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CHAP 11 : FILTRAGE LINÉAIRE 

Rapports de Jury :
-Pour tracer un diagramme de Bode (comportement fréquentiel), il est important que le signal d’entrée soit un signal 
sinusoïdal et de vérifier que ce signal reste sinusoïdal et de même fréquence en sortie (on se limite à l’étude de 
systèmes linéaires). Certains candidats ne semblent pas en connaître la raison. 
-La notion de bande-passante est mal maitrisée. Pour un filtre passe-bas, par exemple, la bande-passante va de 0 à la 
fréquence de coupure identifiée à −3 dB par rapport au gain en basse fréquence, et non depuis la borne moins l’infini.

-Le gain en décibels d’un système linéaire correspond au logarithme du module de la fonction de transfert (ou du 
rapport de l’amplitude du signal de sortie sur l’amplitude du signal d’entrée) multiplié par 20. 
-La détermination de la fréquence de coupure à −3 dB est souvent mal interprétée par les candidats. Il s’agit de la 
fréquence telle que le gain en décibels (défini précédemment) vaut le gain en décibels max dans la bande-passante 
diminuée de 3 dB. En amplitude, il s’agit de trouver la fréquence telle que le gain (rapport de l’amplitude du signal de 
sortie sur l’amplitude du signal d’entrée) a été diminué d’un facteur racine de deux par rapport au gain max dans la 
bande-passante.

I étude de la réponse d’un système linéaire à un signal périodique
I.1) Notion de système linéaire

(S) est un système linéaire si : 
Pour une entrée combinaison linéaire de deux entrées,  e(t) = αea(t) + βeB(t)

alors la sortie est la combinaison linéaire des deux réponses :  s(t) = αsA(t) + βsB(t)

I.2)   Notion de spectre et décomposition spectral  

Rappel : Le signal  s(t) est dit périodique de période T si il se reproduit à l’identique après une durée minimale T :  
c’est à dire que s(t+T) =s(t)  

            a) Notion de décomposition spectrale d’un signal

Au 19 ème siècle, Joseph Fourier montre que tout signal périodique s(t) peut être décomposé en une somme
de signaux sinusoïdaux :

si s(t) est périodique alors ∃(si , f i ,ϕ i)∈ℜ3 tq :

Le système (S) donne de l’entrée eA la sortie sA

Le système (S) donne de l’entrée eB la sortie sB

s (t)=∑
i=0

∞

s icos (2π f i t+ϕ i)
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Ou plus précisément :

Voc : Cette écriture de s(t) constitue la décomposition spectrale de s(t) 

                    b) Notion de spectre 
L ’étude spectrale du signal s(t) (ou établir le spectre de s(t) ), consiste à :

- Donner la liste des fréquences  fi  des composantes qui possèdent une amplitude Si non nulle 
( les fi sont les abscisses des «  pics »» dans le spectre  ) 
-Donner la valeurs des amplitudes Si de la fondamentale et des éventuels harmoniques ou de la 
composante continue  ( hauteur des pics sur le spectre d’amplitude )
- Donner les valeurs des phases ϕ i  ( hauteur des pics sur le spectre de phase que l’on représente 
rarement en pratique )

animation

Rmq : Si le signal possède une composante continue, le spectre en amplitude possède un pic à 0Hz
de hauteur S0

s(t)=S ₀+S ₁cos(2π f ₁t+ϕ 1)+∑
n=2

∞

Sncos(2π f n t+ϕ n)

Composante continue
( « offset » )

Composante 
fondamentale

Fréquence fondamentale
 telle que                 (T est la période du signal)f 1= 1

T

Nième fréquence harmonique 
telle que f n=n f 1=n

1
T

Nième composante harmonique 

3V

S1= 3V 

=0,1 s =0,02s

f=50 Hzf=10 Hz

FréquenceFréquence (Hz)

AmplitudeAmplitude En amplitude En amplitude

TempsTemps

Temps

3V

5V

SIGNAL temporel
Spectre en amplitude

S0= 3V 

0 Hz Fréquencef=50 Hz

S1= 2V 

T=0,02s

Harmonique
(sinusoïdal)

Periodique 
(non sinusoïdal)

f2 = 2 f1   ,  f3 = 3 f1 etc...

S0

S1

http://physique.ostralo.net/harmoniques_son/
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        c) Valeur moyenne (composante continue)

S0 est la valeur moyenne du signal (ou composante continue). Le signal oscille autour de cette valeur 

Rmq voc :  <S(t) >  veut dire valeur moyenne du signal s(t) . 

<A cos( ωt+ α ) > = 0        

Rmq : De façon qualitative la valeur moyenne est l’aire algébrique sous la courbe divisé par T

           d)  valeur efficace d’un signal 

Pour un signal périodique s(t) la valeur efficace de ce signal est : 

Intérêt :  Quand on utilise un multimètre pour mesure une tension
alternative (c’est à dire périodique) ou une intensité alternative, la
valeur affichée est la grandeur efficace associée à la tension ou à
l’intensité. 

