Chap.15. Energie PCSI Lycée Jean Perrin

Semestre A - Partie 2 : Mécanique3

CHAP. 15 : APPROCHE ENERGETIQUE
DU MOUVEMENT D’UN POINT MATERIEL

Obijectifs :

- Reconnaitre le caractére moteur ou résistant d’une force. Savoir que la puissance dépend du référentiel.

- Connaitre et utiliser les lois de I'énergie cinétique et de la puissance cinétique dans un référentiel galiléen.

- Distinguer force conservative et force non conservative.

- Etablir et connaitre les expressions des énergies potentielles de pesanteur, gravitationnelle, élastique, et
électrostatique.

- Déduire d’'un graphe d’énergie potentielle le comportement qualitatif : trajectoire bornée ou non,
mouvement périodique, positions de vitesse nulle.

- Identifier sur un n graphe d’énergie potentielle une barricre et un puits de potentiel.

- Déduire d’un graphe d’énergie potentielle I'existence de positions d’équilibre, leur nature stable et
instable.

- Petits mouvements au voisinage d’une position d’équilibre stable : identifier cette situation au modele de
l'oscillateur harmonique. Etablir I’équation différentielle du mouvement au voisinage d’une position
d’équilibre.

- Evaluer Iénergie minimale nécessaire pour franchir une barriére de potentiel.

- Reconnaitre les cas de conservation de I’énergie mécanique. Utiliser les conditions initiales.

Rapport de jury

Mécanique En mécanique, les schémas doivent étre soignés afin de faciliter la projection des forces sur les vecteurs unitaires de la base
choisie. Il faut impérativement commencer par définir le systeme et le référentiel d’étude. Les formules des vitesses et accélérations en
coordonnées cylindriques doivent étre connues (ou retrouvées tres rapidement). Les théorémes énergétiques sont plutot bien maitrisés
mais souvent sous-employés par rapport aux autres théorémes de la mécanique classique. Avant de se lancer dans un principe
fondamental de la dynamique, il faut s’approprier un minimum du sujet afin de voir si un théoreme de I’énergie mécanique ne serait pas
plus appropriée. Les planches portant sur la mécanique céleste ont été tres mal traitées, par manque de connaissances sut le sujet. Les
candidats doivent savoir faire le lien entre énergie mécanique et nature de la trajectoire dans les exercices a forces centrales. Il faut
connaitre ou savoir retrouver tres rapidement les relations de vitesses cosmiques, d’énergie mécanique sur une ellipse et la troisieme loi
de Kepler. Le théoreme du moment cinétique est trop peu utilisé. Il faut connaitre la conséquence de la conservation du moment
cinétique pour un probléme a forces centrales. Tout comme en thermodynamique, les résultats dans ce théme présentent un fort écart-
type. Il est dommage de ressentir tant de faiblesses sur ce domaine qui est essentiel dans son utilisation de nombreux thémes en
physique.

I Energie cinétique
1.1 Puissance d’une force

on définit la puissance d’une force appliquée a un point M qui est animé d’une vitesse vec v dans le référentiel R

de la fagon suivante : e N ’

\ )

A e

-
Rmq: V dépend du référenticl R donc P (F) aussi!

Dimension : [P]= MLT* (L.'T")= ML*T? = ML*T? T'= [énetrgie] /T doncl'unité est Watts
additivité : P(F,+F,)=P(F,)+P(F,)

g

y ER F"‘

>

PF)>0 P(F)<0

Puissance motrice Puissance résistante Puissance nulle
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1.2 Travail d’une force

a Au cours d’un déplacement élémentaire

. 1 : - : : . T i o T
Rappel : déplacement élémentaite d OM  d’un point M ( parfois noté dl ) Hik) —

pendant dt le systeme le systeme se déplace de M(t) a M(t+dt)

dOM= OM(t+dt)—6M(t)=M (t+dt)M(t)  sidt est suffisamment petit : d OM=¥ dt

Travail élémentaire :

Pendant un intervalle de temps dt (donc au cours d’un déplacement élementaire  dOM ), on définit le travail
élémentaire d’une force F de puissance P( F ) comme :

sw®)=p@)a | P

—

ona 5W(1_5)=1_5-§ t=F-dO

SW(F)=F-dOM (ussi¢cric 6W(F)=F-dl )

