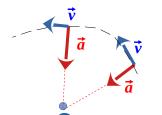
vecteur accélération :

En fonction de v_0 et R:

En fonction de ω_0 et R :





Attention! Mouvement uniforme ne veut pas dire

Ici le vecteur accélération est constant en norme par contre la direction varie dans la base cartésienne : \vec{a} est dirigé selon $-\vec{e}_r$

Vocabulaire : comme \vec{a} est dirigé vers le centre et colinéaire à \vec{e}_r on dit que l'accélération est

Rmq (HP): Un objet de masse m en M suivant cette trajectoire subit une force dite centrifuge telle que :

 $F_{centrifuge} = -m\vec{a} = m\frac{v_0^2}{R}\vec{e}_r$: C'est pour cette raison qu'on est poussé vers l'extérieur dans une voiture qui tourne: plus virage est serrer plus la force est grande (dépendance en 1/R), plus la vitesse est grande plus la force est grande (dépendance en v_0^2)

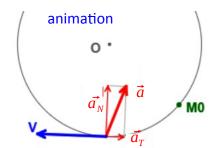
a) Mouvement circulaire non uniforme

On a toujours

Par contre

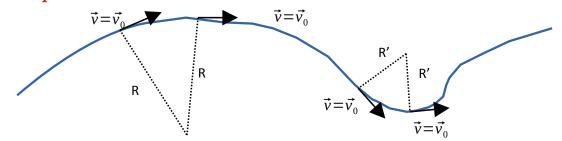
que l'on peut aussi écrire

Comme l'accélération angulaire $\ddot{\theta}$ n'est pas nulle :



b) Interprétation du vecteur \vec{a}

Rmq: La composante normale de l'accélération est liée à la courbure de la trajectoire

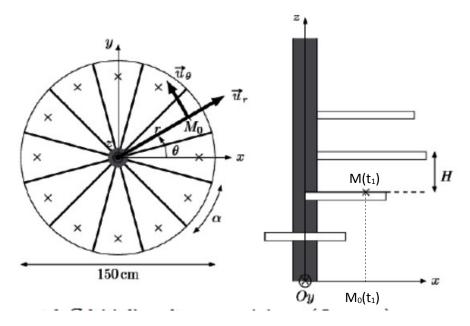


Repère de Frenet : on utilise parfois le repère de Frenet pour d'écrire le mouvement :

- est le vecteur unitaire tangent à la trajectoire et orienté dans
- est le vecteur unitaire normale à la trajectoire orienté dans le

On a donc dans ce repère:

I.2 Mouvement hélicoïdal



Un escalier en colimaçon est constitué de quatorze marches régulièrement disposées autour d'un pilier central.

Une personne assimiler à un point M monte d'une démarche régulière à raison d'une marche par seconde en restant à r= 60 cm de Oz

sur la figure de gauche M_0 est le projeté ortho de M suivant le plan perpendiculaire à Oz. Les croix représentent les positions successives de M_0 au niveau de chaque marche

la figure fait apparaître l'angle des marches : $\alpha=30^{\circ}$

Q1 On donne H = 20 cm Estimer la dérivée temporelle \dot{z} de la cote (altitude) z du point M. Le mouvement est-il accéléré suivant Oz ? Proposer une expression de z(t) en prenant z=0 à t=0s

Q2 Nous nous intéressons à la rotation de M_0 autour du pilier .Qualifier le mouvement de M_0 donner la valeur de la vitesse angulaire $\dot{\boldsymbol{\theta}}$

Q3 Exprimer les vecteurs vitesse et accélération de M_0 dans le référentiel \mathscr{R} . Calculer la norme de la vitesse.

Q4 Donner le lien entre $\dot{\mathbf{z}}$ et $\dot{\boldsymbol{\theta}}$

Q5 Exprimer dans la base $(\vec{u}_r, \vec{u}_\theta, \vec{u}_z)$, les vecteurs vitesse et accélération de M dans \mathcal{R}

III Cinématique du solide : exemples simples

III.1) Translation

Déf:

Rmq: La norme de la vitesse peut varier au cours du temps, mais elle varie de la même façon pour tous les points!

a) Translations rectilignes

Def:

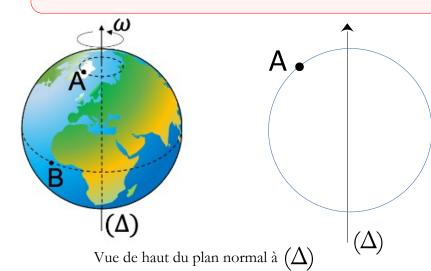
Propriété: Un solide est en translation lorsque les directions du repère lié au solide sont liée par rapport au référentiel d'étude

Exemples:

	b) translation circulaire
AB	Def:
\overrightarrow{AB}	
A 17	
\overrightarrow{AB}	
	Propriété:
\overrightarrow{AB} \overrightarrow{AB}	
\overrightarrow{AB}	

III.2) Rotation autour d'un axe fixe

Def:



Soit un solide en rotation autour d'un axe Δ à la vitesse angulaire ω

Soit A un point du solide, à la distance r_A de l'axe Δ On a $\omega = \dot{\theta}$ (Indépendant du point A considérée)

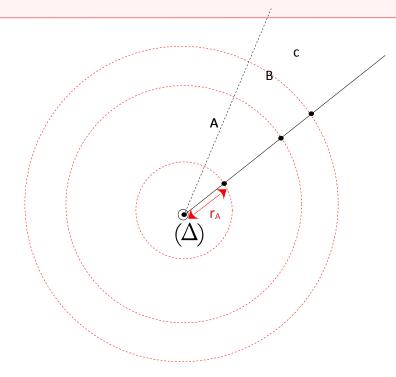
En coordonnées cylindriques dans le plan normal à Δ et passant par A :

Comme
$$r=r_A = \text{cste}$$
, $\omega = \dot{\theta}$ et $\dot{z} = 0$

$$\vec{V}(A) =$$

Trajectoire de A

Champ de vitesse:



champ d'accélération: