PCSI

CHAPITRE 09: OSCILLATEURS AMORTIS

I Définition mathématique et forme des solutions

Dans ce chapitre, on introduit un modèle physique appelé l'oscillateur amorti

I.1) Définition:

On appelle oscillateur amorti un système physique décrit par une grandeur x dépendant du temps et vérifiant une équation différentielle de la forme :

(1)

- f(t) est une fonction du temps. (Elle sera constante ou nulle dans ce chapitre) elle n'est pas homogène à x mais [f(t)]=
- ω_0 est une constante réelle positive qui est appelée pulsation propre de l'oscillateur amorti et qui s'exprime en
- Q est une constante réelle positive appelé

I.2) Résolution de l'équation différentielle associée à un oscillateur amorti

a) Solutions générales d'une équation différentielle linéaire homogène d'ordre 2 à coefficients constants_

on considère le cas général d'une équation différentielle homogène :

 $a\ddot{x}+b\dot{x}+cx(t)=0$ avec a,b et c des réels non nuls (dans ce chapitre)

Rmq Si a,b,c sont tous strictement positifs (ou tous strictement négatifs)

On peut l'écrire sous la forme canonique

Expression de ω_0 et Q en fonction de a,b,c :

$$\ddot{x} + \frac{b}{a}\dot{x} + \frac{c}{a}x(t) = 0$$
 par identification

Application directe:

Écrire l'équation différentielle ci-dessus sous forme canonique et donner la valeur de Q et ω_0 .

$$3\ddot{x} + 2\dot{x} + x(t) = 0$$

Par analogie avec le cas de l'équation du premier ordre, on peut chercher des solutions de la forme $x(t) = \exp(rt)$ où r est une constante. D'après les propriétés de l'exponentielle :

$$\dot{x}(t) = r e^{rt} = r x(t)$$
 et $\ddot{x}(t) =$

en injectant dans l'équation différentielle sous forme canonique :

$$a\ddot{x}(t)+b\dot{x}(t)+cx(t)=0 \Rightarrow ar^2x(t)+br\dot{x}(t)+cx(t)=0 \Rightarrow (ar^2+br+c)x(t)=0$$

Comme x(t) n'est pas la fonction nulle, il faut

C'est une équation polynomiale du second degré d'inconnue r

• Rmq voc $ar^2 + br + c = 0$ est appelée_

 $ar^2 + br + c$ est appelé polynôme caractéristique de l'équation différentielle

(il ne faut pas confondre l'équation différentielle et l'équation caractéristique)

- Rmq 2: Si l'équation différentielle est sous forme canonique, l'équation caractéristique est sous la forme :
- La résolution de l'équation caractéristique dépend du signe de son discriminant :

$$\Delta = b^2 - 4ac$$

sous forme canonique

Il y a 3 cas à envisager

i) cas où $\Delta>0$ Rmq (vocabulaire) : On parle de régime (cela correspond à

le polynôme caractéristique possède deux racines réelles :

$$r_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $r_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Sous forme canonique

les solutions de l'équation de l'équation différentielle sont donc des combinaisons linéaires des deux solutions

$$x_{r_1}(t) = e^{r_1 t}$$
 et $x_{r_2}(t) = e^{r_2 t}$

si

• Application directe:

Trouver la forme des solutions de l'équation différentielle $\ddot{x}(t) - 3\dot{x}(t) + x(t) = 0$

Équation caractéristique associée à l'équation différentielle :

Discriminant:

Racines du polynôme caractéristique :

Les solutions sont donc de la forme :

Remarque : comme les racines sont positives quand $t \to \infty$ $x_{r1}(t) = e^{r_1 t}$ et $x_{r2}(t) = e^{r_2 t}$ divergent on dit que l'équation différentielle $\ddot{x}(t) - 3\dot{x}(t) + x(t) = 0$ n'est pas stable

Vocabulaire:

ii) cas οù Δ=0 Rmq (vocabulaire) : On parle de régime

(cela correspond à

Le polynôme caractéristique possède une racine réelle:

une solution $x_{r1}(t)=e^{r_1t}$ mais on peut aussi montrer que $x_{r1}(t)=t$ e^{r_1t} est aussi solution de l'équation différentielle

les solutions sont donc des combinaison linéaires de ces deux solutions :

• Application directe:

trouver la forme des solutions de l'équation différentielle $\ddot{x}(t)+2\dot{x}(t)+x(t)=0$