Elle intervient dans le calcul de la puissance moyenne dissipée
par une résistance quand les grandeurs électriques sont
alternatives 

<P( t )>=<R i(t)2  >=R< i(t)2 >R I eff
2

<P( t )>=<
U (t)2

R
 >=

<U ( t)2>
R

=
U eff

2

R

Rmq : quand on dit que la valeur de la tension délivrée par EDF est de 230 V, on parle de la tension efficace en 
réalité… 

Valeur efficace d’un signal sinusoïdal pur : s(t) = S1 cos(2 π f t + ϕ )

calculons <s(t)²>   = <S1 2 cos2(2 π f t + ϕ )>    or   cos2(2 π f t + ϕ ) = 1/2(1+ cos(4π f t + ϕ )) 

< s (t ) ² >= 1
T

∫
0

T
S ₁2

2
(1+cos (4 π f t+ϕ ))dt

 Or car sur une période la moyenne du cos est nulle

 < s (t ) ² >= 1
T

∫
0

T
S ₁2

2
dt  soit < s (t) ² >=S ₁

2

2
et  finalement Seff=

S1

√2

e) Relation de Parseval 
La puissance moyenne du signal s(t) est proportionnelle au carré de sa valeur efficace. Or, chaque harmonique 
transporte également une puissance proportionnelle à sa valeur efficace. La relation de Parseval exprime simplement 
le fait que la puissance du signal est égale à la somme des puissances transportées par les différents harmoniques, ce 
qui en terme de valeurs efficace se traduit 

S0=< s (t)>= 1
T
∫

0

T

s (t)dt

Seff=√< s (t )2>=√ 1
T

∫
0

T

s( t)2dt

Seff
2 =∑

i=0

∞ Si
2

2

< s (t)>= 1
T

∫
0

T

Acos (ω t+α )dt= 1
T

(Aire  algbérique sous la courbe)

Le Voltmère mesure Ueff en mode 
alternatif

L’Ampèremètre mesure Ieff en mode 
alternatif

e(t) = E0cos(ωt)

Seff≠√(< s (t )>)2

Le carré de la moyenne n’est 
pas la moyenne du carrée !

∫
0

T

cos (4 π f t+ϕ )dt=0
t
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I.3) Fonction de Transfert
          a) Def 
                                                   soit un signal périodique en entrée e(t) auquel on associe un signal complexe e(  ω)  
                                                   soit le signal périodique en sortie s(t) auquel on associe le signal complexe s(  ω)  

                                                              On définit la fonction de transfert du filtre par la relation 

                                                   
          b) Cas d’un entrée sinusoïdal

si l’entrée est sinusoïdale e(t) = E0 cos(ωt + ϕ i  )  alors e (ω )=E ₀exp( j(ω t+ϕ i))

en sortie du filtre la tension est s(t) = S0 cos(ωt+ ϕ s ) alors

On peut faire le lien entre les amplitudes , les phases et la fonction de transfert en effet 

On a donc  
 

Rmq souvent on note                                              

La sortie sera alors s(t) = |H (ω )|E0 cos(ω t+ϕ (ω )+ϕ i)

Exemple : e (t)=2cos (2 π
T

)   ( ici pas de composante continue )  on pose f 1= 1
T

 et ω 1=
2π
T

on envoie e(t) sur un filtre de fonction de transfert H (ω )  telle que  H (ω 1)=0,5  et 

H (ω )= s
e

H (ω )= s
e

=
S0 exp( j (ω t+ϕ s))
E0 exp( j (ω t+ϕ i))

=
S0

E0

exp( j(ϕ S−ϕ i))

Le module de la fonction de transfert est le l’amplitude de la sortie 
sur l’amplitude de l’entrée
Voc : Le module de la fonction de transfert s’appelle le Gain du filtre 

arg(H (ω ))=ϕ S−ϕ i

G (ω )=|H (ω )|=
S0

E0

C’est le déphasage de la sortie par rapport à l’entrée.
Rmq : Souvent                 et ϕ i=0 ϕ s=arg(H )

ϕ (ω )=arg (H (ω ))

S (ω)=S ₀ exp( j(ω t+ϕ s))=S0 e
j(ω t+ϕ s)=S0 e

jω t

Filtree(t) s(t)

 Ici S0 n’est pas la 
composante continue mais 

l’amplitude du signal 
( l’équivalent de S1 de la 

partie précédente )

Les deux notations sont 
utilisées en fonction des 

exercices 

arg(H (ω 1))=
−π

2

e(t)

t

Allure temporelle de l’entrée

s(t)

Allure temporelle de la sortie

t

s (t)=H (ω 1)E0 cos (ω 1 t+ϕ (ω−1))=0,5×2 cos (ω 1 t−
π
2

)

s (t)=1sin(ω 1 t)

-1

1
2

-2
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c) Lien entre le déphasage et le décalage temporel

d) Cas d’un superposition de deux signaux sinusoïdaux avec valeur moyenne

Pour l’entrée : e (t)=E1cos (2π f ₁ t)+E2 cos(2 pi f ₂ t )+E0   qu’on écrit aussi 

Alors la sortie sera 

S(t) = |H (ω 1)|E1 cos(ω 1 t+ϕ (ω 1))+|H (ω 2)|E2 cos(ω 2t+ϕ (ω 2))+|H (0)|E0

Pour chaque composante sinusoïdale de l’entrée à la pulsation ω :
On multiplie l’amplitude de l’entrée par le module de la fonction de transfert calculée à la pulsation ω
On rajoute un déphasage  égale à l’argument de la fonction de transfert calculée à la pulsation ω

I.4 ) Diagramme de Bode     :    vidéo explicative

Un diagramme de Bode est constituée de deux graphiques 
- le premier représente  GdB=20 log(|H|)   en fonction de ω
- Le deuxième représente  arg(H ) (souvent noté ϕ  ) en fonction de ω
Voc :

 GdB(ω )=20 log (|H (ω )|)  s’appelle le gain en décibel du filtre  à la pulsation ω

|H (ω )| s’appelle le gain du filtre 

- Rmq 1 : Oublier le module dans l’expression du gain en décibel est une erreur très grave ! 

