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CHAP. 08 : BASES DE LA DYNAMIQUE NEWTONIENNE

Objectifs : 

- Établir l’expression de la quantité de mouvement d’un système restreint au cas de deux points sous la forme
p⃗=mv⃗ (G).( Lien avec la vitesse du centre de masse d’un système fermé. )

- Décrire le mouvement relatif de deux référentiels galiléens. 
- Citer une situation où la description classique de l’espace ou du temps est prise en défaut (ne fonctionne pas)
- Établir un bilan des forces sur un système ou sur plusieurs systèmes en interaction et en rendre compte sur un

schéma 
- Déterminer les équations du mouvement d’un point matériel ou du centre d’inertie d’un système fermé. 
- Mettre en équation le mouvement sans frottement et le caractériser comme un mouvement à a⃗ constant. 
- Etablir l’équation du mouvement du pendule simple. Justifier l’analogie avec l’oscillateur harmonique dans le

cadre de l’approximation linéaire. 
- Exploiter  ,  sans  la  résoudre  analytiquement,  une équation  différentielle  du mouvement  prenant  en compte

l’influence de la résistance de l’air sur un mouvement de chute. : analyse en ordres de grandeur, détermination de
la vitesse limite, utilisation des résultats obtenus par simulation numérique. Écrire une équation adimensionnée  

- Exploiter  les  lois  de  Coulomb  fournies  dans  les  trois  situations :  équilibre,  mise  en  mouvement,  freinage.
Formuler une hypothèse (quant au glissement ou non) et la valider.  

- Proposer un protocole expérimental de mesure de frottements fluides. 
- Proposer un protocole expérimental permettant d’étudier une loi de force. 
- Mettre en œuvre un microcontrôleur lors d’un test de traction. 

Rapport  de jury  central  2023   :  Le jury  rappelle  qu’il  est  indispensable  de définir  le  système d’étude pour  toute
application d’un principe, en thermodynamique aussi bien qu’en mécanique.

Rapport  de  jury  centrale  2019  PC. L’équation  vérifiée  par  (t)  étant  obtenue  par  application  d’un  principe𝑣
fondamental  de  la  dynamique,  il  est  indispensable  d’expliciter  le  système  et  le  considérer  ponctuel,  de  définir  le
référentiel et le considérer galiléen et d’effectuer un bilan des forces. 

Jury 2023 : il y a des lacunes certaines en mécanique du point : par exemple, la détermination d’une trajectoire d’un
objet ponctuel seulement soumis à son poids n’est réussie que par 10% des candidats ayant eu à le faire ! ; 

I Principes fondamentaux
I.1 Référentiel galiléen

Un référentiel est dit galiléen si les lois de Newton sont vérifiées dans ce référentiel 
Exemple de référentiel non-galiléen 

O x

z
y

J’étudie Le mouvement du lave vitre dans le référentiel de centre O lié 
à la personne en chute libre :

Dans ce référentiel l’objet étudié M semble immobile (si on néglige les 
frottements)

Si le premier principe s’applique, les forces qui s’exercent sur le lave 
vitre doivent se compenser. Or ce n’est pas le cas ! La seule force 
qui s’applique est le poids de l’objet.

Conclusion : le premier principe ne s’applique pas, le référentiel d’étude 
est donc non galiléen.

M
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Remarques :

 Aucun référentiel n’est rigoureusement galiléén. En revanche on peut considérer que certains référentiel sont 
galiléen sur une échelle de temps caractéristique :

• le ref Terrestre peut être supposé galiléen pour des expériences dont la durée τ est faible devant 24 h

• le référentiel géocentrique pour τ g <<  1 an

• le référentiel héliocentrique pour τ g <  <  230  Ma

• le ref de Copernic est le meilleur ref gal identifié

I.2 Les 3 « lois » de Newton
a 1  ère   loi     : principe d’inertie  

Tout corps soumis à une force résultante nulle est immobile ou en mouvement rectiligne uniforme

Conséquence du principe d’inertie
Soit R 1 un référentiel galiléen et R 2 un référentiel en translation rectiligne uniforme par rapport à R 1. Si un

corps est en mouvement rectiligne uniforme par rapport à R 1 , alors il l’est aussi par rapport à R 2 : 
R 2 est donc aussi galiléen. 
Conséquence :
 les référentiels galiléens sont en translation rectiligne uniforme les uns par rapport aux autres. 

