
Chap.15. Énergie                      PCSI         Lycée Jean Perrin

Semestre A - Partie 2 : Mécanique3

CHAP. 15 : APPROCHE ÉNERGETIQUE
DU MOUVEMENT D’UN POINT MATÉRIEL

Objectifs : 
- Reconnaître le caractère moteur ou résistant d’une force. Savoir que la puissance dépend du référentiel. 
- Connaître et utiliser les lois de l’énergie cinétique et de la puissance cinétique dans un référentiel galiléen.
- Distinguer force conservative et force non conservative. 
- Etablir et connaître les expressions des énergies potentielles de pesanteur, gravitationnelle, élastique, et

électrostatique. 
- Déduire  d’un  graphe  d’énergie  potentielle  le  comportement  qualitatif :  trajectoire  bornée  ou  non,

mouvement périodique, positions de vitesse nulle. 
- Identifier sur un n graphe d’énergie potentielle une barrière et un puits de potentiel. 
- Déduire  d’un  graphe  d’énergie  potentielle  l’existence  de  positions  d’équilibre,  leur  nature  stable  et

instable. 
- Petits mouvements au voisinage d’une position d’équilibre stable : identifier cette situation au modèle de

l’oscillateur  harmonique.  Établir  l’équation  différentielle  du  mouvement  au  voisinage  d’une  position
d’équilibre. 

- Evaluer l’énergie minimale nécessaire pour franchir une barrière de potentiel. 
- Reconnaître les cas de conservation de l’énergie mécanique. Utiliser les conditions initiales. 

Rapport de jury 
Mécanique En mécanique, les schémas doivent être soignés afin de faciliter la projection des forces sur les vecteurs unitaires de la base
choisie. Il faut impérativement commencer par définir le système et le référentiel d’étude. Les formules des vitesses et accélérations en
coordonnées cylindriques doivent être connues (ou retrouvées très rapidement). Les théorèmes énergétiques sont plutôt bien maitrisés
mais  souvent  sous-employés  par  rapport  aux autres  théorèmes  de  la  mécanique  classique.  Avant  de  se  lancer  dans  un principe
fondamental de la dynamique, il faut s’approprier un minimum du sujet afin de voir si un théorème de l’énergie mécanique ne serait pas
plus appropriée. Les planches portant sur la mécanique céleste ont été très mal traitées, par manque de connaissances sur le sujet. Les
candidats doivent savoir faire le lien entre énergie mécanique et nature de la trajectoire dans les exercices à forces centrales. Il faut
connaitre ou savoir retrouver très rapidement les relations de vitesses cosmiques, d’énergie mécanique sur une ellipse et la troisième loi
de Kepler. Le théorème du moment cinétique est trop peu utilisé. Il faut connaitre la conséquence de la conservation du moment
cinétique pour un problème à forces centrales. Tout comme en thermodynamique, les résultats dans ce thème présentent un fort écart-
type. Il  est dommage de ressentir tant de faiblesses sur ce domaine qui est essentiel dans son utilisation de nombreux thèmes en
physique. 

I Energie cinétique
1.1 Puissance d’une force

on définit la puissance d’une force appliquée à un point M qui est animé d’une vitesse vec v dans le référentiel R
de la façon suivante : 

P (F⃗ )=F⃗⋅⃗v

Rmq : v⃗ dépend du référentiel R  donc P (F⃗ )  aussi !

Dimension : [P]= M LT-2 (L T-1 ) =    M L2 T-3  =  ML2T-2   T-1 = [énergie ] /T     donc l’unité  est Watts

additivité : P( F⃗1+ F⃗2)=P (F⃗1)+P (F⃗2)

P (F⃗ )>0
Puissance motrice Puissance résistante                                Puissance nulle

v⃗

F⃗ F⃗

P (F⃗ )<0

F⃗

v⃗



Chap.15. Énergie                      PCSI         Lycée Jean Perrin

1.2 Travail d’une force
a Au cours d’un déplacement élémentaire  

Rappel : déplacement élémentaire d O⃗M d’un point M ( parfois noté d⃗l  )

pendant dt le système le système se déplace de M(t) à M(t+dt)

d O⃗M=⃗OM (t+dt)−O⃗M ( t)=⃗M ( t+dt)M (t)    si dt est suffisamment petit : d O⃗M= v⃗ dt