- Rmq 2 : Quand GdB(ω) =0 alors |H (ω )|=1  . Pour une entrée sinusoïdale d’amplitude E0  
l’amplitude de la sortie vaut aussi E0 dans ce cas
 Rmq 3 : si GdB (ω) <0 alors |H (ω )|<1 .Pour une entrée sinusoïdale d’amplitude E0  
l’amplitude de la sortie sera plus faible  plus précisément l’amplitude de la sortie sera 
- Rmq 4  on peut aussi exprimer le gain en fonction du gain en décibel :

t

T

Δt

e(t) = E0 cos(ωt+φi)
s(t) = S0 cos(ωt+φi + Δφ )

On mesure Δt la durée entre les instants où 
s(t) et e(t) atteignent leurs max 

Rmq : 
Si s(t) atteint son max plus tard, alors Δt>0 
et  Δφ >0   ( s(t) est en retard sur e(t) ) 
Sinon, s(t) est en avance sur e(t) 

Le déphasage Δφ est relié au décalage 
temporel Δt et à la période T par la relation : 

|Δφ| = 2 π Δt 
T

ω1 ω2 ω0  =0

e (t)=E1cos (ω 1 t)+E2 cos(ω 2t )+E0

|H (ω )|=10
GdB(ω )

20

https://www.youtube.com/watch?v=EYZxXTYJ9sg&list=PLmuGo2fkWFLBqm9PyMRgpqpzhdCGlz-bh
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II. Modèles simples de filtres passifs du premier Ordre

II.1) Filtre Passe-bas du 1  er   ordre  

a ) Exemple
             1 schéma élec 2 Prévision du comportement

                                                    En Très basse fréquence (TBF  )     EN Très haute fréquence(THF)

                                         Analyse : Les  signaux TBF ne sont pas modifiés par le filtre (entrée=sortie)
                                                          Les signaux THF ne passent pas ( sortie = 0 )
                                                          Conclusion : Le filtre est un passe-bas ( il laisse passer les BF)

  3 Fonction de transfert

      PdT complexe : soit 

Rmq : de manière pus générale pour filtre passe bas du premier ordre 

b) Diagramme de Bode en Gain

 Justification des asymptotes :

– à basse fréquence (BF )  ω< < ωc:     1+( ω
ω c

)
2

≈1  et 

Le gain en décibel est alors 

À BF la courbe de GdB(ω) tend asymptotiquement vers une droite horizontale

– à haute fréquence (HF)  ω>>ωc :  1+( ω
ω c

)
2

≈( ω
ω c

)
2

 donc 

Le gain en décibel est alors 

Notamment 

Et finalement
À HF la courbe de GdB(x) tend asymptotiquement vers une droite de pente -  2  0 dB/décade     

i(t) =0

UR = Ri= 0 LDM : e= Ur + s
Donc s=e en TBF 

S=0 en THF ( tension 
aux bonres d’un fil)

H (ω )= s
e

s=
ZC

ZC+ZR
e

s
e

=

1
jCω
1
jCω +R

⇔H= 1
1+ jRCω

= 1
1+ jω τ

= 1
1+ j ω

ω 0

H=
H0

1+ j ω
ω c

Gain statique ( à TBF) 
C’est aussi le gain max 
 ( il n’est pas forcement égale à 2voir ex 3 TD 11 )

Pulsation de coupure à -3dB 
 ( pas forcement égale à 1/RC ) 
Parfois aussi notée ω0

τ =RC
ω 0=

1
RC

|H (ω )|=
H 0

√1+( ω
ω c )

2

GdB(ω )=20 log (|H|)≈20 log (H 0)−20 log (1)

|H (ω)|≈
H 0

√1

GdB=20 log (H 0)

|H (ω )|≈
H 0

√( ω
ω C

)
2
≈
H0
ω
ω cGdB(ω )≈20log (H0)−20 log ( ω

ω c
)

GdB(10ω )≈20log (H 0)−20 log (10 ω
ω c

)=20 log(H0)−20log ( ω
ω c

)−20 log (10)

GdB(10ω )=GdB(ω )−20 dB

À savoir retrouver
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b) Diagramme de Bode en phase
Justification de l’allure du diagramme de φ (ω)

 On suppose dans la suite que H0 est un réel positif 

Justification des asymptotes :

– à basse fréquence (BF )  ω< < ωc:     1+ j ω
ω c

≈1  et 

Le déphasage introduit par le filtre est alors 
À BF la courbe de φ ω) tend asymptotiquement vers une droite horizontale

– à haute fréquence (HF)  ω>>ωc :   1+ j ω
ω c

≈ j ω
ω c

 donc

Le déphasage introduit par le filtre est alors 

Et finalement
À HF la courbe de φ (ω) tend asymptotiquement vers une droite horizontale  

c) Comportement intégrateur du filtre passe-bas à HF
On a vu qu’à HF ( quand ω>>ωc  ) :

 or  donc

en repassant aux signaux réels :

La sortie est proportionnelle à l’intégrale temporelle de l’entrée à Haute fréquence pour le passe-bas 

Diagramme de Bode en phase d’un filtre passe-bas du 1er ordre

Diagramme de Bode en gain(dB) d’un filtre passe-bas du 1er ordre

Rmq 
 Dans cette 
situation H0 =1 
Mais ce n’est pas 
toujours le cas Courbe 

réelle

ϕ (ω )=arg(H0)−arg(1)=0

H (ω )≈
H0

1

ϕ=0

ϕ (ω )=arg(
H0

1+ j ω
ω c

)

Attention ce n’est pas le module de la fonction de 
transfert mais la fonction de transfert elle-même que 

l’on simplifie 

Asymptote GdB= 20 log(H0)