 Exemple : référentiel associé à un ascenseur en translation à vitesse constante 
b 2  ème   loi     : principe fondamental de la dynamique  

On définit la quantité de mouvement d’un point M de masse m et de vitesse v dans un référentiel R comme : 

Remarques :         p⃗ dépend du référentiel choisi. 
                           m est la masse inertielle

Quantité de mouvement de deux points M1 et M2 de vitesse v⃗1 et v⃗2 dans le référentielle R :

la quantité de mouvement de l’ensemble {M1 et M2} est la somme des quantités de mouvement des deux points :
p⃗tot= p⃗1+ p⃗2=m1 v⃗1+m2 v⃗2

Or par définition du centre de gravité G d’un ensemble de 2 points :  O⃗G(m1+m2)=m1
⃗OM1+m2

⃗OM 2

En dérivant par rapport au temps : dO⃗G
dt

(m1+m2)=m1

d ⃗OM1

dt
+m2

d ⃗OM 2

dt
⇔(m1+m2) v⃗G=m1 v⃗1+m2 v⃗2

comme p⃗tot=m1 v⃗1+m2 v⃗2  on en déduit : p⃗tot=mtot v⃗G  

Remarque :
 l’ensemble des deux points se comporte, d’un point de vu dynamique, comme un objet ponctuel placé en G 

de masse mtot =m1+m2   et de vitesse v⃗G=
m1 v⃗1+m2 v⃗2

m1+m2

animation altère

Principe fondamental de la dynamique :
La variation de quantité de mouvement d’un système est égale à la somme des forces extérieures s’exerçant sur le

système :

p⃗=mv⃗

d p⃗
dt

=∑ F⃗ext

https://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/meca/centredemasse.html
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Remarque : si m=cste, alors le principe fondamental de la dynamique se traduit par m
d v⃗
dt

=∑ F⃗ext   

(mais pas dans le cas de l’étude d’une fusée  par exemple). 
c 3  ème   loi     : principe des actions réciproques  

Si A exerce une force sur B, alors B exerce une force sur A de norme égale, de sens opposé et de même direction : 
 

I.3 Limites
«principe »= postulat non démontré et considéré comme valable jusqu’à ce qu’il ait été contredit par

l’expérience 
▪ En mécanique classique, le temps est absolu. On considérera que cela est vrai si ‖v⃗‖< <c   (dans le réf d’étude)

- Sinon, on utilisera la théorie  de la  relativité restreinte, ou celle de la  relativité générale  (Très largement
hors programme)  . 

Exemple le caractère absolue du temps est prise en défaut :  les corrections relativistes sont utiles pour régler l’horloge
des satellites de positionnement GPS afin qu’ils réalisent des mesures précises ( à 10 -9 s près ) d’intervalles de temps (et
donc de distances )
▪  En  mécanique  classique,  l’énergie  et  la  matière  sont  continues.  On  considérera  que  cela  est  vrai  si  la  taille
caractéristique du système est grande devant le nanomètre  . 
- Sinon, on utilisera la théorie de la mécanique quantique . 

II Applications
II.1 Mouvement dans le champ de pesanteur uniforme 

a) Cas sans frottements
système : { masse m } ref : TSG    Bilan des forces : P⃗=m g⃗
On lache sans vitesse initiale une masse m, d’une hauteur h 
PFD m a⃗=m g⃗⇒ a⃗= g⃗

comme v⃗ ₀=0⃗  le mvt est rectiligne et v⃗=−g t e⃗z      z (t)=−1
2

g t ²+h

si axe vers le bas  z (t)=+1
2

g t ²−h

durée de la chute : fin de chute à T tel que z (T )=0⇒−1
2
gT ²+h=0⇒T=√ 2h

g
  dim : ( L

LT−2)
1
2=T

vitesse juste avant l’impacte : v impact=gT=√2 g h

Limite u modèle : si h→∞ , v impact →∞  on s’attend plutôt à une vitesse limite

b)   Cas avec frottements   de la forme      F⃗=−α v⃗      ( α n’est pas une constante de raideur )

