Programme de khôlle semaine 9

Organisation de la séance : Chaque khôlle commence par une question de cours ou un exercice simple qui fait intervenir une notion de cours

Si vous répondez bien à cette question de cours vous obtenez une note au moins égale à 10/20

Les exercices porteront sur la cinématique et la dynamique.

- Avant d'appliquer le PFD (2ème loi de Newton) à un système il faut impérativement définir ce système, donner le référentiel d'étude et faire le bilan des forces s'appliquant sur le système
- On peut demander de connaître la force de rappel d'un ressort, il faut donc aussi maîtriser le chapitre sur les oscillateurs harmoniques

Chapitre 7 : cinématique du point

- 1 Donner la définition d'un solide.
- 2 Etablir l'expression de \overrightarrow{OM} , \vec{v} et \vec{a} en coordonnées polaires.
- 3 Etablir l'expression de \overrightarrow{OM} , \vec{v} et \vec{a} en coordonnées cartésiennes (3D).
- 4 Etablir l'expression de \overrightarrow{OM} , \vec{v} et \vec{a} en coordonnées cylindriques.
- 5 Exprimer (sans démonstration) le déplacement élémentaire d \overrightarrow{OM} en coordonnées cartésiennes et en coordonnées cylindriques.
- On lâche une balle avec une vitesse initiale \vec{v}_0 . On assimile la balle à un point matériel M. On néglige les frottements devant les autres forces.
- 7 Exprimer \vec{a} , \vec{v} et \overrightarrow{OM} en fonction du temps.
- 8 Donner les 3 équations horaires du mouvement.
- 9 Quelle est la nature du mouvement pour $\vec{v_0} = \vec{0}$ ou $\vec{v_0}$ colinéaire à \vec{g} ?
- 10 Donner l'équation de la trajectoire z(x) en coordonnées cartésiennes.
- 11 Quelle est la nature du mouvement dans le cas général?
- 12 On considère que la Terre tourne autour du Soleil selon un mouvement circulaire (distance Terre-Soleil = R = constante) et uniforme ($\|\vec{v}\| = v_0$).
- 13 Montrer que \vec{v} est orthoradial, et exprimer v_0 en fonction de $\dot{\theta}$ et R.
- 14 Etablir l'expression de \vec{a} en fonction de $\dot{\theta}$ et R, puis en fonction de v_0 et R. Commenter.
- 15 En fait, le mouvement de la Terre autour du Soleil n'est pas uniforme. Etablir l'expression de \vec{a} dans ce cas. Commenter.
- 16 De manière générale, un mouvement uniforme est-il caractérisé par une accélération nulle ? Pourquoi ?
- 17 De manière générale, on peut décomposer l'accélération en un point M en une accélération \vec{a}_{\parallel} colinéaire à la vitesse et une accélération \vec{a}_{\perp} perpendiculaire à celle-ci.

A quoi est liée la composante \vec{a}_{\perp} ?

A quoi est liée la composante \vec{a}_{\parallel} ?

- 18 Cinématique du solide : donner un exemple de translation rectiligne et un exemple de translation circulaire.
- 19 On considère un solide en rotation autour d'un axe fixe à la vitesse angulaire ω .

Décrire la trajectoire d'un point quelconque du solide.

Exprimer la vitesse d'un point quelconque du solide en fonction de sa distance à l'axe et de ω .

Chapitre 8 : base de dynamique Newtonienne

Questions de cours (à savoir faire sans le cours sous les yeux)

- 1 Qu'est-ce qu'un référentiel galiléen ?
- 2 Énoncer les trois lois de Newton.
- 3 Définir la quantité de mouvement d'un point matériel M de masse m et de vitesse \vec{v} dans un référentiel \Re .
- Etablir l'expression de la quantité de mouvement d'un système constitué de deux points matériels M_1 et M_2 de masses respectives m_1 et m_2 en fonction de m_1 , m_2 et de $\overrightarrow{V_G}$ où G est le centre de gravité du système.
- 5 On lâche sans vitesse initiale une masse m d'une hauteur h dans le champ de pesanteur terrestre. On néglige les frottements devant les autres forces.
 - a Etablir l'expression de $\vec{v}(t)$ et z(t).
 - b Déterminer l'expression littérale du temps de chute.
 - c Déterminer l'expression littérale de la vitesse au moment de l'impact au sol.
- On lâche sans vitesse initiale une masse m d'une hauteur h dans le champ de pesanteur terrestre. On considère que les frottements sont de la forme $\vec{F} = -k\vec{v}$.
 - a Etablir l'équation différentielle vérifiée par v(t).
 - b En déduire l'expression de v(t). Commenter.
- On lâche sans vitesse initiale une masse m d'une hauteur h dans le champ de pesanteur terrestre. On considère que les frottements sont de la forme $\vec{F} = -\lambda v \vec{v}$. Etablir l'équation différentielle vérifiée par v(t). Commenter.
- 8 On considère un pendule simple de longueur l au bout duquel est attachée une masse m.
 - a Etablir l'équation du mouvement.
 - b Résoudre l'équation du mouvement dans l'approximation des petits angles.
- 9 Enoncer les lois de Coulomb pour les frottements solides.
- 10 On considère un solide de masse m sur un plan incliné d'un angle α avec l'horizontale.
 - a Etablir l'expression de α_{LIM} , angle à partir duquel le solide commence à glisser.
 - b Etablir l'expression de l'accélération \vec{a} dans le cas où $\alpha > \alpha_{\text{LIM}}$. En déduire la nature du mouvement.