Asymptote de pente 
-20 dB/décade

H (ω )≈
H0

j ω
ω c

ϕ (ω )=arg(H0)−arg( j ω
ω c

)=0−π
2

ϕ=π
2

H (ω )≈
H0

j ω
ω c

⇔ s
e

=
H0

j ω
ω c

⇔ s=H0ω c×
e
jω

e
jω

=∫ edt s=H 0ω c×∫ edt

s( t)=H0ω c×∫e ( t)dt

À savoir retrouver
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d) Bande passante à – 3dB
Déf : la bande passante à -3dB est l’intervalle de pulsation telle que 

                          |H (ω )|≥
Hmax

√2
Hmax étant le gain maximal du filtre 

On peut aussi utiliser le gain en décibel : 

Calcul de la bande passante pour un passe bas du premier ordre :

|H (ω )|≥
Hmax

√2
 pour le passe bas du premier ordre  

donc Hmax =H0   ainsi dans la bande passante :

La bande passante est donc l’intervalle [0 ,ω c ] pour un basse-bas du 1er ordre 

Rmq : à la limite de la bande passante GdB(ωc) = GdBmax – 3dB 

GdB(ω )≥GdBmax−3 dB

|H (ω )|=
H 0

√1+( ω
ω c )

2

|H (ω )|≥
H0

√2
⇔

H 0

√1+( ω
ω c )

2
≥
H 0

√2
⇔√1+( ω

ω c )
2

≤√2⇔1+( ω
ω c )

2

≤2⇔( ω
ω c )

2

≤1⇔ω <ω c

Courbe 
réelle

Asymptote GdB= 20 log(H0)

Asymptote de pente 
-20 dB/décade

GdBmax

GdBmax-3dB

ω=ωc

  ωc
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II.2) Filtre Passe-haut du 1  er   ordre  

a ) Exemple
             1 schéma élec

2 Prévision du comportement

                                                    En Très basse fréquence (TBF  )     EN Très haute fréquence(THF)

                                         Analyse : Les  signaux THF ne sont pas modifiés par le filtre (entrée=sortie)
                                                          Les signaux TBF ne passent pas ( sortie = 0 )
                                                          Conclusion : Le filtre est un passe-haut ( il laisse passer les HF)

  3 Fonction de transfert

 PdT complexe : soit 

Rmq : de manière pus générale pour filtre passe-haut du premier ordre 

b) Diagramme de Bode en Gain

         
Justification des asymptotes :

à basse fréquence (BF) ω< < ωc: 1+( ω
ω c

)
2

≈1  et  on laisse au numérateur (on 

ne remplace pas par 0)

Notamment à BF

À BF la courbe de GdB(ω) tend asymptotiquement vers une droite de pente + 20 dB/décade 

à haute fréquence (HF)  ω>>ωc   1+( ω
ω c

)
2

≈( ω
ω c

)
2

 et 

À HF la courbe de GdB(ω) tend asymptotiquement vers une droite horizontale

i(t) =0

s =Ri= 0 
LDM : e= s
Donc s=e  en THF 

H (ω )= s
e

s=
ZR

ZC+ZR
e

s
e

= R
1
jCω +R

⇔H= jRCω
1+ jRCω

= jω τ
1+ jω τ

=
j ω
ω 0

1+ j ω
ω 0

H=H 0×
j ω
ω c

1+ j ω
ω c

Gain à THF 
c’est aussi le gain max
( attention ce n’est pas le gain statique ! ) Pulsation de coupure à -3dB

 ( pas forcement 1/RC )

τ =RC ω 0=
1
RC

|H (ω )|=
H 0

ω
ω c

√1+( ω
ω c )

2

GdB(ω )=20 log (|H|)≈20 log (H0)+20 log ( ω
ω c

)

|H (ω )|≈H 0

ω
ω c

√1

|H (ω)|≈
H 0

ω
ω c

√( ω
ω C

)
2
≈
H 0

ω
ω c

ω
ω c

≈H0

GdB(ω )≈20log (H 0)

C R

On multiplie par 
jRCω en haut et en 

bas

ω
ω c

GdB(10ω )=Gdb(ω )+20dB

GdB(ω )≈20log (H 0)
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c) Justification de l’allure de la courbe de phase 
Justification des asymptotes :

– à basse fréquence (BF )  ω< < ωc:     1+ j ω
ω c

≈1  et 

Le déphasage introduit par le filtre est alors 

À BF la courbe de φ ω) tend asymptotiquement vers une droite horizontale

– à haute fréquence (HF)  ω>>ωc :   1+ j ω
ω c

≈ j ω
ω c

 donc

Le déphasage introduit par le filtre est alors 

Et finalement

À HF la courbe de φ (ω) tend asymptotiquement vers une droite horizontale  

d) Comportement  dérivateur du filtre passe-haut du premier ordre  à BF
On a vu qu’à BF ( quand ω<<ωc  ) :

 or

en repassant aux signaux réels :

La sortie est proportionnelle à la dérivée temporelle de l’entrée à BF pour le passe-haut du 1er ordre

Diagramme de Bode en gain(dB) d’un filtre passe-haut du 1er ordreGdB

Diagramme de Bode en phase d’un filtre passe-haut du 1er ordre

H (ω )≈
H0 j

ω
ω c

1
⇔ s=

H 0
ω c

× jω e e jω=d e
dt

s( t)=
H 0
ω c

×
de (t )
dt

À savoir retrouver

ϕ (ω )=arg (H0 j
ω
ω c

)−arg(1)=π
2

H (ω )≈
H0 j

ω
ω c

1

ϕ=π
2

H (ω )≈
H 0 j

ω
ω c

j ω
ω c

≈H 0

ϕ (ω )=arg(H0)=0

ϕ=0

Si H0 >0
Et car ω et ωC >0

Si H0 >0

Asymptote BF

Asymptote HF
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                          II.3)  Utilisation du diagramme de Bode pour prédire l’allure de la sortie du passe bas
Signal e(t) : 