Travail élémentaire     :  
Pendant un intervalle de temps dt (donc au cours d’un déplacement élementaire ⃗dOM ), on définit le travail
élémentaire d’une force F⃗ de puissance P( F⃗ ) comme : 

δW (F⃗)=P (F⃗)dt   

 Or, comme P( F⃗ )=F⃗⋅⃗v ona  δW ( F⃗)=F⃗⋅⃗v dt=F⃗⋅d O⃗M

d’où δ W (F⃗)=F⃗⋅d O⃗M  (aussi écrit δW ( F⃗)=F⃗⋅d⃗l )

Rmq : 
- Le travail élémentaire dépend du référentiel d’étude
- [δW ( F⃗)]=M LT−2=[energie ]
- δW( F⃗ )  caractérise un échange d’énergie avec l’extérieur par l’intermédiaire de la force 
          comme c’est un échange → on n’écrit pas dW 
 ( ce n’est pas une variation de la grandeur W   mais un échange d’une petite quantité )
- δW dépend (en  général, à priori ) du chemin suivi 

b Au cours d’un déplacement fini entre deux points quelconques A  1  et An

Le travail  W AB( F⃗)  de la force  F⃗  est obtenue en sommant les travaux élémentaires sur les positions
successives 

W A B(F⃗)=∑
i=1

n

δW i= F⃗(A1)⋅⃗A1 A ₂+F⃗ (A2)⋅⃗A2 A3 ..... F⃗(A n−1)⃗ An−1 An   (A1 =A et AN = B)

en considérant les d⃗li=⃗Ai Ai+1 comme élémentaire, la somme devient infiniment proche de l’intégrale : 
et  on note 

 W AB(F⃗)=∫
AB

F⃗(M )⋅d⃗l on a alors W AB(F⃗)=∫
t 1

t 2

P (F⃗(M ))dt

Cette formule permet d’étudier le cas d’une force de norme variable au cours du déplacement ! 

Par exemple force gravitationnelle : (Quelle énergie cinétique doit-on fournir à un vaisseau spatial pour qu’il se 
libère de l’attraction gravitationnelle ? )

c Travail d’une force constante sur un déplacement courbe  

W AB( F⃗)=∫
AB

F⃗(M )⋅d⃗l=F⃗ (M )⋅∫
AB

d⃗l=F⃗(M )⋅A⃗B  avec F⃗ constante sur A⃗B  

( même si  le déplacement de A vers B n’est pas en ligne droite ! )     

  Démo : utiliser la relation de Chasles sur lesvecteurs élémentaires bout à bout ∫
A

B

d⃗l=A⃗B
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Rmq : force constante veut dire constante en norme et en direction 

d Exemple     : travail du poids  

δW ( P⃗)=P⃗⋅d O⃗M=−mg e⃗z⋅d O⃗M   or  d O⃗M=dx e⃗x+dy e⃗ y+dz e⃗z  doc
δW ( P⃗)=−mg dz   

                                               W AB( P⃗)=m g (zA−zB)

Rmq : si zA >zB   WAB >0 → travail moteur 
   si  zA < zB   WAB <0→ travail résistant 

W AB( P⃗)  ne dépend pas du chemin suivi  

Si axe vers le bas alors P⃗=  + mg e⃗z   donc δW=mg e⃗ z⋅d O⃗M=+mg dz  

  donc W AB( P⃗)=mg (zB−zA)

1.3 Théorème de la puissance cinétique (TPC)
Dans un référentiel galiléen, la puissance de la résultant des forces  extérieures et intérieures (donc toutes les
forces )  s’exerçant sur un  système assimilé à un M est égale à la dérivée par rapport au temps de l’énergie
cinétique de ce point :

P(∑ F⃗)=∑ P (F⃗)=
dEc

dt

Démo : PFD  + produit scalaire avec v⃗  or v⃗⋅d v⃗
dt

= d
dt
( 1
2
v2)