Bilan des forces   P⃗=m g⃗  et F⃗=−α v⃗

alors m
d⃗v
dt

=m g⃗ –α v⃗⇒ d⃗v
dt

+α
m
v⃗= g⃗

On projette  sur l’axe (Oz) :  
−dv
dt

–α v=−g⇒ dv
dt

+k v=g  ( v⃗=−‖v⃗‖e⃗z=−v e⃗ z  à cause du choix du sens de

l’axe)

les sol sont alors de la forme : v (t )=A exp(−α
m

t)+sol particulière  

on identifie le temps caractéristique de variation de la vitesse τ =m
α

Ici, α
m

v p=g⇒ v p=
mg
α   donc v (t )=A exp(−α

m
t)+mg

α . Et comme v(0)=0 v (0)=A exp(0)+mg
α

donc  A=−mg
α  finalement v (t)=mgα (1−exp(−α

m
t))

h

z
M

P⃗

F⃗A→B=−F⃗B→A

0
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Rmq  : τ =m
α   est le temps caractéristique du régime transitoire de chute pour t>5τ la vitesse ne varie plus et vaut

v lim =m
g
α

voc à retenir : v lim =m
g
α est la vitesse constante atteinte en régime permanent. On l’appelle vitesse limite 

Physiquement :  les deux forces s’opposent en sens. La force de frottement augmente en norme jusqu’à compenser

parfaitement le poids à l’instant (approximatif) t= 5τ =5
m
α  . à partir de se moment le système devient pseudo-isolé

→ donc le mouvement devient rectiligne uniforme

c)   Cas avec frottements   de la forme     F⃗=−λ v v⃗

Bilan des forces     :         P⃗=m g⃗ et F⃗=−λ v v⃗ où v=‖v⃗‖  qu’on peut aussi écrire F⃗=−λ v2 u⃗ avec u⃗= v⃗
‖v⃗‖

un

vecteur unitaire dirigé dans le même sens et la même direction que le vecteur vitesse 

Alors le PFD donne m
d v⃗
dt

=m g⃗−λ v v⃗  on projette sur (Oz) tjr dirigé vers le haut : m
d−v
dt

=−mg−λ v vz  

vz étant  la  projection  sur  l’axe  (Oz)  du  vecteur  v⃗ qui  est  une  grandeur  algébrique  et  comme  l’objet  va
systématiquement vers le bas si on le lâche sans vitesse initiale, on a toujours vz = - v 

donc −m
d v
dt

=−mg−λ v (−v)⇒   
dv
dt

+λ
m

v2=g

C’est une équation différentielle non linéaire  qui peut facilement se résoudre numériquement voir TP info kilomètre
lancé 

Solution v (t )=v lim th(√λ g
m

t) avec v lim=√mg
λ   ( démonstration hors programme ) 
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 d ) méthode pour trouver la vitesse limite 

on part de l’équation du mvt sur (Oz) : 
dv
dt

+α
m

v=g ou 
dv
dt

+ λ
m

v2=g  selon le type de force de frottement

On s’intéresse au régime permanent au cours duquel la vitesse limite est atteinte donc : v=v lim

Par définition du régime permanent, la vitesse ne varie plus au cours du temps dans ce régime donc 
dv lim

dt
=0

ainsi en régime permanent on a : 

Si force de frottement de la forme F⃗=−α v⃗        Si force de frottement de la forme  F⃗=−λv v⃗:
   

         0+α
m

v lim1 =g⇒ v lim=
mg
α              

Quand choisir une forme plutôt que l’autre ? 
En première année ce sera toujours rappelé, en deuxième année on pourra utiliser le nombre de Reynolds qui augmente
globalement plus l’écoulement est turbulent autour de l’objet 

II.2 Mouvement d’un pendule simple
a Équation du mouvement  

système {masse M}   hyp : on néglige la masse du fil
on se place en coordonnées polaires car elles sont plus adaptées à la géométrie du système 
BDF : 

P⃗=m g⃗ et T⃗=−T e⃗r la Tension du fil
On écarte le pendule de θ 0 et on lâche sans vitesse initiale  :

objectif : Exprimer θ (t)