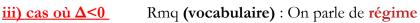
Équation caractéristique associée à l'équation différentielle :

discriminant:

racine du polynôme caractéristique :

les solutions sont donc de la forme :

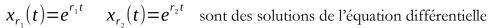
cette solution est stable



Le polynôme caractéristique possède deux racines complexes conjuguées:

$$r_1 = \frac{-b - i\sqrt{(-\Delta)}}{2a} \qquad r_2 = \frac{-b + i\sqrt{(-\Delta)}}{2a}$$
on posant $\omega = \frac{\sqrt{-\Delta}}{2a}$
on a alors $r_1 = \frac{-b}{2a} - i\omega \qquad r_2 = \frac{-b}{2a} + i\omega$

sous forme canonique



les solutions généra sont des combinaisons linéaires de $x_1(t)$ et $x_2(t)$:

$$x(t) = \lambda_1 e^{r_1 t} + \lambda_2 e^{r_2 t}$$

Remarque : Les grandeurs physiques sont en générale des grandeurs **réelles** (et pas complexes) On va donc chercher une forme des solutions qui permettra de mieux faire ressortir le caractère on peut construire par combinaison linéaire de x_{r1} et x_{r2} d'autres solutions de l'eq diff :

$$x_{1}(t) = \frac{1}{2} \left(e^{r_{1}t} + e^{r_{2}t} \right) = \frac{1}{2} \left(e^{\left(\frac{-b}{2a} - i\omega \right)t} + e^{\left(\frac{-b}{2a} + i\omega \right)t} \right) = e^{\frac{-b}{2a}t} \left(\frac{e^{-i\omega t} + e^{i\omega t}}{2} \right) = e^{\frac{-b}{2a}t} \cos(\omega t)$$

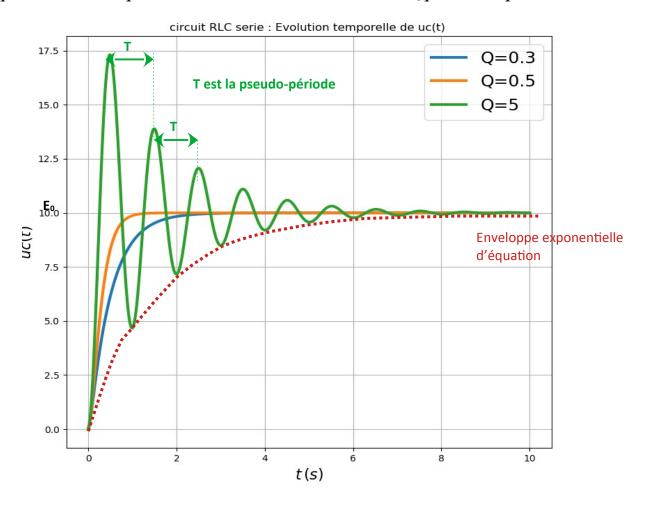
$$x_{2}(t) = \frac{1}{2i} \left(e^{r_{1}t} - e^{r_{2}t} \right) = \frac{1}{2i} \left(e^{\left(\frac{-b}{2a} - i\omega\right)t} - e^{\left(\frac{-b}{2a} + i\omega\right)t} \right) = e^{\frac{-b}{2a}t} \left(\frac{e^{-i\omega t} - e^{i\omega t}}{2i} \right) = -e^{-\frac{b}{2a}t} \sin(\omega t)$$

Les solutions générales peuvent donc aussi se mettre sous la forme de combinaison linéaire de $x_1(t)$ et $x_2(t)$:

Forme canonique des solutions :

ANNEXE: CIRCUIT RLC SÉRIE

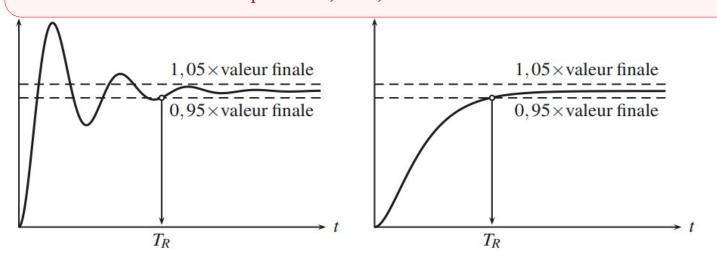
a) Représentations temporelles des solutions selon la valeur de Q pour une réponse indicielle