- Le travail élémentaire dépend du référentiel d’étude
- [6W(F)]=M LT *=[energie]
- OW/( F ) caractérise un échange d’énergie avec 'extérieur par 'intermédiaire de la force
comme c’est un échange — on n’écrit pas dW
(ce n’est pas une variation de la grandeur W mais un échange d’une petite quantité )
- OW dépend (en général, a prioti ) du chemin suivi
b Au cours d’'un déplacement fini entre deux points quelconques A; et A,

jd —_
Le travail W AB(F ) de la force F  est obtenue en sommant les travaux élémentaires sur les positions

successives
W.s(E)=D, 0W,=F(A,)-A,A+F(A,) A, A,....F(A, |)A, A, (A=ActAs=B)

en considérantles  dI i=A; A1 comme élémentaire, la somme devient infiniment proche de ’intégrale :
et_on note
4 t, N ,
- - - - -
WAB(F)=I F(M)‘dl on a alors WAB(F)=IP(F(M))dt
A L
¥ )
Cette formule permet d’étudier le cas d’une force de norme variable au cours du déplacement !

Par exemple force gravitationnelle : (Quelle énergie cinétique doit-on fournir a un vaisseau spatial pour qu’il se
libére de l'attraction gravitationnelle ?)

¢ Travail d’une force constante sur un déplacement courbe

J' F(M Jl F )‘[ JlZﬁ'(M)u‘TB avec F constantesur AB
( méme si le déplacement de A vers B n’est pas en ligne droite !)
B

f dI=AB  D¢mo : utiliser la relation de Chasles sur lesvecteurs élémentaires bout 2 bout
A
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Rmq : force constante veut dire constante en norme et en direction

d Exemple : travail du poids

OW(P)=P-dOM=-mgé,,dOM  or dOM=dxéx+dyé +dz&, doc
5W(f’)=—mgdz -
WAB(P):mg(ZA_ZB) ,

G
Rmq: sizy >zg Wap >0 — travail moteur
i si zp < zp Wap <0— travail résistant

w AB(I’) ne dépend pas du chemin suivi
Si axe vers le bas alors  P= + mgé, donc OW=mgé,dOM=+mgdz
donc W ,,(P)=mg(z,~z,) ’

1.3 'Théoréme de la puissance cinétique (TPC)
Dans un référentiel galiléen, la puissance de la résultant des forces extérieures et intérieures (donc toutes les
forces ) s’exercant sur un systeme assimilé a un M est égale a la dérivée par rapport au temps de I’énergie
cinétique de ce point :

- ~
‘ - -> dEC |
PEF)=Sr(F)=t: WP
o >

Démo : PFD + produit scalaire avec V  or V-Z—;}:%(%vz)

1.4 Théoréme de ’énergie cinétique (TEC)
« Soit un point M qui se déplace dans R, sous I'effet de la résultante des forces F_;es pendant la durée t, -t;
d’un point A a un point B
Alors la variation d’énergie cinétique de M entre t; et t, est égale a la somme des travaux des forces s’exercant sur
M: e ™

AECA-)Bzz WAB(iE,)

- /

II Energie(s) potentielle(s)

2.1 Forces conservatives

N

[ Déf ; On dit qu'une force conservative si le travail de cette ne dépend pas du chemin suivi. Dans ce cas son

travail élémentaire s’identifie (au signe pres) a une variation infinitésimale d’une fonction scalaire appelée énergie
r// )

. ’ \\
potentielle notée E, [ ,
) def
(5 ‘47( ITCOHS):z __(1lzp ‘
A /
\\ Cette égalité constitue la définition de I'énergie potentielle associée a la force conservative /

entre deux points A et B on a alors :
WA-)B(F ):_AEpA-)B:EP(A)_Ep(B)

cons

Energie potentiel au point de départ A
moins Iénergie potentiel au point
d’arrivée B
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2.2 Energie potentielle de quelques forces conservatives

a  Energie potentielle de pesanteur (E,,)

Poids : 1_5:—mg €, axe e, verslehaut avec €, vers le bas: 1_5:+mg e,
alors OW (P)=—P-dOM=-mgé, dz&,=—mgdz SW (P)=+mg dz
SW(P)&— dEpp@—dEpp:—mgdZ@djz"p:+mg %Z—mg
on primitive  E,,(z)=mgz+cste E,,(z)=—mgz+cste ,
E,,=mgz+cstesi €, versle haut E,,=-mgz+cste si €, versle bas
E,, augmente si z augmente : logique E,,augmente si z diminue : logique

b Enetgie potentielle gravitationnelle (E,,)