Allure du diagramme de Bode en gain dans les 3 cas 

Allure de la sortie dans les 3 cas 

Cas a) : Les composantes ne sont pas filtrées ( car elles sont toutes dans la zone basse fréquence où le
gain vaut 1) , les amplitudes des pics dans le spectre en amplitude de s(t) seront identiques aux 
amplitudes de e(t) :  s(t) ressemblera beaucoup à e(t) 

Cas b) : La composante fondamentale n’est pas filtrée mais les harmoniques sont filtrées le signal de 
sortie est différent du signal d’entrée. On observe un comportement ressemble à la charge et à la 
décharge d’un condensateur dans un circuit RC 

Cas c) : Toutes les composantes du spectre de e(t) sont filtrées (elles sont toutes dans la zone HF) . 
Le filtre possède un comportement intégrateur pour toute les composantes de l’entrée. La sortie est 
une primitive de l’entrée
( fonctions affines croissantes et décroissantes )

t

e(t)
T On cherche le signal s(t) en sortie d’un filtre passe-bas 

de fréquence propre ω0  et on envisage 3 cas :
Cas a) : ω0 T = 150 
Cas b) : ω0 T = 10
Cas c)   ω0 T = 0,63
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                  Utilisation du diagramme de Bode pour prédire l’allure de la sortie du passe haut
Signal e(t) : 

Cas c) : Les composantes ne sont pas filtrées, les amplitudes des pics dans le spectre en amplitude de 
s(t) seront identiques aux amplitudes de e(t) :  s(t) ressemblera beaucoup à e(t) 

Cas b) : La composante fondamentale est légèrement filtrée, les harmoniques ne sont pas filtrées, 
signal de sortie est différents du signal d’entrée.

Cas a) : Toutes les composantes  du spectre de e(t) sont filtrées. Le filtre possède un comportement 
dérivateur pour toute les fréquences. La sortie est la dérivée de l’entrée.
 la dérivée (sortie) est nulle quand e(t) est constante
De plus la valeur de s(t) est importante aux niveaux des discontinuités de e(t) 

t

e(t)
T On cherche le signal s(t) en sortie d’un filtre passe-haut 

de fréquence propre ω0  et on envisage 3 cas :
Cas a) : ω0 T = 150 
Cas b) : ω0 T = 10
Cas c)   ω0 T = 0,63
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 III   Modèles simples de filtres passifs du deuxième ordre   

III  .1) Filtre passe-bas du 2  ème   ordre
a) Exemple
schéma électrique     :   

Prévision du comportement     :  

                         à TBF               à THF

                s(t) = e(t)                 s(t) = 0
Le filtre est bien un passe-bas

Calcul de la fonction de transfert 

Pont diviseur de tension s=

1
j Cω

R+ 1
jCω

+ jLω
e  donc H= 1

jRCω−LCω 2+1

( On retrouve les bons comportements limites quand on fait tendre ω vers 0 et vers +∞)

Si on utilise l’expression de la pulsation propre et du facteur de qualité du circuit RLC série : ω 0=
1

√LC
Q=

1
R √ LC

On en déduit que 
1

ω 0Q
=R√ CL×√LC=RC  et LC= 1

ω 0
2

ainsi H= 1

1−( ω
ω 0 )

2

+ j ω
Qω 0

  si on pose  x= ω
ω 0

on a H= 1

1−x2+ j x
Q

vocabulaire à connaître : x= ω
ω 0

est la pulsation réduite , elle est sans unité

Rmq : en pratique pour les filtres passe-bas le numérateur n’est pas forcement égale à 1 
 il faudra retenir la forme canonique du filtre passe-bas du deuxième ordre sous la forme suivante : 

H=
H0

1−( ω
ω 0 )

2

+ j ω
Qω 0

  ou encore H=
H0

1−x2+ j x
Q

 ou H=
− j Q

x

1+ jQ(x− 1
x)
H0

e(t) s(t)
e(t) s(t)
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Remarque (notation) : 
Dans le cas des filtres du premier ordre, la pulsation de coupure ωc à - 3dB est égale à la pulsation 
propre 
alors que dans le cas des filtres du second ordre, la pulsation propre  ω0 n’est pas égale à la pulsation

de coupure !!
Comme pour les filtres du premier ordre, si on réalise un circuit différent du circuit R, L, C série et qu’il se 
comporte en passe-bas, la forme canonique sera inchangée mais les expressions de H0, ω0 et Q seront 
possiblement différentes de celles du circuit R, L, C série. 

b   ) Diagramme de Bode  

Si on utilise la variable réduite x : 

gain en décibels GdB(ω )=20 log(|H|)=20 log( H0

√(1−x2)2+ x
2

Q2 )  

 déphasage entre l’entrée et la sortie : ϕ (ω )=arg(H )=arg (H 0)−arg(1−x2+ jx
Q

)

C  omportements asymptotiques à hautes et basses fréquences pour la courbe de gain en décib  els  

• à HF  ω>>ω0   ( x>>1 )   (1−x2)2+ x
2

Q2
≈x4

  ( car x2>>1   donc x4 >>x2 /Q²  ) 

ainsi GdB(x)=20 log(|H|)=20 log(H 0)−20 log(√x4)

Dans le cas étudié ici H0 = 1 donc GdB(x)=20 log(|H|)=0−20 log(x2)=−40 log (x)

