Exercice 1 (**). Donner l'ensemble de dérivabilité de chacune des fonctions suivantes et calculer leur dérivée :

1.
$$f: x \mapsto \sqrt{1 + e^x}$$

2.
$$f: x \mapsto (e^{3x} + 3x^2)^4$$

3.
$$f: x \mapsto (\cos^2(x) + \frac{3}{2})\sin(2x)$$

4.
$$f: x \mapsto \frac{1}{(e^x + e^{-x})^2}$$

5.
$$f: x \mapsto \sqrt{\ln(x) - 1}$$

6.
$$f: x \mapsto \ln\left(\ln(x)\right)$$

7.
$$f: x \mapsto (e^{3x} - x)^4$$

8.
$$f: x \mapsto x \ln(x^2 - 3)$$

9.
$$f: x \mapsto \frac{e^{x-\frac{1}{x}}}{x^2-1}$$

10.
$$f: x \mapsto \sqrt{e^{x^2} + 2}$$

11.
$$f: x \mapsto \frac{\left(\ln(x)\right)^4}{x}$$

12.
$$f: x \mapsto (x^3 + x - 2)^4$$

13.
$$f: x \mapsto \sqrt{\frac{x-1}{x+1}}$$

14.
$$f: x \mapsto \sin(x^2)$$

15.
$$f: x \mapsto \sin\left(\ln\left(1 + \frac{2}{x}\right)\right)$$

13.
$$f: x \mapsto \sqrt{\frac{x-1}{x+1}}$$

16. $f: x \mapsto \frac{\cos(x)}{\sqrt{\sin(x)+2}}$

17.
$$f: x \mapsto xe^{\cos(x)}$$

Résultat attendu:

1.
$$\forall x \in \mathbb{R}, f'(x) = \frac{e^x}{2\sqrt{1+e^x}}$$

2.
$$\forall x \in \mathbb{R}, f'(x) = 12(e^{3x} + 2x)(e^{3x} + 3x^2)^3$$

3.
$$\forall x \in \mathbb{R}$$
. $f'(x) \equiv \cos(2x) (2\cos^2 x)$

4.
$$\forall x \in \mathbb{R}, f'(x) = -\frac{2(e^x - e^{-x})}{(e^x + e^{-x})^3}$$

3.
$$\forall x \in \mathbb{R}, f'(x) = \cos(2x) \left(2\cos^2(x) + 3\right) - \sin^2(2x)$$
 4. $\forall x \in \mathbb{R}, f'(x) = -\frac{2(e^x - e^{-x})}{(e^x + e^{-x})^3}$ 5. $\forall x \in]e, +\infty[, f'(x) = \frac{1}{2x\sqrt{\ln(x) - 1}}$ 6. $\forall x \in]1, +\infty[, f'(x) = \frac{1}{x\ln(x)}$

6.
$$\forall x \in]1, +\infty[, f'(x)] = \frac{1}{x \ln(x)}$$

7.
$$\forall x \in \mathbb{R}, f'(x) = 4(3e^{3x} - 1)(e^{3x} - x)^3$$

8.
$$\forall x \in \mathbb{R} \setminus [-\sqrt{3}, \sqrt{3}], f'(x) = \ln(x^2 - 3) + \frac{2x^2}{x^2 - 3}$$

9.
$$\forall x \in \mathbb{R} \setminus \{-1, 0, 1\}, f'(x) = \frac{e^{x - \frac{1}{x}}(x^2 - \frac{1}{x^2} - 2x)}{(x^2 - 1)^2}$$

10.
$$\forall x \in \mathbb{R}, f'(x) = \frac{xe^{x^2}}{\sqrt{e^{x^2} + 2}}$$

11.
$$\forall x \in \mathbb{R}_+^*, f'(x) = \frac{4(\ln(x))^3 - (\ln(x))^4}{x^2}$$

12.
$$\forall x \in \mathbb{R}, f'(x) = 4(3x^2 + 1)(x^3 + x - 2)^3$$

13.
$$\forall x \in \mathbb{R} \setminus [-1, 1], f'(x) = \sqrt{\frac{x+1}{x-1}} \frac{1}{(1+x)^2}$$

15. $\forall x \in \mathbb{R} \setminus [-2, 0], f'(x) = \frac{-2\cos(\ln(1+\frac{2}{x}))}{x(x+2)}$