La force exercée par un astre ponctuel O de masse m, sur un point M de masse my; situé a une distance r de O :

/ N\ @
mym,, L
F G e
oM 2 T \ ‘ K/GM
soOM _F L Fom
lom]| Oe "
en coordonnées sphériques: dOM = dré,+rd6é,+rsin(6)d¢ €,
nd m m —» . . . , . . . .
OW(F,,,)=—G (; Yé-d OM “—dE o dEpg est une petite variation d’énergie potentielle gravitationnelle
. - mgym,, mym,, dE, m,m,, o
ici: OW(F,,,)=—G—=—dr donc —dE,=—G———dr= =G— en primitivant par
r r di" r
. momy, " s
rapportar: E pg(r)Z—G +cste  en général on suppose que B, tend vers 0 quand r tend vers 'infini
Ve ™\
s | 4
donc on prendre cste = 0 et finalement: E Pg(r)= -G—
r

¢ Energie potentielle élastique

Force de rappel élastique : ﬁ,Zk(l—l 0)&, avec un bon choix d’axe: F,=kx¢,

— AWA—1=] alors  OW (F,)=—F:dOM=—kx€,-dx&,=—k xdx

_—

E( : > ‘x Par définition d’une force conservatives JE
oW (F)2—dE,, @ﬂz—kmw:dme
X
dE
oW (F)%—dE ,,»—dE,, -%X¢ﬁ>dmz—h
X

L. E _l k 2+ t
En primitivant par rapport a X pd ™ X +cste

AN )

:%kU—%Y+mw

et de maniere plus générale : ~ Pel

d Energie potentielle électrostatique (HP?)

La force exercée par un charge qx ponctuel en A sur un charge g en B situé a une distance r =AB est :

—_949s
4n €0r2

——_ —q,9p . . L
F . s=——e, donc par analogie avec la force gravitationnel E

2 °r
4me,r Pg(

k x



Chap.15. Energie PCSI Lycée Jean Perrin

2.3 Lien entre énergie potentielle et position d’équilibre

a) Expression de la force conservative en fonction de ’énergie potentielle

On considére un systeme (1D). Soit M une masse m soumise seulement a la force conservative

E(M) = F(x)é, F() étant algébrique (positif ou négatif)
ow (1_5 )=— F-dOM=F (x)dx or pat définition d’une force conservative :
—dE,

OW (F)=—dE & F(x)dx=—dE, = F(x)= ,
? P dx
e .\ —dE, _ ~

soit F(x)= dx e,

Interprétation importante : la force conservative est dirigé dans le sens de diminution de P’énergie

potentielle associée

b) Extension a plusieurs dimension

a 3D, E, (M) est une fonction de plusieurs variables (x,y,z) en coordonnées cartésiennes E, (M)=E,(x,y,z)
'

-
W 15( ) 0E,, OE,, OE,_
¢ ési i X,y,z)=— e.— e, — e,
en coordonnées cartésienne la force en M a pour expression y ox oy 20 0z
O0E - J
Rmq (voc) : P est appelée dérivée partielle de E, par rapport a la variable x
0x

les autres variables (y et z) étant considérées comme constantes

De méme, E, est appelée dérivée partielle de E, par rapport a la variable y

oy

les autres variables (x et z) étant considérées comme constantes

Rmgq (notation) : La dérivée partielle s’écrit avec des « d arrondis » et pas avec un d droit

application soit la fonction f(x,y,z) = 5x’y + y* + z Donner les dérivées partielles de cette fonction
of of
Ré —| =10x —

éponse  —— y y 3

=5x’+2y ? =1

X,y

X,z

c) Notion de gradient

a 3 Dimensions, On dit que la force conservative en M (x,y,z) est égale a Popposé du gradient de

ﬁ':—gr:;]d(Ep) aussi noté ﬁ:—VEP
L ) ,
0 0 0 )
E E E
SRAY Rl ¥ il ¥
0 X oy ’ 0z

Pénergie potentielle a ce point

=> -
le gradient de E, en coordonnées cartésiennes s’écrit ( VE ,=grad (E p)

Interprétation physique : le vecteur gradient de E, en un point (noté  grad (Ep) )indique a la
fois la direction de la variation la plus forte de E, en ce point et ’intensité de cette variation.
grad(E,) est orienté vers la direction d’augmentation de E,
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Rmgq :Lorsque la fonction ne dépend seulement d’une seule variable, le gradient se confond avec la dérivée

usuelle et on retrouve le cas 1D

d) Lien avec I’équilibre :

Rappel : Un systéme est a ’équilibre si il n’est soumis a aucune force ou a des forces qui se compensent
(autrement dit, si on place un objet d’ans une position d’équilibre, il va y rester)

Commeici F(x) estla seule force présente, dans la position x= X.q d’équilibre,

[ F(x,)=0o(22) =0
=0 —* =
ona aura X dx | .