PFD     :     m
d v⃗
dt

=P⃗+T⃗

en coordonnées polaires : v⃗≝d O⃗M
dt

= d
dt

(ℓ e⃗r)= ℓ̇ e⃗r+ℓ θ̇ e⃗θ

or comme ℓ(t) = cste  alors ℓ̇=dℓ
dt

=0      on a donc v⃗=ℓθ̇ e⃗θ

( la notation avec les points au dessus des grandeurs pour désigner une dérivée temporelle est dû à Newton, on utilise
cette notation seulement en mécanique , vous pouvez utiliser la notation avec des d/dt pour plus de clarté )

v⃗=ℓ θ̇ e⃗θ  et 
d v⃗
dt

= d
dt

(ℓ θ̇ e⃗θ )=ℓ θ̈ e⃗θ +ℓ θ̇
d
dt

(e⃗θ )   et 
d
dt

(e⃗θ )=−θ̇ e⃗r

donc a⃗=d v⃗
dt

=ℓ θ̈ e⃗θ−ℓ θ̇ 2 e⃗r

Exprimons le poids dans la base polaire  P⃗=mg cos(θ ) e⃗r−mg sin(θ ) e⃗θ

Le PFD s’écrit : m(ℓθ̈ e⃗θ−ℓθ̇ 2e⃗r)=mg cos(θ ) e⃗r−mg sin (θ ) e⃗θ−T e⃗r

Ainsi le PFD en projection sur e⃗θ donne :  mℓ θ̈ e⃗θ=−mgsin (θ )⇒   
d2θ
dt 2 =− g

ℓ
sin(θ )  à savoir retrouver 

e⃗r

0+ λ
m

v lim 
2 =g⇒ v lim=√ gm

λ

e⃗θ
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b Approximation des petits angles,analogie avec l’oscillateur harmonique  
L’équation différentielle n’est pas une équation linéaire à cause de la fonction sin, on ne sait pas la résoudre à la
main..
Par contre un élève de prépa sait résoudre une équation diff linéaire ! 
Pour avoir une équation différentielle linéaire il faudrait avoir θ(t) à la place de sin(θ(t) ).   
 Rappel d’optique géométrique : 
 si θ < < 1 rad  ( ou 28° )  on peut faire l’approx ( dite des petits angles ) :  sin(θ )≈θ
l’équation différentielle du mouvement devient alors dans l’approx des petits angles ; 

d2θ
dt 2

=− g
ℓ
θ  qu’on peut mettre sous la forme d2θ

dt 2
+ g
ℓ
θ =0

On reconnaît l’équation d’un oscillateur harmonique dont la forme canonique d2θ
dt 2 +ω 0

2θ =0

on identifie donc la pulsation propre : ω 0=√ gℓ
c R  ésolution de l’équation du mouvement et période des oscillations     

les solutions sont de la forme θ ( t)=A cos (ω 0t )+B sin(ω 0 t)
conditions initiales :  θ (t=0)=θ 0⇔ A×1+B×0=θ 0⇒ A=θ 0

souvent pas de vitesse initiale :
dθ
dt

(t=0)=0  avec  
dθ
dt

(t )=−Aω 0sin (ω 0 t)+Bω 0 cos(ω 0t )  

−Aω 0×0+Bω 0×1=0⇒B=0  finalement : θ ( t)=θ 0 cos(ω 0 t)
Inserer représentation graphique : 

Période des oscillations : ( c’est la période propre ) telle que ω 0≝
2π
T0

T0=2π √ ℓg   on peut s’en servir pour mesurer g !  g=4π 2 ℓ
T0

2
 

 
Rmq : 
- la période des oscillations ne dépend pas de la masse accrochée 
cpdt si la masse est trop faible, on ne peut plus négligé la masse de la corde devant celle du système
-si la masse n’est pas assez dense, on ne peut plus négligé les frottements.
La période des oscillations ne dépend pas de l’angle initiale ce qui peut semble contre intuitif !
Ce n’est plus vrai si l’angle initiale θ0   << 25°  (on n’est plus dans l’approximation des petits angles).

