Déterminants

Exercice 1 (\bigstar) . Pour chacune des matrices ci-dessous, calculer son déterminant, déterminer si elle est inversible ou non, et si oui, donner le déterminant de son inverse.

$$A = \begin{pmatrix} -1 & -2 & 0 \\ 1 & 2 & 5 \\ 2 & 3 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & -1 \\ 2 & 3 \end{pmatrix} \qquad C = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 2 & 0 \\ 4 & -4 & 2 \end{pmatrix}$$

Exercice 2 (**). Calculer le déterminant de :

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 2 & 1 & -3 \\ 1 & 3 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & -1 \\ 3 & 2 & -3 \\ -1 & 0 & 5 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 5 & 0 & -3 \\ 0 & 0 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 0 & -1 & 3 & 1 \end{pmatrix}$$

Exercice 3 (\bigstar). On considère les vecteurs $e_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$, $e_2 = \begin{pmatrix} 3 \\ 0 \\ m \end{pmatrix}$, $e_3 = \begin{pmatrix} m \\ 1 \\ 0 \end{pmatrix}$. Pour quelle(s) valeur(s) de $m \in \mathbb{R}$ la famille (e_1, e_2, e_3) est-elle une base de \mathbb{R}^3 ?

Exercice 4 (\bigstar). Soit f l'application de $\mathbb{R}_3[X]$ dans $\mathbb{R}_3[X]$ définie par $f(P) = XP'(X+2) + P(1)(X^3-1)$.

- 1. Montrer que f est bien définie et linéaire.
- 2. Calculer det(f). L'application f est-elle un automorphisme?

Exercice 5 (\bigstar). Pour quelles valeurs de $t \in \mathbb{R}$ la matrice $M_t = \begin{pmatrix} 1 & t & 2 \\ 1 & 2 & t \\ 4 & 4 \end{pmatrix}$ est-elle inversible?

Exercice 6 ($\star\star$). Soit $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{K})$ et $\varphi_A \in \mathcal{L}(\mathbb{K}^n)$ son application linéaire canoniquement associée.

- 1. Montrer que φ_A est une symétrie si et seulement si il existe $P \in GL_n(\mathbb{K})$ tel que $A = PDP^{-1}$, où D est une matrice diagonale de 1 et de -1.
- 2. Dans ce cas, que vaut le déterminant de φ_A ?

Exercice 7 $(\bigstar \bigstar)$. Soit $n \geqslant 3$ un entier, et $x \in \mathbb{R}$. Calculer :

$$a_{n} = \begin{vmatrix} 0 & \cdots & \cdots & 0 & n \\ n-1 & 0 & & \vdots & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \ddots & 2 & 0 & 2 \\ 0 & \cdots & 0 & 1 & 1 \end{vmatrix} \qquad b_{n} = \begin{vmatrix} 1 & x \\ x & 1 & & (0) \\ & x & & \vdots \\ & & \ddots & & \vdots \\ & & & & x \end{vmatrix} \qquad c_{n} = \begin{vmatrix} x & 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & x & 1 \\ 1 & \cdots & \cdots & 1 & 1 \end{vmatrix}$$

Exercice 8 $(\bigstar \bigstar)$. Pour tout *n*-uplet $(a_1, \ldots, a_n) \in \mathbb{C}^n$, on définit le déterminant de Vandermonde comme :

$$V(a_1, \dots, a_n) = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \vdots & & \vdots \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \end{vmatrix}.$$

- 1. Calculer V(a,b,c), pour $(a,b,c) \in \mathbb{C}^3$, puis V(a,b,c,d), pour $(a,b,c,d) \in \mathbb{C}^4$. On attend des résultats finaux sous forme factorisée.
- 2. Exprimer $V(a_1,a_2,\ldots,a_n)$ en fonction de $V(a_2,\ldots,a_n)$, puis en déduire une formule générale pour $V(a_1,\ldots,a_n)$.