A retenir : les positions d’équilibre correspondent aux extrema de la fonction E;,

@

= - a Ep a E a EP - _—»
cas générala3 D : _VE,FO soit " ox €~ ay e, 9z e,=0
les composantes doivent étre toutes nulles donc ( ) ( ) ) =0

e) Stabilité (d’une position d’équilibre)
cadre d’étude :
On suppose quiinitialement M=M,,. (a2 1D x = xq) c-a-d le systeme est dans une position d’équilibre

On envisage un déplacement élémentaire di= ]\_4; M'" a1D dl=dx e )
Apres le déplacement le systeme esten M’ (a1 D x=x")

On analyse ’évolution du systéme apres ce déplacement

Définition physique de la stabilité :

Si apres un déplacement élémentaire di= M, oM ' _depuis une position d’équilibre le systéme tend a

revenir vers la position d’équilibre M. , alors la position d’équilibre est qualifiée de stable,

dans le cas contraire elle est qualifiée d’instable. '

Exemple stabilité des nceuds

https://www.youtube. com/watch?v=XpNbyfxxkWE



https://www.youtube.com/watch?v=XpNbyfxxkWE
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f) Lien avec I’énergie potentielle :
- Cas 1: Supposons que E (xX’) > E, (xq) .

Comme la force conservative associée a I’énergie potentielle étudiée est dirigée dans le sens de diminution de
->
E,:dans ce cas F est dirigée de X’ vers x.q (car E,(x)) > E, (X))

F  tend donc a amener le systéme vers la position d’équilibre :
On en déduit que la position d’équilibre est stable dans ce cas

- cas 2 :Supposons que E,(xX’) < E;(x.q)-
La force conservative est toujours dirigé dans le sens de diminution de E: ;dans ce cas F oest dirigée de X’
vers Xoq (car B (X) <E, (x¢q))
F  tend donca ¢éloigner encore plus le systéme de la position d’équilibre :
la position d’équilibre est instable

Rmq : on sait que par déf que E,(x.y) est soit un max soit un min de I'E;, Si apres un déplacement élémentaire
quelconque depuis I’équilibre E; augmente, alors forcement la position d’équilibre était un minimum, c’est le cas
1

a I'inverse si depuis la position d’équilibre, aprés déplacement élémentaire E,, diminue, la position d’équlibre était

forcement un max

Conclusion :

Un minimum de la fonction énergie potentielle correspond a une position d’équilibre stable ,

d’E
( mathématiquement ( q N ) >0 ) (penseralaparabole ax* qui a cette forme \/si a>0)
X X=X,

a Pinverse un max de E,(x) correspond a une position d’équilibre instable

Ll A& =

G
T 7

(I pour instable , S pour stable)

Moyen mnémotechnique : on pose

une bille sur la courbe: si on la

laisse évoluer depuis S en la

=== déplacant un peu elle revient

=2 -9

a plusieurs dimension, toutes les dérivées partielles doivent étre positiive en méme temps pour avoir
une position d’équilibre
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2) Mouvement au voisinage d’une position d’équilibre stable
Cadre d*étude :

On ¢étudie le mouvement a 1 D d’un systeme de masse M soumis seulement a une force conservative F .

-

On suppose qu’on connait la fonction E,, (x) ( par exemple a I'aide d’un graphique ).