1.4 Théorème de l’énergie cinétique  (TEC)
«  Soit un point M qui se déplace dans Rg sous l’effet  de la résultante des forces F⃗res  pendant la durée t2 -t1

d’un point A à un point B
Alors la variation d’énergie cinétique de M entre t1 et t2 est égale à la somme des travaux des forces s’exerçant sur
M :

Δ Ec A→B=∑W AB(F⃗)

II Énergie(s) potentielle(s)
2.1 Forces conservatives

Déf ; On dit qu’une force conservative  si le travail de cette ne dépend pas du chemin suivi. Dans ce cas son
travail élémentaire s’identifie (au signe près) à une variation infinitésimale d’une fonction scalaire appelée énergie
potentielle notée Ep 

δW ( ⃗Fcons)≝−dEp

entre deux points A et B on a alors : 

W A→B( ⃗F cons)=−ΔEpA→B=EP (A)−Ep(B)

      ZA

z

      ZB

A

B

Énergie potentiel au point de départ A 
moins l’énergie potentiel au point 

d’arrivée B

Cette égalité constitue la définition de l’énergie potentielle associée à la force conservative

P⃗
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2.2 Énergie potentielle de quelques forces conservatives
a Énergie potentielle de pesanteur  (E  pp)

Poids : P⃗=−mg e⃗z axe e⃗z  vers le haut                                            avec e⃗z vers le bas : P⃗=+mg e⃗z

 alors δW ( P⃗)=−P⃗⋅d O⃗M=−mg e⃗z⋅dz e⃗z=−mgdz

on primitive   

Epp=mgz+cste si e⃗z  vers le haut            Epp=-mgz+cste  si e⃗z  vers le bas
 Epp augmente si z augmente : logique                             Epp augmente si z diminue : logique 

b Energie potentielle gravitationnelle  (E  pg)
La force exercée par un astre ponctuel O de masse m0 sur un point M de masse mM situé à une distance r de O :

F⃗O /M=−G
m0mM

r2
e⃗r

en coordonnées sphériques : d O⃗M  = dr e⃗r+r dθ e⃗θ+r sin(θ )dϕ e⃗ϕ

δW ( ⃗FO /M )=−G
mOmM

r2
e⃗r⋅dO⃗M≝−dE pg dEpg est une petite variation d’énergie potentielle gravitationnelle

 ici : δW ( ⃗FO /M )=−G
mOmM

r2
dr  donc −dEp=−G

mOmM

r2
dr⇒

dE p

dr
=G

mOmM

r2
 en primitivant par 

rapport à r : Epg(r )=−G
mOmM

r
+cste  en  général on suppose que Epg tend vers 0 quand r tend vers l’infini 

donc on prendre cste = 0  et finalement : Epg(r )=−G
mO mM

r
c Énergie potentielle élastique  

Force de rappel élastique : F⃗l=k (l−l ₀) e⃗x  avec un bon choix d’axe : F⃗l=k x e⃗x

 alors δW ( F⃗l)=−F⃗ l⋅d O⃗M=−k x e⃗x⋅dx e⃗x=−k xdx

        Par définition d’une force conservatives

En primitivant par rapport à x :                                     et de manière plus générale : 

d Énergie potentielle électrostatique (HP?)  

La force exercée par un charge qA ponctuel en A sur un charge qB en B situé à une distance r =AB est :

F⃗ A /B=
−q AqB

4 π ϵ 0r
2 e⃗r  donc par analogie avec  la force gravitationnel 

l0

E pel=
1
2

k x2+cste Epel=
1
2

k( l−l 0)
2+cste

δW ( F⃗l)≝−dE pel⇔−dE pel=−k x dx⇔
dEpel

dx
=−kx

δW ( P⃗)=+mgdz

δW ( P⃗)≝−dEpp⇔−dEpp=−mg dz⇔
dEpp

dz
=+mg

Epp(z)=mgz+cste

dEpp

dz
=−mg

Epp(z)=−mgz+cste

δW ( F⃗)≝−dEpel⇔dEpel=k x dx⇒
dEpel

dx
=k x

o

M
F⃗O /Me⃗r=

O⃗M
‖O⃗M‖

= r⃗
r

E pg(r )=
qA qB

4π ϵ 0 r
2
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2.3 Lien entre énergie potentielle et position d’équilibre

a) Expression de la force conservative en fonction de l’énergie potentielle 
On considère un système (1D). Soit M une masse m soumise seulement à la force conservative

