Correction DM 7

Ex 1:

1. a. L'onde réfléchie parcourt en plus deux fois la distance D entre l'auditeur et le mur donc : $\tau = \frac{2D}{c}$.

b. C'est la seule cause de décalage entre les deux ondes puisque la réflexion sur le mur ne s'accompagne d'aucun déphasage. L'onde réfléchie présente donc par rapport à l'onde directe le déphasage : $\Delta \phi = 2\pi f \tau = \frac{4\pi f D}{c}$.

c. Il peut y avoir atténuation de l'amplitude si les deux ondes sont en opposition de phase et ont une interférence destructrice. C'est le cas si :

$$\Delta \varphi = (2n+1)\pi$$
 soit $f = (2n+1)\frac{c}{4D}$,

où n est un entier.

Le domaine audible s'étend de 20 Hz à 20 kHz. Aucune des fréquences précédentes ne se trouve dans le domaine audible si : $\frac{c}{4D} > 20$ kHz. Il faut pour cela que $D < \frac{342}{4 \times 20} = 4,3$ mm. Il faut que la tête de l'auditeur frôle le mur !

d. Pour D suffisamment grand, l'onde réfléchie par le mur a une amplitude très faible devant l'onde directe.

a. L'amplitude est maximale dans le cas d'une interférence constructrice et elle vaut
2A₀. Sa valeur en décibels est :

$$A_{\text{dB}} = 20 \log \frac{2A_0}{A_{\text{ref}}} = 20 \log \frac{A_0}{A_{\text{ref}}} + 20 \log 2 = A_{0,\text{dB}} + 6.$$

Sur la courbe l'amplitude maximale observée est 97dB, donc $A_{0,dB} \ge 91$ dB.

b. L'écart moyen entre les fréquences pour lesquelles l'amplitude mesurée est minimale est $\Delta f = 2049$ Hz. D'après ce qui précède, $\Delta f = \frac{c}{2D}$, soit :

$$D = \frac{c}{2\Delta f} = \frac{342}{2 \times 2049} = 8,4.10^{-2} \text{ m}.$$

Correction Ex 2

On étudie la bille dans le référentiel terrestre galiléen. Elle est soumise à son poids, à la force de rappel élastique \overrightarrow{T} du ressort et à la réaction \overrightarrow{N} du cerceau qui est normale du fait de l'absence de frottement.

- 1. Le triangle *OMB* est isocèle en *O* donc les angles des sommets *B* et *M* sont égaux. Par ailleurs, la somme des angles d'un triangle vaut π . En explicitant ces deux conditions, on obtient $\alpha = \frac{\pi \theta}{2}$.
- 2. Pour calculer la distance MB, on détermine son carré :

$$MB^{2} = \left(\overrightarrow{MO} + \overrightarrow{OB}\right)^{2} = R^{2} + R^{2} + 2R^{2}\cos\left(\pi - \theta\right) = 4R^{2}\sin^{2}\frac{\theta}{2}.$$

On en déduit $MB = 2R \left| \sin \frac{\theta}{2} \right|$.

3. Les forces qui s'appliquent sur le système sont conservatives (poids, force de rappel élastique) ou à puissance nulle (réaction du cerceau). On est donc dans un cas de conservation de l'énergie mécanique.

On détermine l'énergie potentielle dont dérive le poids : $E_{p_1} = mgy_M = -mgR\sin\theta$, et celle dont dérive la force de rappel élastique : $E_{p_2} = \frac{1}{2}k\Delta\ell^2 = \frac{1}{2}kMB^2 = 2kR^2\sin^2\frac{\theta}{2}$. L'énergie potentielle totale vaut donc :

$$E_p = -mgR\sin\theta + 2kR^2\sin^2\frac{\theta}{2}.$$

Pour la représenter, on remarque que θ ne peut varier qu'entre 0 et π et on fixe $E_0 = mgR$ comme échelle d'énergie. On trace l'énergie potentielle sans dimension :

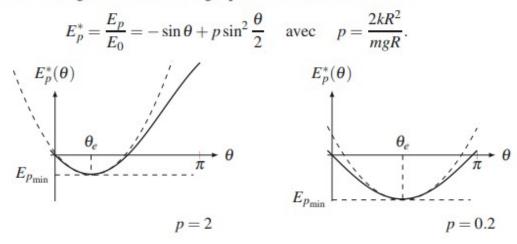


Figure 17.17 – Tracé de l'énergie potentielle pour deux valeurs de p.