À HF la courbe de GdB(x) tend asymptotiquement vers une droite de pente -40 dB/décade

• en basse fréquence  ω<<ω0   ( x<<1 ) (1−x2)2+ x
2

Q2
≈1

GdB(x)=20 log(|H|)=20 log(H 0) dans le cas étudié ici  H0 = 1donc pour  ω<<ω0 

À BF la courbe de GdB(x) tend asymptotiquement vers une droite horizontale d’eq Gdb(x)=0
          Pour la phase ( démo chapitre RSF résonance en élongation le circuit RLC )

20 log(H0) 

Allures asymptotique des diagrammes en gain et en phase
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• Comme pour l’étude de la tension aux bornes du condensateur, on peut établir qu’il y a une résonance

si Q> 1

√2

si Q< 1

√2
 on a toujours GdB (x)≤0 pour tout ω

L’intérêt d’un filtre passe-bas est d’atténuer les hautes fréquences ; 
or s’il y a résonance, on voit sur la figure que la courbe réelle rejoint moins rapidement l’asymptote. 
On s’arrange donc en général pour que le facteur de qualité Q soit inférieur à 1/ √2. 

Dans ce cas, les signaux de hautes fréquences sont mieux atténués qu’avec un filtre du premier ordre
puisque la pente de l’asymptote est −40 dB/déc au lieu de −20 dB/déc c’est-à-dire que si la fréquence
est multipliée par 10, l’amplitude du signal est divisée par 100 pour un passe-bas du deuxième ordre

( au lieu de 10 pour un passe-bas du premier ordre)

• Pas de comportement intégrateur à hautes fréquences (double intégration)

c)   Bande passante à – 3dB

Pour ce filtre comme pour tous les filtres,  ont peu déterminer la bande passante Δω à -3dB comme l’intervalle 
de pulsation [ ω1 ,  ω2 ]

Tel que |H (ω)|≥
|Hmax|

√2
  si ω ∈[ω 1 ,ω 2]

ou GdB (ω )≥GdBmax−20 log(√2) soit GdB (ω )≥GdBmax−3dB

on peut donc chercher sur la courbe l’intervalle de pulsation pour lequel cette condition est vérifiée et
déterminer les pulsations qui délimitent la bande passante  (voir chapitre précédent)

Allure de la Courbe de gain en dB pour un passe bas du deuxième ordre
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III.2) Exemple   mécanique de filtre passe-bas du 2ème ordre     : accéléromètre d’un téléphone   

a) Modélisation de l’accéléromètre 

L’armature 2 et le point  O sont solidaire du
téléphone (on lui associe un référentiel R1) 

Le point O d’accroche du ressort relié à
l’armature 1 subit l’accélération du téléphone
par rapport au référentiel du sol R0 supposé

galiléen :

a⃗O( t)R0=⃗aR1/R0
=aOcos (ω t) u⃗z

Sous l’effet de cette accélération, l’armature 1 va se mettre à osciller et un capteur interne va mesurer le 
déplacement par rapport à la position d’équilibre  u(t) =z(t)-zeq  dans le référentiel du téléphone noté R1  

zeq=l0+mg
k

 Modélisation de l’accéléromètre sous forme de fonction de transfert :

Rmq : ici les grandeurs en entrée et en sortie n’ont pas la même dimension 

on a donc H(ω )=
u (t )
e ( t)

=
u( t)
a0 e

jω t

b) Détermination de la fonction de transfert 

- l’accélération du point M dans le référentiel du téléphone est donc a⃗M (t)R1
=ü u⃗z= z̈ (t) u⃗z

- de même la vitesse de M dans le référentiel du téléphone est v⃗M (t)R1
=u̇(t )u⃗z= ż (t) u⃗z

système étudié : { armature 1 }             référentiel : Référentiel du sol (galiléen)
Bilan des forces  : 

force de frottement fluide F⃗l=−α ż u⃗z , force de rappel F⃗=−(z−l0)u⃗z , poids P⃗=mgu⃗z

Principe fondamental de la dynamique appliqué  à l’armature 1 dans le référentiel galiléen R0 ( du sol mais 
pas du téléphone!). 

m a⃗M (t )R0
=F⃗ l+ F⃗+ P⃗

or d’après la formule de composition des accélérations a⃗M (t )R0
= a⃗M( t)R1

+ a⃗R1 /R0
=ü u⃗ z+a0 cos (ω t ) u⃗ z

en projetant le PFD sur (Oz) : mü+ma0cos (ω t)=−k (z (t )−zeq)−α u̇(t)

ü+ k
m
u(t )+α

m
u̇(t)=−a0 cos(ω t)

soit 

ü+
ω 0

Q
u̇ (t )+ω 0

2u(t)=−a0 cos (ω t)

Accéléromètre
qui constitue le 

filtre

Sortie : déplacement de 
l’armature 1  par rapport à sa 

position d’équilibre
s(t)=  u(t)

entrée: accélération du 
référentiel du téléphone par 
rapport au référentiel du sol 

supposé galiléen :
e(t) = a0 cos(ωt)
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( Le système étudié est bien linéaire car l’entrée et la sortie sont reliées par une équation différentielle linéaire ) 
Comme l’entrée est sinusoïdale, on peut passer aux notation complexes : 

u(ω 0
2−ω 2+ jω

ω 0

Q
)=−a0e

jω t⇒H(ω )=

−1

ω 0
2

1−( ω
ω 0

)
2

+ j 1
Q

ω
ω 0

Conséquence : 
Pour que l’accéléromètre se comporte correctement 
( c-a-d u(t) proportionnel à l’accélération  a0(t) et indépendant de la fréquence d’excitation)
 il faut que la pulsation de l’accélération soit dans la bande passante de l’accéléromètre.
 Ainsi, il vaut mieux que la pulsation de coupure ω0 soit élevée pour que accéléromètre se comporte 
correctement pour une large gamme de fréquences 

pour ω>> ω0  l’amplitude de u(t) est faible car la sortie est atténuée à HF pour un filtre passe-bas

Bande passante
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III  .3)   Passe-bande du deuxième ordre   (à connaître)  

a) exemple 

  Prévision du comportement 
                       à TBF (ω→ 0) à THF (ω→ ∞)

                          s(t) = 0               s(t)=0 

Un passe-bande atténue fortement le signal à très haute et très basse fréquence mais peu (ou pas) sur
une bande passante centrée sur la fréquence propre du circuit RLC

fonction de transfert ( à savoir retrouver) 

Pont diviseur de tension complexe :  s= R

R+ 1
jCω

+ jLω
e H= 1

1+ j( L
R

ω− 1
RCω

)

On retrouve les bons comportements limites quand on fait tendre ω vers 0 et vers +∞

Si on utilise l’expression de la pulsation propre et du facteur de qualité du circuit RLC série : ω 0=
1

√LC
Q=

1
R √ LC  b On en déduit que ω 0Q= 1

RC
 et L

R
= Q

ω 0

ainsi 

H= 1

1+ j Q( ω
ω 0

−
ω 0
ω )

  si on pose  x= ω
ω 0

H= 1

1+ jQ (x− 1
x

)

forme canonique générale de la fonction de transfert  :

 H=
H0

1+ jQ (x− 1
x

)
ou encore H=

j
x
Q
H0

1−x2+ j x
Q

  avec H0 une constante 

e(t) s(t) s(t)e(t)

ie(t) ie(t)

À savoir 
retrouver
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b) Diagramme de Bode 
Gain en décibel 

J  ustification des asymptotes  

 en BF H=
H0

1+ jQ (x− 1
x

)
≈
H0

jQ
x

⇒GdB(x )=20 log(H 0
x
Q

)=20 log(
H0

Q
)+20log (x)

( la courbe réelle du gain en décibels tend asymptotiquement vers une droite de pente +20 dB/décade
à BF)

 en HF H=
H0

1+ jQ (x− 1
x

)
≈
H0

jQ x
⇒GdB(x)=20 log(

H 0

Qx
)=20 log (

H 0

Q
)−20 log(x )

( la courbe réelle tend asymptotiquement vers une droite de pente -20 dB/décade à HF)

On peut aussi remarquer que les asymptotes se croisent en ω=ω0

Pour le déphase φ (ω) entre l’entrée et la sortie, voir résonance en intensité du chap 10

Allure de la courbe de gain en décibel pour différents facteurs de qualité

Allure de la courbe de phase pour différents facteurs de qualité

Asymptotes en rouges
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c)  Bande passante à - 3dB

On a déjà déterminer dans le chapitre précédent la bande passante dans ce cas ( résonance en intensité) 

Δ ω=
ω 0

Q
 donc la bande passante est l’intervalle centrée sur ω0 : [ω 0−

ω 0

2Q
,ω 0+

ω 0

2Q
]

Rmq : quand Q est important, l’atténuation est faible sur une bande passante étroite ( résonance aiguë ) ,
on parle alors de filtre sélectif , il peut supprimer les hautes et les basses fréquences autour de la fréquence

propre. 

III  .4) Filtre passe-haut du deuxième ordre   

H= −x2

1−x2+ j x
Q

H0                       H= jQx

1+ jQ(x−
1
x )
H 0R

L

a) Exemple électrique Fonction de transfert

Diagramme de Bode en Gain

Diagramme de Bode en phase
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b) exemple mécanique : le sismomètre
système étudié : Même système mécanique qu’au III.2 ( mêmes forces en présence) 

 Le séisme provoque le déplacement de 
l’origine O du référentiel du sismomètre R1 
dans le référentiel du sol R0 : 

     ZO( t)R0
=Z0 cos(ω t)

le déplacement sinusoïdal de l’origine du 
repère entraîne le mouvement de la «  masse 
sismique  » dans le réf R1 du sismomètre par 
rapport à sa position d’équilibre 

( remarque : par rapport au cas du 3.2 a⃗O( t)R0=⃗aR1/R0
=Z̈0(t )e⃗z=−ω 2Z0(t )e⃗ z H (ω )=

s(t )
Z0(t )

sismomètre
qui constitue le 

filtre

Sortie : déplacement de 
l’armature 1  par rapport à sa 

position d’équilibre dans le 
référentiel du sismomtre 

s(t)=  u(t)

entrée: déplacement  
sinusoIdal Z0(t) de l’origine 

du référentiel du sismomètre 
 par rapport au référentiel du 

sol galiléen

Armature 2 solidaire 
du sismomètre
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III  .5)   Influence de l’environnement du filtre sur la fonction de transfert  

a) Validité des calculs effectués
Jusqu’à maintenant on a négliger l’environnement du filtre :

Le pont diviseur de tension pour trouver la fonction de transfert n’est en réalité pas applicable !  ( les
dipôles du filtre ne sont en réalité par en série )

Problématique : Dans quels cas les calculs effectués jusqu’à maintenant sont applicables ?

b)   Impédance d’entrée et de sortie d  u filtre  

Pour  caractériser le comportement du filtre vis à vis du reste du circuit ( indépendamment de sa structure 
réelle, qui peut être inconnue) on peut modéliser :

-Ses bornes d’entrée comme un dipôle passif d’impédance Ze, appelée impédance d’entrée telle que
e (t)=Ze ie