 F⃗(M )  = F(x ) e⃗x   F(x) étant algébrique (positif ou négatif) 
                                                                                                              

 δW ( F⃗)=−F⃗⋅d O⃗M=F (x)dx  or  par  définition  d’une  force  conservative :

δW ( F⃗)=−dE p⇔F (x)dx=−dEp⇒ F(x)=
−dE p

dx

 soit F⃗(x)=
−dE p

dx
e⃗x

Interprétation importante : la force conservative est dirigé dans le sens de diminution de l’énergie
potentielle associée 

b) Extension à plusieurs dimension 

à 3D, Ep (M) est une fonction de plusieurs variables (x,y,z) en coordonnées cartésiennes   Ep (M)=Ep(x,y,z)

en coordonnées cartésienne la force en M a pour expression  

Rmq  (voc) : est appelée dérivée partielle de Ep par rapport à la variable x 

les autres variables (y et z) étant considérées comme constantes 

De  même, est appelée dérivée partielle de Ep par rapport à la variable y

les autres variables (x et z) étant considérées comme constantes        

Rmq (notation) : La dérivée partielle s’écrit avec des « d  arrondis  » et pas avec un d droit 

application soit la fonction f(x,y,z) = 5x2y + y2
  + z  Donner les dérivées partielles de cette fonction

Réponse 
∂ f
∂ x|y , z=10 x y  

∂ f
∂ y|x , z=5 x2+2 y ∂ f

∂ z|x, y=1
c)   Notion de gradient   

à 3 Dimensions, On dit que la force conservative en M (x,y,z) est égale à l’opposé du gradient de
l’énergie potentielle à ce point 

aussi noté
                                            

le gradient de Ep en coordonnées cartésiennes s’écrit 

Interprétation physique :  le vecteur gradient  de Ep en un point  (noté )indique à la
fois la direction de la variation la plus forte de Ep en ce point et l’intensité de cette variation. 

  est orienté vers la direction d’augmentation de Ep 

F⃗(x , y , z)=−
∂Ep

∂ x
e⃗x−

∂ Ep

∂ y
e⃗ y−

∂Ep

∂ z
e⃗z

F⃗=− ⃗grad (Ep) F⃗=−∇⃗ E p

⃗grad (Ep)

∂Ep

∂ x

∂Ep

∂ y

∇⃗Ep= ⃗grad (E p)=
∂ Ep

∂ x
e⃗x+

∂Ep

∂ y
e⃗ y+

∂Ep

∂ z
e⃗ z

⃗grad (Ep)
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Rmq :Lorsque la fonction ne dépend seulement d’une seule variable, le gradient se confond avec la dérivée
usuelle et on retrouve le cas 1D

d) Lien avec l’équilibre     :   

Rappel : Un système est à l’équilibre si il n’est soumis à aucune force ou à des forces qui se compensent
( autrement dit, si on place un objet d’ans une position d’équilibre, il va y rester) 

Comme ici F⃗(x ) est la seule force présente, dans la position x= xeq d’équilibre,

on a  aura F⃗(xeq)= 0⃗⇒( dE p

dx )x=x eq

=0

A retenir     : les positions d’équilibre correspondent aux extrema de la fonction E  p 

cas général à 3 D : soit

les composantes doivent être toutes nulles  donc 

e) Stabilité (d’une position d’équilibre)

cadre d’étude     :   
On suppose qu’initialement M=Meq .  ( à 1D x = xeq )    c-à-d le système est dans une position d’équilibre

On envisage un déplacement élémentaire  d⃗l=M⃗ eqM ' (à 1 D  d⃗l=dx e⃗x  ) 
Après le déplacement le système est en M’ ( à 1 D x=x’ )

On analyse l’évolution du système après ce déplacement

Définition physique de la stabilité     :   

Si après un déplacement  élémentaire d⃗l=M⃗ eqM '  depuis une position d’équilibre le système tend à
revenir vers la position d’équilibre Meq , alors la position d’équilibre est qualifiée de stable, 

dans le cas contraire elle est qualifiée d’instable.