Objectif : On cherche a établir (et résoudre) ’équation du mouvement du systéeme dans une zone de
Pespace proche d’une position d’équilibre

c’est a dire qu’on cherche x(t) pour des x tel que |x -X¢q | << & avec 8 petit devant ’échelle du systeme
Modélisation :

Sila courbe représentative d’E |, (x) n’est pas trop « biscornu »
on peut localement (autour de x.;) approximer E,(x) par une portion de parabole :

Ep(x)Na(x—xeq)2+b

(on sait que I’équation sera de cette forme car la fonction E; doit s’annuler en x4 car x.q est une

Ep(x),

position d’équilibre

/Parabole d’équation @ (X —Xegq
1

V+b

Zone de validité
De Papproximation

Pour trouver a et b on utilise la formule de Taylor Young
Rappel :  Soit une fonction f dérivable n fois au point x, alors f admet un DI, en x,:

f(x):f(xo)+f ’(xo)(x—xo)+w(x—xo)+...+$§<°)(x—x0)"+o((x—xo)")

2!

. . e rr — d2 f
( notation de physicien f (XO)— 0 )
X X=X,

iy d 1| d’E
Alors dans ce cas au voisinage de E,(x) . EP(X)NEP(Xeq)+( dxp )x=xw(x_xeq)+5( dxzp )X_x (X_xeq)2

dE
Comme x4 est une position d’équilibre, par définition : 3 £ ) =0
X X=X g

P

1{ d’E +1| &°E
E,,(X):Ep(xeq)+5( p)_ (x=x,)"  parID (a=7( p)_ b=E,(x=x,,) 1

donc

dx’

2

E
Rmgq 1 : Si Iéquilibre est stable  ( 7 - ) >0 donca>0 logique
X X=X,

. . . . . 1
Rmq 2 : on peut voir une analogie avec une énergie potentiel élastique E pe,(x) =3 k(x—x, . )2+ E pe,(x eq)

d’E
avec k=( ZP)
dx” |-,
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h) Equation différentielle du mouvement vérifiée par x(t) au voisinage de X,
BDF: F(x) —4E, 5
: X)= e
dx *

Ref : Galiléen
systeme : {masse m}

—dE
PFD en projection sur (Ox) : mx(t)= T Pom }k(t)=—k<x(t)—xeq)

_ . f k A
En posant X= x- x4 on obtient mX(t)+kX(t)=0<i+Y(t)+EX(t)=0 ,

c’est ’équation d’un oscillateur harmonique. !

k d’E
(de pulsation propre a)OZ\/ k avec k=|——~
m dx x=x.,
d’E -
(onak >0car k= ?‘1 >0 car 'équilibre est stable )
X X=X,

Ainsi, dans cette situation le systéme va osciller autour de la position d’équilibre

N’importe quel systeme aussi complexe qu’il soit possédant une position d’équilibre stable peut dans une

certaine mesure étre modélisée par un oscillateur harmonique

-

Voc :la courbe E,(x) au voisinage de x.q est appelé puits de potentiel harmonique ’ 1

Exemple : Oscillations des atomes dans une molécule

2.4 Graphe d’énergie potentielle et étude qualitative d’'un mouvement

Objectif : déterminer le mouvement possible d’un systeme a partir de la courbe E(x)

a) Exemple

A Eo(x)

Einf

—

Puits de potentiel harmonique
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b) Lien avec I’énergie mécanique
Comme E,, = E, +E. avecE.=1/2mv* doncE.>0 donc E.+E, = E,

on a toujours Em( X)ZEp(x) pour toute position x accessible au systéme étudié

I’égalité est obtenue quand v(x)=0 ( systéme immobile) alors E. =0 et E,,, = E:
c-a-d : L’énergie potentielle est égale a 'énergie mécanique quand le systeme est immobile

(attention !!! Immobile ne veut pas dire a I’équilibre )

Un systeme a ’équilibre est forcement immobile ( ou en translation rectiligne uniforme) mais un systeme peut
étre momentanément immobile sans étre a I’équilibre ( systeme masse ressort lors dun changement de
direction )

c) Interprétation graphique

On considére un systeme soumis seulement a des forces conservatives
on a donc E,, = cst notamment E,, ne dépend pas de la position x du systeme
la courbe représentative de E,, (x) est donc une droite horizontale
Si cette droite horizontale coupe la courbe E; (x) alors cela signifie qu’il existe des position x,, ou la
vitesse du systéme est nulle.
Les zones accessibles au systéme sont les abscisses pour lesquels E (x) < E,,
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Plusieurs situation sont a envisager :
Ep(x}

Einf T LT

» X

Impossible : il faut au mois un point pour lequel Em(x) = E,(x)