L'énergie potentielle présente un minimum en θ_e compris entre 0 et π . La position de coordonnée θ_e est donc une position d'équilibre stable que l'on peut déterminer en recherchant le point d'annulation de la dérivée :

$$\left(\frac{\mathrm{d}E_p}{\mathrm{d}\theta}\right)_{(\theta=\theta_e)} = 0 \quad \Rightarrow \quad \cos\theta_e - p\sin\frac{\theta_e}{2}\cos\frac{\theta_e}{2} = 0 \quad \Rightarrow \quad \cos\theta_e - \frac{p}{2}\sin\theta_e = 0,$$

soit:

$$\tan \theta_e = \frac{2}{p} = \frac{mg}{kR}.$$

La position d'équilibre est comprise entre 0 et $\frac{\pi}{2}$. Elle tend vers 0 lorsque la raideur du ressort est si grande que le poids de M ne peut pas l'étirer et vers $\frac{\pi}{2}$ lorsqu'elle est si faible que le poids de M l'étire facilement.

4. Si on écarte la bille de sa position d'équilibre stable et qu'on la lâche sans vitesse initiale, elle oscille dans le puits de potentiel. Si on l'en écarte faiblement, on s'attend à observer des oscillations harmoniques, tout se passant comme si la bille oscillait dans le potentiel harmonique tangent dessiné en pointillé sur la figure 17.17.

5. L'énergie cinétique du système vaut $E_c = \frac{1}{2}mv^2 = \frac{1}{2}mR^2\dot{\theta}^2$ puis l'énergie mécanique :

$$E_m = \frac{1}{2}mR^2\dot{\theta}^2 - mgR\sin\theta + 2kR^2\sin^2\frac{\theta}{2}.$$

Le mouvement étant conservatif, l'énergie mécanique est conservée et sa dérivée s'annule :

$$mR^2\dot{\theta}\ddot{\theta} - mgR\cos\theta\dot{\theta} + 4kR^2\sin\frac{\theta}{2}\cos\frac{\theta}{2}\dot{\theta} = 0 \Rightarrow \ddot{\theta} - \frac{g}{R}\left(\cos\theta - \frac{p}{2}\sin\theta\right) = 0.$$

6. On écarte M de sa position d'équilibre et on pose $\theta = \theta_e + \varepsilon$ puis :

$$\cos \theta = \cos(\theta_e + \varepsilon) = \cos \theta_e \cos \varepsilon - \sin \theta_e \sin \varepsilon = \cos \theta_e - \varepsilon \sin \theta_e$$

$$\sin \theta = \sin(\theta_e + \varepsilon) = \sin \theta_e \cos \varepsilon + \cos \theta_e \sin \varepsilon = \sin \theta_e + \varepsilon \cos \theta_e,$$

en utilisant les approximations $\cos \varepsilon \simeq 1$ et $\sin \varepsilon \simeq \varepsilon$, valables pour $\varepsilon \ll 1$. On injecte ces relations dans l'équation du mouvement et on trouve :

$$\ddot{\theta} + \frac{g}{R} \left(\sin \theta_e + \frac{p}{2} \cos \theta_e \right) \varepsilon - \frac{g}{R} \left(\cos \theta_e - \frac{p}{2} \sin \theta_e \right) = 0.$$

 $\ddot{\theta} = \ddot{\varepsilon}$ puisque ε et θ diffèrent d'une constante. Le terme $\left(\cos\theta_e - \frac{p}{2}\sin\theta_e\right) = 0$ d'après la question 3. Comme θ_e est compris entre 0 et $\frac{\pi}{2}$, son sinus et son cosinus sont positifs.

 $\frac{g}{R}\left(\sin\theta_e + \frac{p}{2}\cos\theta_e\right)$ est une grandeur positive homogène à une pulsation au carré. On pose donc $\omega_0 = \sqrt{\frac{g}{R}\left(\sin\theta_e + \frac{p}{2}\cos\theta_e\right)}$ et l'équation du mouvement devient :

$$\ddot{\varepsilon} + \omega_0^2 \varepsilon = 0.$$

Comme prévu, le mouvement au voisinage d'une position d'équilibre stable est celui d'un oscillateur harmonique. Le calcul effectué permet d'en déterminer la pulsation ω_0 .