14.
$$\forall x \in \mathbb{R}, f'(x) = 2x \cos(x^2)$$

15.
$$\forall x \in \mathbb{R} \setminus [-2, 0], f'(x) = \frac{-2\cos(\ln(1 + \frac{2}{x}))}{x(x+2)}$$

16.
$$\forall x \in \mathbb{R}, f'(x) = -\frac{\cos^2(x) + 2\sin^2(x) + 4\sin(x)}{2(\sqrt{\sin(x) + 2})^3}$$

17.
$$\forall x \in \mathbb{R}, f'(x) = e^{\cos(x)} (1 - x \sin(x))$$

Exercice 2 (\bigstar) . Soit f une fonction dérivable sur \mathbb{R} , qui ne s'annule pas. Calculer (en fonction de f') la dérivée des fonctions suivantes (en précisant l'ensemble de dérivabilité) :

1.
$$u_1: x \mapsto f(3-2x)$$

$$2. \ u_2: x \mapsto f(e^x)$$

3.
$$u_3: x \mapsto (f(x))^2$$

$$4. \ u_4: x \mapsto f(x^2)$$

5.
$$u_5: x \mapsto f(\sqrt{x})$$

8. $u_8: x \mapsto \sin(f(\sin(x)))$

3.
$$u_3: x \mapsto (f(x))^2$$

6. $u_6: x \mapsto \frac{1}{f(\ln(x))}$
9. $u_9: x \mapsto f(e^{f(x)})$

7. $u_7: x \mapsto xf\left(\frac{1}{x}\right)$ Résultat attendu:

1.
$$\forall x \in \mathbb{R}, u_1'(x) = -2f'(3-2x)$$

2.
$$\forall x \in \mathbb{R}, \ u_2'(x) = e^x f'(e^x)$$

3.
$$\forall x \in \mathbb{R}, \ u_3'(x) = 2f'(x)f(x)$$

4.
$$\forall x \in \mathbb{R}, u'_4(x) = 2xf'(x^2)$$

5.
$$\forall x \in \mathbb{R}_+^*, u_5'(x) = \frac{f'(\sqrt{x})}{2\sqrt{x}}$$

6.
$$\forall x \in \mathbb{R}_+^*, \ u_6'(x) = -\frac{f'(\ln(x))}{x(f(\ln(x)))}$$

5.
$$\forall x \in \mathbb{R}_+^*$$
, $u_5'(x) = \frac{f'(\sqrt{x})}{2\sqrt{x}}$
7. $\forall x \in \mathbb{R}^*$, $u_7'(x) = f\left(\frac{1}{x}\right) - \frac{1}{x}f'\left(\frac{1}{x}\right)$
9. $\forall x \in \mathbb{R}$, $u_9'(x) = f'(x)e^{f(x)}f'\left(e^{f(x)}\right)$

2.
$$\forall x \in \mathbb{R}, u'_2(x) = e^x f'(e^x)$$

4. $\forall x \in \mathbb{R}, u'_4(x) = 2x f'(x^2)$
6. $\forall x \in \mathbb{R}^*_+, u'_6(x) = -\frac{f'(\ln(x))}{x(f(\ln(x)))^2}$
8. $\forall x \in \mathbb{R}, u'_8(x) = \cos(x) f'(\sin(x)) \cos(f(\sin(x)))$

9.
$$\forall x \in \mathbb{R}, \ u_9'(x) = f'(x)e^{f(x)}f'(e^{f(x)})$$

Exercice 3 (\bigstar). On considère la fonction $f: \begin{bmatrix} 1,+\infty[\to \mathbb{R} \\ x \mapsto (x-2)\sqrt{x-1} \end{bmatrix}$

- 1. f est-elle dérivable en 1?
- 2. Trouver la valeur $\beta \in \mathbb{R}$ la plus grande possible telle que $\forall x \ge 1, (x-2)\sqrt{x-1} \ge \beta$.

Résultat attendu:

- 1. Une étude de taux d'accroissement montre que f n'est pas dérivable en 1.
- 2. On trouve par étude de fonction que $\beta = -\frac{2}{3\sqrt{3}} = -\frac{2\sqrt{3}}{9}$.