Exercice 9 $(\bigstar \bigstar)$. Soit $A(X) = X^3 - X^2 - X + 2$ et $B(X) = X^3 - 3X^2 + 2X$. Pour tout $P \in \mathbb{R}_2[X]$, on note f(P) le reste de la division euclidienne de AP par B.

- 1. Montrer que $f \in \mathcal{L}(\mathbb{R}_2[X])$.
- 2. Déterminer la matrice M représentative de f dans la base canonique, et montrer que f est un automorphisme.

Exercice 10 $(\bigstar \bigstar \bigstar)$. Soit $\theta \in \mathbb{R} \setminus (\pi \mathbb{Z})$.

Calculer le déterminant de taille
$$n$$
 suivant : $\Delta_n = \begin{bmatrix} 2\cos(\theta) & 1 & 0 & \cdots & 0 \\ 1 & 2\cos(\theta) & 1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 2\cos(\theta) & 1 \\ 0 & \cdots & 0 & 1 & 2\cos(\theta) \end{bmatrix}$

Indication : commencer par déterminer une relation de récurrence sur les Δ_n . Par convention, $\Delta_0 = 1$.

Exercice 11 (Type DS). L'objectif de l'exercice est de déterminer les couples de fonctions $(u_1, u_2) \in (C^1(\mathbb{R}, \mathbb{R}))^2$ solutions du système d'équations différentielles (E) suivant : $\forall t \in \mathbb{R}$, $\begin{cases} u'_1(t) = -7u_1(t) - 5u_2(t) \\ u'_2(t) = 10u_1(t) + 8u_2(t) \end{cases}$. On fixe $(u_1, u_2) \in (C^1(\mathbb{R}, \mathbb{R}))^2$, et $\forall t \in \mathbb{R}$, on pose les vecteurs $U(t) = \begin{pmatrix} u_1(t) \\ u_2(t) \end{pmatrix}$ et $U'(t) = \begin{pmatrix} u'_1(t) \\ u'_2(t) \end{pmatrix}$.

- 1. Montrer que (E) peut s'écrire sous la forme $\forall t \in \mathbb{R}$, U'(t) = AU(t) pour une matrice A à préciser. Dans la suite de l'exercice, on note φ_A l'endomorphisme de \mathbb{R}^2 canoniquement associé à la matrice A et id l'endomorphisme identité de \mathbb{R}^2 .
- 2. L'objectif de cette question est de déterminer les $\lambda \in \mathbb{R}$ pour lesquels il existe un vecteur $x \in \mathbb{R}^2$ différent de (0,0) vérifiant $\varphi_A(x) = \lambda x$.
 - (a) Justifier que ce problème équivaut à déterminer les $\lambda \in \mathbb{R}$ pour lesquels $A \lambda I_2$ n'est pas inversible.
 - (b) Calculer $\det(A \lambda I_2)$, en déduire que les seules solutions du problème sont $\lambda = 3$ et $\lambda = -2$.
- 3. On cherche maintenant à exprimer la matrice A en fonction d'une matrice diagonale.
 - (a) Déterminer une base de $Ker(\varphi_A 3id)$ et de $Ker(\varphi_A + 2id)$.
 - (b) En déduire une base B de \mathbb{R}^2 pour laquelle la matrice $\operatorname{Mat}_B(\varphi_A)$ vaut $D = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$.
 - (c) Déterminer une matrice P pour laquelle on a $A = PDP^{-1}$ (on explicitera également P^{-1}).
- 4. Résolution de (E). Pour $t \in \mathbb{R}$, on définit le vecteur $V(t) = \begin{pmatrix} v_1(t) \\ v_2(t) \end{pmatrix}$ par $V(t) = P^{-1}U(t)$.
 - (a) Vérifier que pour tout $t \in \mathbb{R}$, $V'(t) = P^{-1}U'(t)$.
 - (b) En déduire que (E) équivaut à $\forall t \in \mathbb{R}, V'(t) = DV(t)$.
 - (c) Écrire cette égalité comme un système d'équations différentielles d'inconnues v_1 et v_2 , et le résoudre.
 - (d) Résoudre le problème initial.