Histoire des sciences : Utilisation scientifique du pendule pour mesurer la masse des montagnes
Pierre Bouguer
En 1736, il part en expédition au Pérou avec Charles-Marie de La Condamine afin de mesurer un arc du méridien au
niveau de l'équateur. À son retour en 1743, grâce aux résultats obtenus, il donne une meilleure description de la forme
de la Terre. Ce travail est publié en 1749 sous le titre La Figure de la Terre. Pierre Bouguer mesure aussi à l'aide d'un
pendule la gravité à différentes altitudes et est le premier à essayer de quantifier la poussée horizontale des montagnes
sous l'effet de la gravitation. Il observe une différence entre la force de gravité mesurée sur un haut plateau et celle
calculée en fonction de l'altitude de celui-ci : l'attraction gravitationnelle des reliefs semble plus faible comme s'il y avait
un manque de matière, comme si les montagnes étaient creuses. Cette différence sera expliquée en 1889 par Clarence
E. Dutton qui imagine une racine aux montagnes, plus légère que les roches environnantes (cf. ISOSTASIE). 
uper article
https://planet-terre.ens-lyon.fr/ressource/pendule-pesanteur-altitude.xml

https://planet-terre.ens-lyon.fr/ressource/pendule-pesanteur-altitude.xml
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Quel que soit le lieu où Bouguer effectue sa mesure, il utilise un pendule qui a toujours exactement la même longueur
(36 pouces 7,019 lignes), calibrée grâce à une règle en fer mesurée très précisément une fois pour toute. Puis il compare
les oscillations du pendule à celles d'une horloge qu'il règle sur le ciel par des observations journalières. Il ne juge donc
pas des variations de la  pesanteur par la différence dans la longueur du pendule mais par le  nombre d'oscillations
effectuées en 24 heures. La méthode revient au même, comme nous allons le voir, mais il est beaucoup plus aisé de
compter un nombre d'oscillations que d'avoir  à déceler  une variation de longueur de quelques centièmes de lignes
(dixièmes de millimètres) ! 
Au cours de son séjour au Pérou, Bouguer a effectué une série de mesures pendulaires, à trois altitudes différentes : au
niveau de la mer, à Quito et à Pichincha (tableau ci-dessus). Si la gravité suit la loi de Newton en 1/r2,  la variation
relative de la pesanteur (la variation de la force centrifuge avec l’altitude étant négligeable)  est en  « raison doublée  des
distances », soit Δg/g=−2h/R (où h est l’altitude et R le rayon de la Terre). En effet, si g est la pesanteur au niveau de la
mer et g' la pesanteur à l'altitude h, la variation de pesanteur s'écrit (nous négligeons ici l'effet de la rotation journalière)  

Bouguer  remarque
que la  diminution de la pesanteur déduite des mesures pendulaires  réalisées à Quito et à Pichincha est bien réelle,
importante,  mais  qu'elle  ne  suit  pas exactement ce rapport,  ce qui pose de sérieuses questions : « Mais  pourquoi  nos
expériences nous donnent-elles donc constamment un rapport qui n'est pas tout à fait conforme  ? Faut-il attribuer à quelque erreur de notre
part cette différence ; ou serait-il vrai que dans le voisinage des grosses masses comme la Terre, la loi dont il s'agit ne fut observée que d'une
manière imparfaite 
Bouguer se sert de ce résultat pour montrer que la diminution de la  pesanteur avec l'altitude dépend de certaines
circonstances. Si, par exemple, la densité de la montagne était les 4/3 de la densité moyenne de la Terre, la pesanteur à
Quito serait égale à celle qu'on éprouvait au niveau de la mer. Si la densité de la montagne était encore plus forte, la
pesanteur pourrait même augmenter avec l'altitude ! 
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II.3 Mouvement d’un solide en translation avec frottements
a Lois de Coulomb

Voc : l’étude des frottements s’appelle la tribologie Charles Augustin Coulomb
au debut 18 ème établit des lois phénoménologique ( basés sur des résultats
expérimentaux sans chercher de théorie sous-jacente plus profondes)
l’objectif est de rendre compte des frottement entre deux solides.