Exercice 4 (**). Déterminer la limite de :

1.
$$\frac{\arctan(t)}{t}$$
 quand $t \to 0$

2.
$$\frac{s}{e^s - 1}$$
 quand $s \to 0$

3.
$$\frac{\ln(1+u)}{u}$$
 quand $u \to 0$

4.
$$\frac{1-\cos(t)}{t}$$
 quand $t\to 0$

5.
$$\frac{3x}{\sin(x)}$$
 quand $x \to 0$

1.
$$\frac{\arctan(t)}{t}$$
 quand $t \to 0$ 2. $\frac{s}{e^s - 1}$ quand $s \to 0$ 3. $\frac{\ln(1 + u)}{u}$ quand $u \to 0$ 4. $\frac{1 - \cos(t)}{t}$ quand $t \to 0$ 5. $\frac{3x}{\sin(x)}$ quand $x \to 0$ 6. $\frac{\ln(1 + 2s^2)}{s}$ quand $s \to 0$

7.
$$\frac{e^{\sin(u)} - \cos(2u)}{u}$$
 quand $u \to 0$

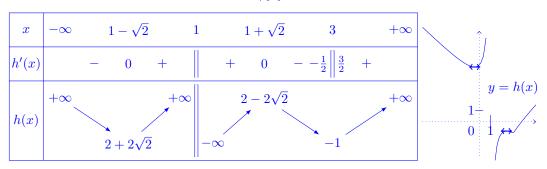
Résultat attendu : Les calculs se font à l'aide de taux d'accroissements.

4. 0 7. 1

6. 0

Exercice 5 ($\bigstar \bigstar$). Étudier la fonction h définie par $h(x) = |x-3| - \frac{2}{x-1}$ sur un ensemble de définition à déterminer. Tracer sa courbe représentative en précisant les tangentes aux points remarquables.

<u>Résultat attendu</u>: L'ensemble de définition est $\mathbb{R} \setminus \{1\}$. L'étude fournit le tableau de variations et la courbe :



Exercice 6 $(\bigstar \bigstar)$. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x + \frac{1}{e^x + 1}$.

- 1. Montrer que f est bijective, et que f^{-1} est dérivable sur \mathbb{R} .
- 2. Calculer $(f^{-1})'(\frac{1}{2})$.

Résultat attendu:

- 1. On étudie les variations de f (avec tableau de variations) : f est strictement croissante sur $\mathbb R$ et $f(\mathbb R)=\mathbb R$, donc f est bijective de $\mathbb R$ dans $\mathbb R$. Comme $\forall x\in\mathbb R,\ f'(x)=1-\frac{e^x}{(e^x+1)^2}\neq 0,\ f^{-1}$ est dérivable sur $\mathbb R$.
- 2. 0 est l'unique antécédent de $\frac{1}{2}$ par f, donc $(f^{-1})'(\frac{1}{2})=\frac{1}{f'(0)}=\frac{4}{3}.$

Exercice 7 ($\bigstar \bigstar$). Soit $\lambda > 0$ et $f: t \mapsto e^{\lambda t}$. On considère l'équation $(E): e^{\lambda e^{\lambda x}} = x$ d'inconnue $x \in \mathbb{R}$.

- 1. Réécrire cette équation à l'aide de la fonction f.
- 2. Soit $x \in \mathbb{R}$ tel que f(x) = x. Montrer que x est solution de (E).
- 3. En remarquant que f est strictement croissante sur \mathbb{R} , montrer que si x est solution de (E), alors f(x) = x.
- 4. Étudier les variations de la fonction $g: t \mapsto f(t) t$.
- 5. En déduire, selon les valeurs de λ , le nombre de solutions de l'équation (E).

Résultat attendu:

- 1. Soit $x \in \mathbb{R}$, $(E) \iff f \circ f(x) = x$.
- 2. On utilise la relation $f \circ f(x) = f(x) = x$.
- 3. La stricte croissance s'obtient par étude de la dérivée. La réciproque se montre ensuite par l'absurde.
- 4. Une étude de fonction donne le tableau de variations suivant :

x	$-\infty$		$\frac{-\ln(\lambda)}{\lambda}$		$+\infty$
g'(x)		_	0	+	
g(x)	+∞ -	—	$\frac{1+\ln(\lambda)}{\lambda}$		→ +∞

5. On rencontre trois cas de figure : si $\lambda > e^{-1}$, (E) n'a aucune solution; si $\lambda = e^{-1}$, (E) a une unique solution; si $\lambda < e^{-1}$, (E) a exactement deux solutions.

2

Exercice 8 (\bigstar) . Soit $r \in \mathbb{R}$. Déterminer, pour tout $n \in \mathbb{N}$, l'expression de la dérivée n-ième de $f: t \mapsto e^{rt} + e^{-rt}$. **Résultat attendu :** On montre par récurrence que $\forall t \in \mathbb{R}, \ \bar{f^{(n)}}(t) = r^n e^{rt} + (-r)^n e^{-rt}.$

Exercice 9 (\bigstar). Montrer que pour tout $x \ge 0$, $x - \frac{x^2}{2} \le \ln(1+x)$.

Résultat attendu : On se ramène à l'étude de la fonction $f: x \mapsto x - \frac{x^2}{2} - \ln(1+x)$ sur \mathbb{R}_+^* , en cherchant à montrer qu'elle est négative.

Exercice 10 $(\bigstar \bigstar)$. Démontrer les inégalités suivantes.

1.
$$\forall (a,b) \in \mathbb{R}^2$$
, $ab \leqslant \frac{a^2+b^2}{2}$

2.
$$\forall (a,b) \in (\mathbb{R}_+)^2, \sqrt{a+b} \leqslant \sqrt{a} + \sqrt{b}$$

1.
$$\forall (a,b) \in \mathbb{R}^2$$
, $ab \leqslant \frac{a^2+b^2}{2}$
3. $\forall (a,b) \in (\mathbb{R}_+^*)^2$, $\frac{\ln(a)+\ln(b)}{2} \leqslant \ln\left(\frac{a+b}{2}\right)$

2.
$$\forall (a,b) \in (\mathbb{R}_+)^2, \sqrt{a+b} \leqslant \sqrt{a} + \sqrt{b}$$

4. $\forall (a,b) \in (\mathbb{R}_+)^2, \left| \sqrt{a} - \sqrt{b} \right| \leqslant \sqrt{|a-b|}$

Résultat attendu: Dans chacun des cas, on raisonne par équivalences jusqu'à se ramener à une inégalité qu'on sait être toujours vraie. Des disjonctions de cas peuvent aussi être nécessaires.

Exercice 11 (\bigstar) . Résoudre dans \mathbb{R} les équations suivantes :

1.
$$2^{(x^2)} = 3^{(x^3)}$$

2.
$$x^{\sqrt{x}} = (\sqrt{x})^x$$

Résultat attendu : On revient à la définition des puissances non entières.

1.
$$x = 0$$
 ou $x = \frac{\ln(2)}{\ln(3)}$

2.
$$x = 1$$
 ou $x = 4$

Exercice 12 $(\bigstar \bigstar)$. Montrer que pour tout $x \in]0,1[,x^x(1-x)^{1-x} \geqslant \frac{1}{2}]$.

Résultat attendu: On se ramène à l'étude des variations d'une fonction bien choisie.

Exercice 13 (\bigstar) . Calculer les limites suivantes :

1.
$$\lim_{t \to +\infty} \frac{\ln(t^4)}{t}$$

$$2. \lim_{a \to 0} \tan(a)e^a$$

3.
$$\lim_{r \to +\infty} (3r^2 - e^{2r} + 2)$$

4.
$$\lim_{x \to +\infty} e^{-2x} (3 + x^3)$$

5.
$$\lim_{s \to 0^+} \sqrt{s}^{(s^2)}$$

$$6. \lim_{u \to 0} \frac{u^3}{\cos^2(u)}$$

1.
$$\lim_{t \to +\infty} \frac{\ln(t)}{t}$$
2.
$$\lim_{a \to 0} \tan(a)e^{a}$$
4.
$$\lim_{x \to +\infty} e^{-2x}(3+x^{3})$$
5.
$$\lim_{s \to 0^{+}} \sqrt{s}^{(s^{2})}$$
7.
$$\lim_{t \to +\infty} \frac{\ln(\ln(t))}{\ln t}$$
8.
$$\lim_{y \to -\infty} y^{2}e^{y}$$
10.
$$\lim_{t \to +\infty} (-2t + (\ln(t))^{3} + 2\sqrt{t})$$
11.
$$\lim_{t \to +\infty} \tan^{2}(s) \ln(\sin(s))$$

