CHAP.21: PREMIER PRINCIPE DE LA THERMODYNAMIQUE:

Rapports de Jury:

- On note beaucoup de confusions entre d, δ et Δ: ces notations sont certes un peu difficiles mais la rigueur quant à leur utilisation est indispensable pour une bonne compréhension de la situation étudiée.
- Les bilans d'énergie (en mécanique, en thermodynamique, en thermochimie...) ne sont que très rarement bien traités. Définir le système étudié doit constituer la première étape du raisonnement.
- Lors d'un calcul de transfert thermique, la formule Q = mcΔT est très souvent donnée sans aucune justification. Quand elle est vraie, elle doit absolument être déduite du premier principe appliqué sur un système à définir et entre des instants à préciser.
 Le premier principe de la thermodynamique est souvent mel maîtrié La foit que de la thermodynamique est souvent mel maîtrié La foit que de la thermodynamique est souvent mel maîtrié La foit que de la thermodynamique est souvent mel maîtrié La foit que de la thermodynamique est souvent mel maîtrié de la thermodynamique est souvent mel m
- Le premier principe de la thermodynamique est souvent mal maîtrisé. Les écritures [aberrantes] U = Q + W, ou dU = Q + W apparaissent régulièrement.
- Énergie interne ou enthalpie sont souvent confondues et l'étude des changements d'état régulièrement mal menée. Il est alors évident que les candidats qui savent citer et utiliser correctement les théorèmes du cours sont tout de suite valorisés.

ANNEXE 1. Vocabulaire fondamental en thermo (À emporter partout avec soi et à accrocher à côté de son lit)

· VOCABULAIRE	DÉFINITION
Transformation isochore	V=aste
Transformation monotherme	Text= oste (MaisTypatvarier)
Transformation isotherme	Ti=Tent = cote
Transformation monobare	Pext = cote (Mais Ppatramar)
Transformation isobare	Pa=Pent= este
Transformation quasi-statique	Suite continue détails d'équilibre TotPréélais Vt de le sustième
Transformation mécaniquement réversible	TotPidéfinis Vt do le système quasi-statique + equilibre méca: (Pint=Pent)
Transformation réversible	quasi-statique + Spint = Pent Lint = Tent
Transformation adiabatique	Q=O
Parois athermanes	Ne parnettont par l'échange d'engie sous forme de chaleur avec D'ent

ANNEXE 2. Comment déterminer une variation d'énergie interne ?

TRANSFORMATION	RELATION À APPLIQUER
Pour un gaz parfait (quelle que soit la transformation)	AU=CVAT { CV=3nR G.P monato
Pour un solide/liquide (quelle que soit la transformation, si C est indépendante de T)	DU = AH = CAT ou mc AT
Au cours d'un cycle	△U=0 △H=0

ANNEXE 3. Comment déterminer le travail des forces de pression ?

TRANSFORMATION	RELATION À APPLIQUER
Formule générale	W=-Sipertal
Pour une transformation isochore	W = 0
Pour une transformation monobare	W = - Pent (VP-Vi)
Pour une transformation mécaniquement réversible	W = - Spint(v) dV (Pest: Pint) Meis Pasosle
Pour une transformation isobare mécaniquement réversible	W = - Poot (Vg-Vi)
Pour une transformation isotherme mec. réversible d'un gaz parfait	W=-nRToln(V/Vi)

ANNEXE 4. Comment déterminer un transfert thermique ?

TRANSFORMATION	RELATION À APPLIQUER
Cas général	Q = DU - W - DEGMAN
Transformation adiabatique	Q=0
Transformation isochore (Rt Pos & Maran a Area que fd P)	Q = AU
Transformation à pression constante (isobare mec. réversible ou monobare avec, à l'EI et l'EF, p _{int} =p _{ext})	Q = AH

ANNEXE 5. Lien entre Cv et Cp pour un gaz parfait

Relation de Mayer	Cp-Cv=nR
Expression de Cv en fonction de γ	$Cv = \frac{nR}{k-1}$
Expression de Cp en fonction de γ	Cp= xnR
Valeur de γ pour un GPM et un GPD	8=53 (GP monarato) 8== GPD