-Ses bornes de sortie comme un générateur idéal de Fem = H xue en série avec une impédance de sortie Zs

R  mq   importante : 
pour la Fem , H est déterminée sans prendre en compte ce qui est relié à la suite du filtre .
cela correspond à is =0 et c’est ce que nous avons fait jusqu’à maintenant.
Voc : on dit dans ce que cas H est la fonction de transfert en boucle ouverte ) 

Modélisation du filtre en prenant en compte les impédances de sortie et d’entrée :

Rmq : l’entrée est considérée en convention récepteur et la sortie en convention générateur

Rmq voc 
4 fils « partent » du filtre 

(deux en entrée et deux en sortie)
Le filtre est donc un quadripôles

Source de 
l’entrée

(exemple GBF) 

Filtre
Système alimenté 

par la sortie 
( exemple haut-

parleur ou un autre 
filtre) charge

Modélisation

Zsys

isie

Négligés jusqu’à 
maintenant Négligés jusqu’à 

maintenant

e(t) s(t)

s(t)e(t)

Zsys est l’impédance électrique complexe
Du système physique à la sortie du filtreRg

e(t) s(t)

Rg
Zsys
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c) Expression de s
e

 en fonction  Zs et Zsys et de H (fonction de transfert en boucle ouverte)

On considérant une impédance équivalente Zeq=
Zc×Z sys
Zc+Zsys

sur le premier schéma 

on a alors en utilisant le pont diviseur de tension
s (t)
e(t )

=

Zsys×Z c
ZC+Zsys

R+
Zc×Zsys

(ZC+Zsys)

 

c’est différent de la fonction de transfert en boucle ouverte ! 

Rmq : On retrouve la fonction de transfert en boucle ouverte si Z sys≫ZC

Modélisation prenant en compte l’impédance de sortie : 

si is =0

 si on veut retrouver la fonction de transfert H  il faut que l’impédance de sortie du filtre soit très
faible devant les autres impédances en présence (notamment Zsys) 

Pour que cela fonctionne pour n’importe quelle valeur de Zsys il faut que le module de l’impédance de
sortie Zs soit très faible ( tend vers 0 )

d) Mises en cascades de filtres 
Q :  Si on place un autre filtre derrière le premier quelle-est la fonction de transfert totale Htot ? 

H=
ZC

ZC+ZR

s=H e - Z s is

s (t)=Zsys is

Relation tension courant en complexe 
pour le dipôle en aval du filtre

 ( d’impédance Zsys )

Zsys

s=H e−
Zs
Zsys

s s (1+
Zs
Zsys

)=H e
s
e

=(1+
Zs
Zsys

)=H
Z sys

Zs+Z sys

Fonction de 
transfert en boucle 

ouverte

Filtre 1 de fonction de transfert H1(ω) en 
l’absence de charge

Filtre 2 de fonction de transfert 
H2(ω) en l’absence de charge

e(t) v(t) s(t)

is =0

e(t) s(t)

Convention générateur en 
sortie

Zsys

is

e(t) s(t)
On ne s’interesse pas à 

l’alimentation
Donc pas Rg sur le schéma

R

Zeq

R

s(t)e(t)
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On aimerait avoir : H tot (ω )= s
e

= s
v

× v
e

=H 2(ω)×H 1(ω )

Si on considère que l’impédance de sortie du deuxième filtre est nulle,  on peut relier s à v
En utilisant un pont diviseur de tension :

On ne peut pas utiliser directement la formule du pdt pour relier v(t) à e(t)      car les dipôles considérés
ne sont pas en série !!

Pb : Dans quel cas est-ce possible ?
on peut modéliser le deuxième filtre par son impédance d’entrée :

Ze=R+ 1
jCω

 

Pour pouvoir négliger la présence du deuxième filtre il faudrait que i3 soit nulle 
Or par définition de l’impédance d’entrée du second filtre, v = Ze  i3 , 

donc i3  tend vers 0 si Ze devient infinie. 
À cette condition, le second filtre ne charge plus le premier. 

À retenir : pour pouvoir négliger l’action du deuxième filtre sur le premier filtre, il faut que
l’impédance d’entrée du deuxième filtre tende vers + l’infini

on peut alors appliquer la formule du pont diviseur de tension pour le premier filtre : 

v=

1
jCω

R+ 1
Cω

e⇒ v
e

=H 1(ω)  

De plus si Zs = 0   alors  s (t)=H 2(ω )×v   ( loi des mailles sur la sortie)

finalement avec ces conditions  :  s
e

= s
v

× v
e

=H 2(ω )×H1(ω)

À retenir :  La fonction de transfert d’une mise en cascade de filtres d’impédances d’entrées très
grandes, voire infinies, et d’impédances de sorties très faibles, voire nulles, est le produit des

fonctions de transfert de chaque filtre. 

s= R

R+ 1
jCω

v

H2 x vve s
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Bilan
Nature du filtre Fonction de transfert sous forme canonique Exemple de filtre

simple

Filtre passe-bas 
1er ordre

H= 1

1+ j ω
ωC

H 0

Filtre passe-haut 
1er ordre

Filtre passe-bas
2ème ordre

Filtre passe-haut 2ème

ordre

Filtre passe-bande 2ème

ordre
H=

jx
Q

1−x2+ j x
Q

H 0                       H= 1

1+ jQ(x− 1
x)
H0

H= 1

1−x2+ j x
Q

H 0                 H=
− j

Q
x

1+ jQ(x− 1
x)
H0

H= −x2

1−x2+ j x
Q

H 0                       H= jQx

1+ jQ(x− 1
x)
H0

H=
j ω
ω c

1+ j ω
ωC

H 0