11 existe un unique point pour lequel Em(xq) =E,(x)
il n’existe aucun point pour lequel E,, = E(x)

conclusion :

x| lesystéme est immobile. De plus comme x5 correspond a
»

un minimum de Pénergie potentielle, le systétme est dans
un équilibre stable

comme il faut E,, 2 E,(X) pour tout x accessible au systéme : le

systeme ne peut accéder qu’a des positions x dans I'intervalle [x1,

X ]
Le mouvement du systéme est borné : on dit que le systéme est
dans un état lié

En x; et x; le systéeme est immobile

En x, Pécart entre E,, et E, est max donc E,, — E,, est max donc

E.est max donc v(x,) est la plus grande vitesse accessible

comme il faut E,, 2 E,(x) pour tout x :

>

Le systeme peut atteindre des valeurs de x infiniment grandes

ais des positions tels que x< x; sont inaccessible

Eins . . . P .
: Comme l'intervalle de position accessible est infini : on dit que le

systéme est dans un état libre, ou_état de diffusion

>
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Barriere de potentiel

Ex(x) o . .
Supposons qu’initialement le systeme soit dans la zone x<x; avec

Em < Ema: la zone x>x; est inaccessible
Par contre si initialement le systeme était dans la zone x>x» avec
la méme énergie mécanique,la zone x <x; serait accessible.

/fn partant de la zone x<x1 le systéme doit au moi@
momentanément posséder une énergie mécanique

Ewn > Enux Pour pouvoir atteindre la zone x>x; méme si une

fois dans cette zone une énergie plus faible est suffisante
pour y rester :

la courbe d’énergie potentielle posséde une barricre de

k potentiel d’amplitude E.-Eo
Exemples ('sila particule est initialement en x <x;)
https: hyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/ressort _bifur.ph
https: hvanim.sciences.univ-nantes.fr/Meca/Oscillateurs/oscill harm FJ.ph

III Energie mécanique

3.1 Théoreme de énergie mécanique
a) Enoncé

n considere un point M soumis seulement a des forces conservatives on a alors
E,(M)=E.(M)+) E,(M)=cste
ou entre deux points A et B quelconques sur la trajectoire du systeme :
AE, ,,3=0

b) Demo :
Th de I’énergie cinétique entre deux points quelconques : A E_ A->B=Z w AB(I-? )

ici seulement des forces conservatives telles que W, 5(F . )J=—A E, .ss=Ep (A)- E, (B)

ainsi A ECA-)B=Z —AE,,,5=A ECA-)B+Z AE, ,,z=0=AE, ,,;=0
I’énergie mécanique ne varie pas entre deux points quelconques si le systeme n’est soumis qu’a des forces
conservatives

c) Généralisation :

Entre deux points A et B quelconques sur la trajectoire du systeme :

-

AE"mA-)B:Z WAB(Fnoncons)



https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/oscill_harm_FJ.php
https://phyanim.sciences.univ-nantes.fr/Meca/Oscillateurs/ressort_bifur.php

Chap.15. Energie PCSI Lycée Jean Perrin

3.2 Application au pendule simple

Objectif : retrouver I'équation du mouvement par une approche

fvile e
*‘\\ énergétique
- N Méthode : on veut faire apparaitre 1, 0, g et 0 dans Iexpression
*""ﬁ ~_ 7 deE, et E. du systeme, on utilise ensuite le TEM
} TN ?‘ ~——————Rmq (pour faire apparaitre 6 il faudra utiliser une astuce )
r M e, T
| ~ r“ﬂ |
J Expression de Dénergie cinétique : E CZEm v ici
R : -
LI er v=Il0€&,=>v'=v-v=I"6"
I BT Yy 1 2
o donc E.==m(l0)
Expression de 'énergie potentiel de pesanteur :  E,,=mgz=mgl (1—cos(8))
TEM E, = cst@Ec+Epp=C5t@=%m(19)2+mgl(l—cos(8)):cste
astuce : on aimerait faire apparaitre la derivée seconde 6 donc on dérive
" —Ocvzml 20 6—mgl(—0sin(0))=0<=6ml 8+mgl€sm8—0®6(H+751n6)—0
soit  §=0 pas intéressant car pas de mouvement :
soit 0#0 ,en divisant par 0+#0 on obtient H+% sind =0
représentation de : Euo(6)
E,,(0)=mgl(1—cos(6)) A
ah \ / \ e \\\
\ \
:\ //3 \\ /
,// : \\\ ; ‘ \\,,,,,/ / \ N
T 6=2n g
6=0
Est une position

d’équilibre
stable



