Ensemble des nombres complexes

Exercice 1 (\bigstar) . Soit $x \in \mathbb{R}$. Mettre les nombres complexes suivants sous forme algébrique :

1.
$$z_1 = 3i(2ix - 4)$$

2.
$$z_2 = \frac{1}{i}$$

3.
$$z_3 = i^3$$

4.
$$z_4 = (3-i)^2$$

5.
$$z_5 = \frac{3(2+i)}{1-i}$$

1.
$$z_1 = 3i(2ix - 4)$$
 2. $z_2 = \frac{1}{i}$
5. $z_5 = \frac{3(2+i)}{1-i}$ 6. $z_6 = \frac{i-e^x}{i+x}$

7.
$$z_7 = \frac{\cos(x) + 2ix}{i} + (ie^x - e^x)(1+2i)$$

Exercice 2 (\bigstar) . Soit $t \in \mathbb{R}$. Calculer le module de :

1.
$$z_1 = 5i$$

2.
$$z_2 = -3i$$

3.
$$z_3 = 3 - 2i$$

4.
$$z_4 = (2+i)(i-t)$$

5.
$$z_5 = -2i(\sin(t) - it)$$
 6. $z_6 = \frac{2-i}{3-i}$

6.
$$z_6 = \frac{2-i}{3-i}$$

3.
$$z_3 = 3 - 2i$$

7. $z_7 = \frac{3i(1+it^2)}{e^t - i}$

Exercice 3 $(\bigstar \bigstar)$. Soit $t \in \mathbb{R}$.

1. Mettre les nombres complexes suivants sous forme algébrique (en précisant s'il y a des valeurs de tinterdites):

(a)
$$z_1 = \frac{2+i}{1+2i}$$

(b)
$$z_2 = (1+i)^5$$

(c)
$$z_3 = \frac{e^{-it}}{1+3i}$$

(b)
$$z_2 = (1+i)^5$$
 (c) $z_3 = \frac{e^{-it}}{1+3i}$ (d) $z_4 = \frac{1+e^{it}}{e^{it}-e^{2it}}$.

2. Déterminer leurs modules.

Exercice 4 (\bigstar) . Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$. Linéariser les expressions suivantes :

1.
$$\sin^2(2\theta)$$

2.
$$\sin(2\theta)\cos(\theta)$$

3.
$$\sin^3(\theta)$$

4.
$$\cos(n\theta)\cos(\theta)$$

2.
$$\sin(2\theta)\cos(\theta)$$

5. $\cos^2((n+1)\theta)$

6.
$$\sin((n+1)\theta)\sin((n-1)\theta)$$

Exercice 5 (\bigstar). Mettre les complexes suivants sous forme exponentielle :

1.
$$z = i$$

5. $z = e^{\frac{2i\pi}{5}} \perp e^{\frac{-i\pi}{5}}$

2.
$$z = -3$$

3.
$$z = -\sqrt{3} +$$

4.
$$z = -5e^{\frac{3i\pi}{4}}$$

5.
$$z = e^{\frac{2i\pi}{5}} + e^{\frac{-i}{5}}$$

6.
$$z = 1 - e^{\frac{i\pi}{4}}$$

7.
$$z = 1 + e^{i\frac{\pi}{6}}$$

8.
$$z = 1 + e^{i\frac{77}{6}}$$

Exercice 6 (\bigstar) . Pour les valeurs de $z \in \mathbb{C}$ suivantes, placer (approximativement) dans le plan complexe les nombres z^n , où $n \in \mathbb{N}$.

1.
$$z = e^{i\frac{\pi}{3}}$$

2.
$$z = \frac{5e^{i\frac{\pi}{3}}}{4}$$

3.
$$z = \frac{4e^{i\frac{\pi}{3}}}{5}$$

Exercice 7 $(\bigstar \bigstar)$.

- 1. Soient z_1 et z_2 deux nombres complexes qui vérifient $|z_1 a| \le 2$ et $|z_2 a| \le 3$, où a est le complexe -2+i. Montrer que $|z_1-z_2| \leq 5$. On pourra commencer par faire un dessin de la situation.
- 2. Soient z_1 et z_2 deux nombres complexes qui vérifient $|z_1-a|\leqslant 2$ et $|z_2-b|\leqslant 3$, où a=-2+i et b=-2+2i. Montrer que $|z_1-z_2|\leqslant 6$. On pourra commencer par faire un dessin de la situation.

Exercice 8 ($\bigstar \bigstar$). Déterminer l'ensemble des $z \in \mathbb{C}$ qui vérifient |z-1| = |z-i|:

- 1. par un raisonnement purement géométrique;
- 2. par un raisonnement purement algébrique.

Exercice 9 (\bigstar) . Soit $n \ge 2$, $p \in \mathbb{Z}$ et $\omega \in \mathbb{C}$ tel que $\omega^n = 1$. Calculer les sommes suivantes :

1.
$$\sum_{k=0}^{n-1} \omega^k$$

$$2. \sum_{k=0}^{n-1} \omega^{kp}$$

3.
$$\sum_{k=0}^{n-1} \binom{n}{k} \omega^k$$

Exercice 10 (\bigstar). Soit $n \in \mathbb{N}$ et $a \in \mathbb{R}$, calculer $S_1 = \sum_{k=0}^n \left(\binom{n}{k} \cos(ka) \right)$ et $S_2 = \sum_{k=0}^n \left(\binom{n}{k} \sin(ka) \right)$.

Exercice 11 $(\bigstar \bigstar)$. Soit $n \in \mathbb{N}$, calcular $\sum_{k=1}^{n} \sin\left(\frac{k\pi}{n}\right)$. En déduire sa limite pour $n \to +\infty$.

Exercice 12 $(\bigstar \bigstar)$. Pour tout $n \in \mathbb{N}$, et pour tout $(a,b) \in \mathbb{R}^2$, calculer $S = \sum_{k=0}^{\infty} \sin(a+kb)$.

Exercice 13 ($\star\star$). z et z' étant deux complexes non nuls et de même module, montrer que $U=\frac{(z+z')^2}{zz'}$ est un nombre réel positif.

Exercice 14 ($\bigstar \bigstar \bigstar$). Pour quelles valeurs de n le complexe $\left(\frac{(1-i\sqrt{3})^5}{(1-i)^3}\right)^n$ est-il un réel positif?

Exercice 15 (Type DS). On considère l'application f: $\begin{array}{ccc} \mathbb{C}\setminus\{1\} & \to & \mathbb{C} \\ z & \mapsto & \frac{\bar{z}+1}{z-1} \end{array}.$

- 1. (a) Déterminer les antécédents de 1 par f.
 - (b) Déterminer l'ensemble $f(i\mathbb{R})$.
 - (c) La fonction f est-elle injective de $\mathbb{C} \setminus \{1\}$ dans \mathbb{C} ? Surjective? Bijective?
- 2. Dans cette question, on note g la restriction de f à $\mathbb{R} \setminus \{1\}$.
 - (a) Montrer que $g(\mathbb{R} \setminus \{1\}) \subset \mathbb{R} \setminus \{1\}$.
 - (b) Soit $x \in \mathbb{R} \setminus \{1\}$, simplifier $g \circ g(x)$.
 - (c) En déduire que g est une bijection de $\mathbb{R} \setminus \{1\}$ dans $\mathbb{R} \setminus \{1\}$ et déterminer sa réciproque.