagne était encore plus forte, la

pesanteur poutrait méme augmenter avec l'altitude !

Lien Altitode b Longueur du pendule [ Longueur du pendule ! Agfg glme?) Agfg
{en pouces et lignes) {en lignes) [mesure) (calcul =-2h/H)
bar 0 36 pou 7,21 hig 4392 a 9779
Quito 1466 toizes 36 pou 6,EE lig 438,88 111331 o772 1/1116
(2B57 m)
Pichincha 2434 toises 36 pou 6,69 lig 43859 B44E 0,768 1/6T2
(4744 m)
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I1.3 Mouvement d’un solide en translation avec frottements

a Lois de Coulomb

Voc : I'étude des frottements s’appelle la tribologie Charles Augustin Coulomb
-au debut 18 ¢éme établit des lois phénoménologique ( basés sur des résultats
expérimentaux sans chercher de théorie sous-jacente plus profondes)

“Tobjectf est de rendre compte des frottement entre deux solides.
Expérience historique :

Tant que angle o de la pente est inférieur a une valeur limite, 'objet de bouge pas on dit qu’il y a absence de glissement.
Des que 'angle dépasse 'ange o, 'Objet se met en mouvement : il y a glissement

b Mise en équation BDF: - Poids del'objet p

- Réaction du support R qu’on peut décomposer en deux
composantes :  R=R +R;

ou R estla réaction normale du support qui

existe méme en ’absence de frottement

—

R, estla réaction tangentielle qui modélise

le frottement du support sur 'objet étudié

— —

Rmgq : si on néglige les frottements, R;= 0=>R=R N

Lois de Coulomb N
Avec ces expériences Coulomb établit les lois phénoménologiques suivantes :

- En I'absence de glissement ( tant que o < oin, ) : IR, ||=f.[[R\|| avec f.le coefficient d’adhérence (ou statique)

- Dés que le glissement commence ( & > o ) : ||Ry||=F4l|Ry|l ot fa estle coefficient dynamique ou de glissement
o /

Physiquement : a2 mesure que I'angle augmente, la projection du poids sur 'axe X augmente, pour permettre I’équilibre
( pas de glissement ) la norme de Ry doit aussi augmenter pour compenser la projection du poids, si Ry dépasse un
certains seuil, il n’y a plus équilibre.

A partir du moment ot objet glisse, la composante tangentielle de la réaction du support prend une valeur constante

Valeurs typiques :
acier/acier f, = 0,3 et fy=0,1 acier/glace f; =0,05 et fy = 0,02
On général f; = f; mais parfois f4 < f;
c Exemple
vidéo

A partir de quel angle « le solide commence-t-il a glisser ?

Systéme : {solide de masse m}

Ref: TSG BDF: P et R=R vt ﬁT (on fait apparaitre les deux composantes)
détail des composantes : ﬁN:RNgy ﬁT:—RTé; avec Ry >0

f’=mg(sin(a)é'x—cos(a)é'y)



https://www.youtube.com/watch?v=3miOIZKKYHs&t=3s
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Détermination de ®min

—R+mgsin(a)=0 _ [ Ry=mgsin(a)

donc dans ce cas
R,—mgcos(a)=0 |R,=mgcos(a)

le systeme est a Iéquilibre donc §N+§T+ﬁ=62

. R
r_smma =tan(c) D’aprés la loi de Coulomb, quand il n’y a pas pas glissement ||RT||SfS||RN||©”—_.T”SfS
Ry cosa IRyl

donc tant qu’il n’y a pas glissement : tan o <f, =« <arctan (f )

ainsi a la limite du glissement L a=a,;,=arctan (f s) J Rmgq : angle indépendant de m AN pour acier/acier : 16,7°

Détermination de ’équation du mouvement en phase de glissement (& > &im_ )

le PFD appliqué au systéme s’écrit : ﬁN + ﬁT +P=ma=

—R,+mgsin(a)=mx
R,—mgcos(a)=m}y

Ve

comme il 0’y a pas de déplacement selon (Oy) : | Ry—mgcos(a)=0=R,=mgcos(az) | A ne surtout pas oublier !

et comme d’aprés la loi de coulomb (dynamique): R, =f,Ry alors R;=f;mgcosa
A _

Donc I’équation du mouvement selon (Ox) s’écrit : mX=—fymgcosa+mgsin(c) soit

‘ )“<=g(sin(a)—fdcos(a)) ‘
Rmq: f,<f, or f.= 22((3)) donc sina—f, cosa>0 si a> arctan(fs) ce qui estle cas si 0> Gmin = arctan(fy)

Comme g(sin (a)—f4cos (a)) est indépendant du temps et de x : le mouvement est rectiligne et uniformément
accéléré
'accélération est d’autant plus proche de — g f; que I'angle o se rapproche de pi/2 (logique)

Cas d’un freinage : voir exercice 9 TD 08 sur freinage d’'urgence

Le mouvement de collé glissé¢, comme I'harmonica de verre de benjamin Franklin ou glassharmonica. C'est une forme

mécanisée du verillon, composée de coupes en verre — d'abord 24, puis jusqu'a 40

les séismes