Expérience historique :
Tant que l’angle α de la pente est inférieur à une valeur limite, l’objet de bouge pas on dit qu’il y a absence de glissement.
Dès que l’angle dépasse l’ange αmin, l’objet se met en mouvement : il y a glissement 

b Mise en équation                                              BDF :     -    Poids de l’objet P⃗

                         -    Réaction du support R⃗   qu’on peut décomposer en deux 

composantes :  R⃗=R⃗N+ R⃗T

où R⃗N est la réaction normale du support qui 
existe même en l’absence de frottement

R⃗T est la réaction tangentielle qui modélise 
        le  frottement du support sur l’objet étudié

Rmq : si on néglige les frottements , R⃗T=0⃗⇒ R⃗=R⃗N

Lois de Coulomb 
Avec ces expériences Coulomb établit les lois phénoménologiques suivantes :

- En l’absence de glissement ( tant que α <  αlim ) : ‖R⃗T‖≤f s‖R⃗N‖ avec fs le coefficient d’adhérence (ou statique) 

- Dès que le glissement commence (  α >  αlim ) : ‖R⃗T‖=f d‖R⃗N‖  où fd  est le coefficient dynamique ou de glissement 

Physiquement : à mesure que l’angle augmente, la projection du poids sur l’axe X augmente, pour permettre l’équilibre
( pas de glissement )  la norme de RT doit aussi augmenter pour compenser la projection du poids, si RT dépasse un
certains seuil, il n’y a plus équilibre.
À partir du moment où l’objet glisse, la composante tangentielle de la réaction du support prend une valeur constante
Valeurs typiques : 
                                     acier/acier  fs = 0,3 et fd = 0,1                                           acier/glace fs =0,05 et fd = 0,02
                                                        On général fs = fd  mais parfois fd < fs 

c Exemple

vidéo

   À partir de quel angle α le solide commence-t-il à glisser ?

Système : {solide de masse m}

Ref: TSG     BDF : P⃗  et R⃗=R⃗N+ R⃗T ( on fait apparaître les deux composantes)

 détail des composantes : R⃗N=RN e⃗ y  R⃗T=−RT e⃗x avec RT >0 

P⃗=mg (sin (α ) e⃗x –cos (α ) e⃗ y)

α

e⃗ y

e⃗x

https://www.youtube.com/watch?v=3miOIZKKYHs&t=3s
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Détermination   de α  min

le  système  est  à  l’équilibre  donc  R⃗N + R⃗T+ P⃗=0⃗⇒(−RT+mg sin(α)=0
RN−mgcos (α)=0

⇔( RT=mg sin(α)
RN=mgcos (α)

 donc  dans  ce  cas

RT

RN

= sin α
cosα

=tan(α )  D’après la loi de Coulomb, quand il n’y a pas pas glissement ‖R⃗T‖≤ f s‖R⃗N‖⇔
‖R⃗T‖
‖R⃗N‖

≤fs

donc tant qu’il n’y a pas glissement : tan α≤f s⇒α≤arctan (f s)    

 ainsi à la limite du glissement α=α lim=arctan (f s)   Rmq : angle indépendant de m   A.N pour acier/acier : 16,7°

Détermination de l’équation du mouvement en phase de glissement ( α  > αlim )

le PFD appliqué au système s’écrit :   

comme il n’y a pas de déplacement selon (Oy) : RN−mg cos (α )=0⇒RN=mg cos(α)    

 et comme d’après la loi de coulomb (dynamique):  RT=f dRN  alors RT=f dmgcosα

 Donc l’équation du mouvement selon (Ox) s’écrit : m ẍ=−f dmg cosα+mgsin(α )  soit

 ẍ=g(sin(α )−f d cos(α ))

Rmq : f d< f s  or f s=
sin(α )
cos(α )

 donc sinα −f d cosα >0  si  α> arctan(fd) ce qui est le cas si  α> αmin = arctan(fs)

Comme g(sin(α )− f d cos (α )) est indépendant du temps et de x : le mouvement est rectiligne et uniformément 

accéléré 

l’accélération est d’autant plus proche de – g fd que l’angle α se rapproche de pi/2  (logique) 

Cas d’un freinage : voir exercice 9 TD 08 sur freinage d’urgence

Le mouvement de collé glissé,  comme l'harmonica de verre de benjamin Franklin ou glassharmonica. C'est une forme 
mécanisée du verillon, composée de coupes en verre – d'abord 24, puis jusqu'à 40 

les séismes 

R⃗N + R⃗T+ P⃗=m a⃗⇒(−RT+mgsin(α )=m ẍ
RN−mgcos (α )=m ÿ )

À ne surtout pas oublier !