8.
$$\lim_{y \to -\infty} y^2 e^y$$

9.
$$\lim_{t \to -\infty} \frac{\sin(t)}{t}$$

10.
$$\lim_{t \to +\infty} (-2t + (\ln(t))^3 + 2\sqrt{t})$$
 11. $\lim_{a \to 0^+} \tan^2(a) \ln(\sin(a))$

11.
$$\lim \tan^2(a) \ln(\sin(a))$$

3.
$$\lim_{r \to +\infty} (3r^2 - e^{2r} + 2)$$
6.
$$\lim_{u \to 0} \frac{u^3}{\cos^2(u)}$$
9.
$$\lim_{t \to -\infty} \frac{\sin(t)}{t}$$
12.
$$\lim_{x \to +\infty} \frac{\ln(1 + x^4)}{x}$$

Résultat attendu: Les calculs se font par calcul direct, croissances comparées, composition ou encadrement.

$$3. -\infty$$

7.
$$0$$
 10. $-\infty$

Exercice 14 ($\star\star\star$). Déterminer les variations de $v: \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ t & \mapsto & \left(1+\frac{1}{t}\right)^t \end{array}$ puis déterminer les limites de v. **<u>Résultat attendu :</u>** On trouve que v est strictement croissante sur \mathbb{R}_+^* , avec $\lim_{t\to 0} v(t) = 1$ et $\lim_{t\to +\infty} v(t) = e$.

Exercice 15 (★). Déterminer les valeurs de :

1.
$$\arcsin\left(\sin\left(\frac{3\pi}{4}\right)\right)$$

2.
$$\arccos\left(\cos\left(\frac{8\pi}{7}\right)\right)$$

Résultat attendu:

1.
$$\frac{\pi}{4}$$

2.
$$\frac{6\pi}{7}$$

Exercice 16 (\bigstar) . Déterminer la forme exponentielle des complexes suivants.

1.
$$z_1 = 1 + 2i$$

2.
$$z_2 = -\frac{3}{2} - i$$

Résultat attendu:

1.
$$z_1 = \sqrt{5}e^{i\arccos(\frac{1}{\sqrt{5}})}$$
 ou $z_1 = \sqrt{5}e^{i\arcsin(\frac{2}{\sqrt{5}})}$ ou $z_1 = \sqrt{5}e^{i\arctan(2)}$

1.
$$z_1 = \sqrt{5}e^{i\arccos(\frac{1}{\sqrt{5}})}$$
 ou $z_1 = \sqrt{5}e^{i\arcsin(\frac{2}{\sqrt{5}})}$ ou $z_1 = \sqrt{5}e^{i\arctan(2)}$.
2. $z_2 = \frac{\sqrt{13}}{2}e^{-i\arccos(-\frac{3}{\sqrt{13}})}$ ou $z_2 = \frac{\sqrt{13}}{2}e^{i(\pi-\arcsin(-\frac{2}{\sqrt{13}}))}$ ou $z_2 = \frac{\sqrt{13}}{2}e^{i(\arctan(\frac{2}{3})+\pi)}$.

Exercice 17 $(\bigstar \bigstar)$. Montrer que pour tout $s \in [-1,1]$, $\arccos(s) + \arcsin(s) = \frac{\pi}{2}$.

Résultat attendu : On se ramène à l'étude d'une fonction bien choisie.

Exercice 18 ($\bigstar \bigstar$). Montrer que si $t \in \mathbb{R}^*$, $\arctan(t) + \arctan\left(\frac{1}{t}\right)$ vaut $\begin{cases} \frac{\pi}{2} & \text{si } t > 0 \\ -\frac{\pi}{2} & \text{si } t < 0 \end{cases}$ Résultat attendu : On se ramène à l'étude d'une fonction bien choisie.

Exercice 19 ($\star\star$). Déterminer les solutions réelles de l'équation $\arccos(x) = \arcsin(2x)$.

<u>Résultat attendu :</u> L'unique solution est $x = \sqrt{\frac{1}{5}}$

Exercice 20 (Type DS). On considère l'application $f: \begin{bmatrix}]0,+\infty[& \to & \mathbb{R} \\ x & \mapsto & f(x)=(x+\ln(x))\,e^{x-1} \end{bmatrix}$.