Exemple stabilité  des nœuds 

https://www.youtube.com/watch?v=XpNbyfxxkWE

( dE p

dx )x=xeq

=( dEp

dy )y= yeq

=( dEp

dz )z= zeq

=0

−∇⃗ E p= 0⃗ −
∂Ep

∂ x
e⃗x−

∂ Ep

∂ y
e⃗y−

∂E p

∂ z
e⃗z=0⃗

https://www.youtube.com/watch?v=XpNbyfxxkWE
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f)   Lien avec l’énergie potentielle     :  
- Cas 1 : Supposons que Ep(x’) > Ep (xeq )   .
Comme la force conservative associée à l’énergie potentielle étudiée est dirigée dans le sens de diminution de

Ep, : dans ce cas F⃗  est dirigée de x’ vers xeq  (car  Ep(x’) > Ep (xeq ) )

F⃗   tend donc à amener le système vers la position d’équilibre : 
On en déduit que la position d’équilibre est stable dans ce cas

- cas 2 :Supposons que Ep(x’) < Ep(xeq).

La force conservative est toujours dirigé dans le sens de diminution de Ep : ;dans ce cas F⃗  est dirigée de x’
vers xeq  (car  Ep(x’) < Ep (xeq ) )

F⃗  tend donc à éloigner encore plus le système de la position d’équilibre :
 la position d’équilibre est instable

Rmq : on sait que par déf que Ep(xeq) est soit un max soit un min de l’Ep.  Si après un déplacement élémentaire
quelconque depuis l’équilibre Ep augmente, alors forcement la position d’équilibre était un minimum, c’est le cas
1
à l’inverse si depuis la position d’équilibre, après déplacement élémentaire Ep diminue, la position d’équlibre était
forcement un max 

Conclusion :  
Un minimum de la fonction énergie potentielle correspond à une position d’équilibre stable 

 ( mathématiquement ( d2E p

dx2 )x=xeq

>0 )   ( penser à la parabole ax2 qui à cette forme         si a >0  )

à l’inverse un max de Ep(x) correspond à une position d’équilibre instable 

    (I pour instable , S pour stable)

Moyen mnémotechnique : on pose
une  bille  sur  la  courbe :  si  on  la
laisse  évoluer  depuis  S  en  la
déplaçant un peu elle revient 

à plusieurs dimension, toutes les dérivées partielles doivent être positiive en même temps pour avoir
une position d’équilibre
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g)   Mouvement au voisinage d’une position d’équilibre stable  
Cadre d’étude     :   

On étudie le mouvement à 1 D d’un système de masse M soumis seulement à une force conservative F⃗ .
On suppose qu’on connaît la fonction Ep (x) ( par exemple à l’aide d’un graphique ).

Objectif :  On cherche à établir  (et  résoudre)  l’équation du mouvement  du système dans  une zone de
l’espace proche d’une position d’équilibre 
c’est à dire qu’on cherche x(t) pour des x tel que  |x -xeq | << δ avec δ petit devant l’échelle du système 
Modélisation     :   

Si la courbe représentative d’E p (x) n’est pas trop «  biscornu » 
on peut localement ( autour de xeq)  approximer Ep(x) par une portion de parabole :

E p(x)≈a (x−xeq)
2+b

(on sait que l’équation sera de cette forme car la fonction Ep doit s’annuler en xeq car xeq est une
position d’équilibre 

Pour trouver a et b on utilise la formule de Taylor Young 
Rappel :   Soit une fonction f dérivable n fois au point x0, alors f admet un Dln en x0 :

f (x)=f ( x₀)+ f ’ (x ₀)( x−x ₀)+ f ’ ’( x ₀)
2 !

(x−x0)+…+ f (n)( x ₀)
n!

