Programme de colles nº 17

Semaine du 03/02/2025 au 07/02/2025

Limite d'une suite

Format de la colle :

- Automatismes de calcul (env. 10 min) : quelques items simples parmi les thèmes de la liste (actualisée chaque semaine) en page 2.
- Restitution du cours (env. 15 min) : définition et/ou théorème des chapitres au programme, puis démonstrations, exemples ou exercices exigibles listés plus bas.
- Exercice(s) libre(s) (env 30 min).

— Chapitre 14. Limite d'une suite numérique —

Tout le chapitre.

1	1 Limite d'une suite réelle			2 Théorème de la limite monotone
		Propriété vraie à partir d'un certain rang .	2.	3 Suites adjacentes
		Limite finie		
		.4 Suites convergentes, divergentes	3 Raj	appels et compléments sur les suites du
	1.4 S		$\mathbf{type}\ u_{n+1} = f(u_n)$	
			3.1 3.2	1 Rappels, limites possibles
1.7	1.6 S	Suites extraites : elles ont la même limite en cas d'existence, théorème des suites recouvrantes	4.1	imites, bornes et densité
				1 Caractérisation séquentielle des bornes
				2 Densité des décimaux, des rationnels, et des
				irrationnels dans \mathbb{R}
_		Théorèmes d'existence de limite		rève extension aux suites complexes
		Théorèmes d'encadrement, majoration, minoration	5. 5.	

Démonstrations, exemples ou exercices exigibles comme questions de cours

- Chapitre 14. Corollaire 4 : limites de $n!/n^n$ et $a^n/n!$ (avec le lemme $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} 0 \Longrightarrow u_n \xrightarrow[n \to +\infty]{} 0$).
- Chapitre 14. Théorème de la limite monotone (cas d'une suite croissante majorée).
- Chapitre 14. Théorème des suites adjacentes.

Automatismes de calcul

On donne quelques exemples de capacité attendue pour chaque thème. Le cahier de calcul fournit également une excellente source d'entraînement/inspiration.

• Logique, raisonnement

Exemples: montrer que $x^2 + y^2 \ge 2xy$ pour tous $x,y \in \mathbb{R}$, savoir écrire en langage symbolique qu'une suite est majorée, qu'une fonction est 2π -périodique et savoir nier ces assertions.

• Trigonométrie.

Exemples: formule $\cos(2a)$, résolution de $\sin a = \sin b$, $\cos(2x+1) = \frac{\sqrt{3}}{2}$, $\cos x = \sin x$.

• Inégalités : résoudre/prouver des inégalités simples

Exemples : résoudre $x |x| \leq 3x+2$, montrer que $|\sin(nx)| \leq n |\sin x|$ pour tous $n \in \mathbb{N}$, $x \in \mathbb{R}$, encadrer rapidement $x \longmapsto \frac{\cos x + 2}{x^2 + 4} \operatorname{sur} [0; 1].$

• Calcul élémentaire de nombres complexes (module, argument, linéarisation, angle moitié, racines carrées,

Exemples: calculer la forme exponentielle de $\sqrt{3}$ – 3i, les racines carrées de 3 – 4i, linéarisation de $\cos^3 x$, résolution de $z^n = 1$ dans \mathbb{C} .

• Calcul algébrique (fractions, simplification d'expressions, sommes et produits usuels, coefficients binomiaux, formule du binôme, etc).

Exemples: donner la formule pour $\sum_{k=1}^{n} q^k$, calculer $\sum_{k=1}^{n} \binom{n}{k} 2^k$, écrire $\prod_{k=1}^{n} \frac{2k}{2k+1}$ avec des factorielles.

• Définition, dérivée ou primitive d'une fonction usuelle.

Techniques élémentaires de calcul intégral, IPP ou changement de variable simple.

Exemples: $\int_{0}^{x} \cos t \, e^{2t} \, dt$, $\int_{0}^{1} t e^{t} \, dt$, $\int_{0}^{1} \sqrt{1 - t^{2}} \, dt$ en posant $t = \sin x$.

• Équations différentielles.

Exemple: résoudre $xy' + y = x \text{ sur } \mathbb{R}_+^*$.

• Suites récurrentes d'ordre 1 et 2.

Exemples : expression de la suite vérifiant $u_{n+1} = 2u_n + 1$ pour tout $n \in \mathbb{N}$ et $u_0 = 1$, expression de la suite vérifiant $v_{n+2} = v_{n+1} + v_n$ pour tout $n \in \mathbb{N}$ et $v_0 = v_1 = 1$.

• Limites de suites.

Exemples: $\lim \sqrt[n]{n}$, $\lim \frac{3^n - 2^n}{4^n - 5^n}$, $\lim \left(1 + \frac{x}{n}\right)^n$, $\lim \frac{1}{n^2} \sum_{i=1}^n \lfloor kx \rfloor$, adjacence des suites définies par

$$S_n = \sum_{k=1}^n \frac{1}{k^2}$$
 et $T_n = S_n + \frac{1}{n}$, savoir démontrer que $n!/n^n \xrightarrow[n \to +\infty]{} 0$

• Matrices.

Exemples: puissances de
$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
, de $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, calcul de $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1}$, de $\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2 \end{pmatrix}^{-1}$.