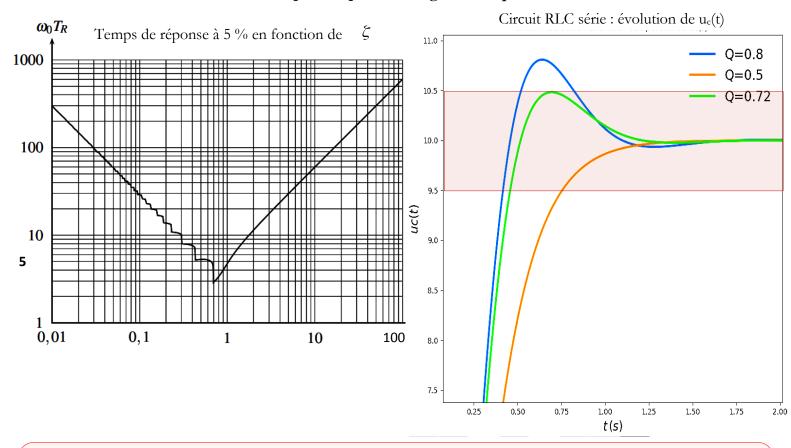
II.4) temps de réponse à 5 %

a) Définition

Ce temps de réponse à 5%, noté T_R, est la durée au bout de laquelle le système atteint sa valeur finale à moins de 5%, lors d'un essai indiciel (réponse à un échelon de hauteur E₀). Le signal reste alors compris entre 0,95 et 1,05 fois la valeur finale



Temps de réponse en régime critique.



III Le système masse-ressort avec frottements fluides : un oscillateur amorti mécanique

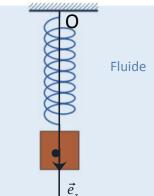
III.1 définition du système étudié

On considère dans ce paragraphe un mobile de masse m qui se déplace dans un fluide le long d'un axe vertical

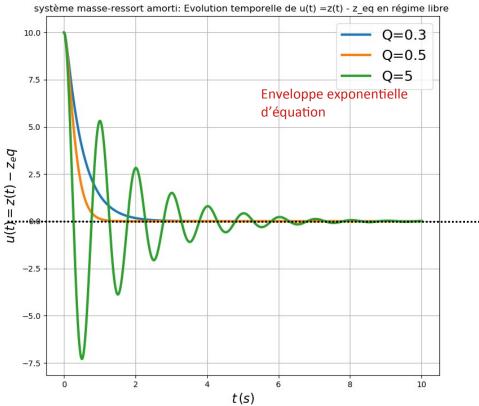
on lâche sans vitesse initiale le mobile en l'écartant de sa position d'équilibre

b) hypothèses simplificatrices et modélisation:

- On modélise le mobile par un point matériel M tel que OM(t) = z(t)
- On suppose que le mouvement s'effectue seulement selon l'axe passant par \vec{e}_z G et dirigé par (mouvement à une dimension : 1D)
- On néglige la masse du ressort devant celle du mobile m_r << m
- On suppose que le ressort possède un **comportement linéaire** lorsqu'il subit une contrainte il exerce une force $\vec{F} = -k(z(t) l_0)\vec{e_z}$ sur le mobile
- On suppose que le fluide dans lequel se déplace le mobile exerce une force sur ce dernier proportionnelle à la vitesse du mobile



b) Évolution temporelle en régime libre pour différents Q



Remarque, plus le fluide est visqueux plus λ est important et plus le facteur de qualité est faible On appelle aussi les frottements fluides des frottements visqueux

Analyse énergétique

III.5) Analogies électro-mécaniques

	circuit <i>RLC</i> série	oscillateur mécanique
signal	$q(t) = Cu_C(t)$	
signal dérivé	i(t)	
	C	
paramètres	L	
	R	
pulsation propre ω_0	$\frac{1}{\sqrt{LC}}$	
facteur d'amortissement ξ	$\frac{1}{2}R\sqrt{\frac{C}{L}}$	
facteur de qualité Q	$\frac{1}{R}\sqrt{\frac{L}{C}}$	
énergie électrique/potentielle	$\frac{1}{2}Cu_C^2 = \frac{q^2}{2C}$ $\frac{1}{2}Li^2$	
énergie magnétique/cinétique	$\frac{1}{2}Li^2$	ļ