(x−x0)n+o ((x−x0)
n)

( notation de physicien f ' '(x0)=( d2 f
dx2 )x=x0

)

Alors dans ce cas au voisinage de Ep(x) : Ep(x)≈E p(xeq)+( d Ep

dx )x=x eq

(x−xeq)+
1
2( d2 Ep

dx2 )x= xeq

(x−xeq)
2

Comme xeq est une position d’équilibre, par définition : ( d Ep

dx )x=x eq

=0

donc Ep(x)=Ep( xeq)+
1
2( d2Ep

dx2 )x=xeq

(x−xeq)
2    par ID a=+1

2 ( d2Ep

dx2 )x=xeq

b=E p(x=xeq)

Rmq 1 : Si l’équilibre est stable (
d2Ep

dx2
)
x=x eq

>0  donc a>0   logique 

Rmq 2  : on peut voir une analogie avec une énergie potentiel élastique  Epel(x)=
1
2

k (x−xeq)
2+Epel(xeq)

avec k=( d2E p

dx2 )x=xeq

Ep(x)

x
    Zone de validité
De l’approximation

xEQ

a (x−xeq)
2+bParabole d’équation
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h) É  quation différentielle du mouvement vérifiée par x(t)   au voisinage de x  eq

BDF : F⃗(x)=
−dE p

dx
e⃗x

Ref : Galiléen 
système : {masse m}

PFD en projection sur (Ox) : m ẍ (t)=
−dEp

dx
⇔m ẍ( t)=−k (x( t)−xeq)

En posant X= x- xeq on obtient m Ẍ (t)+k X ( t)=0⇔ Ẍ ( t)+ k
m

X ( t)=0

c’est l’équation d’un oscillateur harmonique. ! 

de pulsation propre ω 0=√ k
m

avec k=(d
2 Ep

dx2 )x=x eq

   

  (on a k >0 car k=(d
2 Ep

dx2 )x=xeq

 >0 car l’équilibre est stable )  

Ainsi, dans cette situation le système va osciller autour de la position d’équilibre 

N’importe  quel  système aussi  complexe  qu’il  soit  possédant  une  position  d’équilibre  stable  peut  dans  une
certaine mesure être modélisée par un oscillateur harmonique 

Voc :la courbe Ep(x) au voisinage de xeq est appelé puits de potentiel harmonique 

Exemple : Oscillations des atomes dans une molécule

2.4 Graphe d’énergie potentielle et étude qualitative d’un mouvement
Objectif : déterminer le mouvement possible d’un système à partir de la courbe Ep(x)

a) Exemple

x

Ep(x)

Einf

Puits de potentiel harmonique
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b) Lien avec l’énergie   mécanique   
Comme Em = Ep +Ec    avec Ec =1/2 m v2    donc Ec ≥ 0   donc Ec +Ep  ≥ Ep

on a toujours Em( x)≥Ep(x) pour toute position x accessible au système étudié

l’égalité est obtenue quand v(x)=0 ( système immobile) alors Ec =0 et Em = Ep :
c-à-d : L’énergie potentielle est égale à l’énergie mécanique quand le système est immobile 

( attention !!! Immobile ne veut pas dire à l’équilibre )
 Un système à l’équilibre est forcement immobile ( ou en translation rectiligne uniforme) mais un système peut
être  momentanément  immobile  sans  être  à  l’équilibre   (  système masse  ressort   lors  d’un  changement  de
direction )
c) Interprétation graphique

On considère un système soumis seulement à des forces conservatives 
on a donc Em = cst  notamment Em ne dépend pas de la position x du système 
la courbe représentative de Em (x) est donc une droite horizontale 

Si cette droite horizontale coupe la courbe Ep (x)  alors cela signifie qu’il existe des position xnul où la
vitesse du système est nulle.

Les zones accessibles au système sont les abscisses pour lesquels Ep(x) ≤ Em
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Plusieurs situation sont à envisager :

Impossible : il faut au mois un point pour lequel Em(x) ≥ Ep(x)

  Il existe un unique point pour lequel Em(x0) =Ep(x0)
   il n’existe aucun point pour lequel Em ≥  Ep(x)
   

      conclusion :  
  le système est immobile. De plus comme x0B correspond à
un minimum de l’énergie potentielle, le système est dans
un équilibre stable 

   comme il faut Em ≥  Ep(x) pour tout x accessible au système : le
système ne peut accéder qu’à des positions x dans l’intervalle [x1 ,

x2  ]
Le mouvement du système est borné : on dit que le système est

dans un état lié 

En x1 et x2 le système est immobile 
En x0 l’écart entre Em et Ep est max donc Em – Ep est max donc

Ec est max donc v(x0) est la plus grande vitesse accessible

comme il faut Em ≥  Ep(x) pour tout x :

Le système peut atteindre des valeurs de  x infiniment grandes
mais des positions tels que x< x1 sont inaccessible

Comme l’intervalle de position accessible est infini : on dit que le
système est dans un état libre, ou état de diffusion 

x1 x2

Em

Em

Em

Em

x1

x0

xoB
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Barrière de potentiel 

Exemples                                                          ( si la particule est initialement en x <x1)

https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/ressort_bifur.php

https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/oscill_harm_FJ.php

III Énergie mécanique
3.1 Théorème de l’énergie mécanique

a) Énoncé 

On considère un point M soumis seulement à des forces conservatives on a alors 

Em(M )=Ec (M )+∑ Ep(M )=cste

ou entre deux points A et B quelconques sur la trajectoire du système : 
Δ EM A→B=0

b) Demo     :   

Th de l’énergie cinétique entre deux points quelconques : ΔEc A→B=∑W AB( F⃗)

ici seulement des forces conservatives telles que W A→B( ⃗F cons)=−ΔEpA→B=EP (A)−Ep(B)

ainsi ΔEc A→B=∑−Δ Ep A→B⇒Δ Ec A→B+∑ Δ E p A→B=0⇒ΔEM A→B=0  
l’énergie mécanique ne varie pas entre deux points quelconques si le système n’est soumis qu’à des forces

conservatives 

c) Généralisation     :  

E  ntre deux points A et B quelconques sur la trajectoire du système     :   

Δ Em A→B=∑WAB( ⃗Fnon cons)

Ep(x)

x

Supposons qu’initialement le système soit dans la zone x<x1  avec 
 Em < Emax : la zone x>x2 est inaccessible
Par contre si initialement le système était dans la zone x>x2 avec 
la même énergie mécanique,la zone x <x1 serait accessible.
En partant de la zone x<x1  le système doit au moins 
momentanément posséder une énergie mécanique 
Em > Emax Pour pouvoir atteindre la zone x>x2 même si une 
fois dans cette zone une énergie plus faible est suffisante 
pour y rester : 

la courbe d’énergie potentielle possède une barrière de 
potentiel d’amplitude Emax-E0

Emax

Em

x1 x2E0

https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/oscill_harm_FJ.php
https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/ressort_bifur.php
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3.2 Application au pendule simple
 Objectif :  retrouver l’équation du mouvement par une approche
énergétique 
Méthode : on veut faire apparaître l , θ , g et θ̈ dans l’expression
de Ep et Ec du système, on utilise ensuite le TEM
Rmq ( pour faire apparaître θ̈ il faudra utiliser une astuce )

Expression  de  l’énergie  cinétique :  Ec=
1
2
mv2   ici

v⃗=lθ̇ e⃗θ⇒ v2= v⃗⋅⃗v=l2θ̇ 2

donc Ec=
1
2
m(lθ̇ )2

Expression de l’énergie potentiel de pesanteur : Epp=mg z=mgl(1−cos(θ ))

TEM  Em=cst⇔E c+E pp=cst⇔=1
2
m(lθ̇ )2+mgl (1−cos (θ ))=cste

astuce : on aimerait faire apparaître la derivée seconde θ̈ donc on dérive
dEm

dt
=0⇔ 1

2
ml22θ̈ θ̇ −mgl (−θ̇ sin(θ ))=0⇔θ̇ ml2θ̈ +mglθ̇ sinθ=0⇔θ̇ (θ̈ + g

l
sinθ )=0

soit θ̇ =0 pas intéressant car pas de mouvement :

soit θ̇ ≠0 , en divisant par θ̇ ≠0 on obtient θ̈ + g
l
sinθ =0

représentation de :
Epp(θ )=mgl (1−cos(θ ))

θ

Epp(θ)

θ=0
Est une position 

d’équilibre 
stable

θ=2ππ-π

Em

θ1 θ2