Partie A : étude de f

- 1. Montrer que f est dérivable sur $]0, +\infty[$. Pour tout $x \in]0, +\infty[$, calculer f'(x).
- 2. Montrer que $\forall x \in]0, +\infty[$, $\ln(x) + \frac{1}{x} > 0$.
- 3. En déduire que $\forall x \in]0; +\infty[, x + \ln(x) + 1 + \frac{1}{x} > 0.$
- 4. Dresser le tableau de variation de f, comprenant les limites aux bornes. Calculer f(1) et f'(1).
- 5. En utilisant les résultats précédents, tracer rapidement l'allure de la fonction f.

Partie B : étude d'une suite récurrente associée à f

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=2$ et $\forall n\in\mathbb{N},\ u_{n+1}=f(u_n)$. On admet qu'elle est bien définie.

- 1. Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n \ge 2$.
- 2. En déduire par récurrence que, pour tout $n \in \mathbb{N}$, $u_n \ge e^n$. Indication: pour l'hérédité, minorer chaque terme du produit.
- 3. Quelle est la limite de u_n lorsque l'entier n tend vers l'infini?

Résultat attendu: Partie A

- 1. f est dérivable sur \mathbb{R}_+^* par opérations sur des fonctions dérivables $(x \to \ln(x))$ et $x \to e^{x-1}$ sont dérivables sur \mathbb{R}_+^*). De plus, $\forall x \in]0, +\infty[$, $f'(x) = \left(1 + \frac{1}{x}\right)e^{x-1} + (x + \ln(x))e^{x-1} = e^{x-1}\left(1 + x + \frac{1}{x} + \ln(x)\right)$.
- 2. $\forall x \in]0, +\infty[$, on pose $g(x) = \ln(x) + \frac{1}{x}$. g est dérivable sur \mathbb{R}_+^* , et $\forall x \in]0, +\infty[$, $g'(x) = \frac{1}{x} \frac{1}{x^2} = \frac{x-1}{x^2}$. Comme g(1) = 1, on obtient le tableau de variations suivant :

x	0		1		$+\infty$
g'(x)		_	0	+	
g(x)	_		→ 1 -		-

Donc $\forall x \in \mathbb{R}_+^*$, $g(x) \geqslant g(1) = 1 > 0$, c'est à dire $\forall x \in \mathbb{R}_+^*$, $\ln(x) + \frac{1}{x} > 0$.

- 3. Soit $x \in \mathbb{R}_+^*$, x+1>0, donc par somme d'inégalités avec le résultat obtenu en 2., $x+\ln(x)+1+\frac{1}{x}>0$.
- 4. Comme $\forall x \in \mathbb{R}_+^*$, $e^{x-1} > 0$, 1. et 3. donnent $\forall x \in]0, +\infty[$, f'(x) > 0. f est donc (strictement) croissante sur \mathbb{R}_+^* . Par produit de limites, $\lim_{n \to 0} f(x) = -\infty$ et $\lim_{n \to +\infty} f(x) = +\infty$, d'où le tableau de variation :

x	$0 + \infty$
f(x)	+ +∝
$V(\omega)$	$-\infty$ —

On trouve par ailleurs f(1) = 1 et f'(1) = 3.

5. Les questions précédentes donnent l'allure suivante :

Partie B

1. Soit $n \in \mathbb{N}$, on pose $P(n) : \langle u_n \rangle \ge 2 \rangle$.

 $u_0 = 2 \geqslant 2$ donc P(0) est vraie.

Soit $n \in \mathbb{N}$, supposons que P(n) est vraie. $u_n \ge 2 > 0$, donc par croissance de f sur \mathbb{R}_+^* (cf A.4.), $f(u_n) \ge f(2)$. Or $f(2) = (2 + \ln(2))e \ge 2$ (car $e \ge 1$ et $\ln(2) \ge 0$) donc $u_{n+1} \ge 2$. Donc P(n+1) est vraie.

Donc $\forall n \in \mathbb{N}, u_n \geqslant 2$.

2. Soit $n \in \mathbb{N}$, on pose $P(n) : \langle u_n \rangle e^n \rangle$.

 $u_0 = 2 \geqslant 1 = e^0$, donc P(0) est vraie.

Soit $n \in \mathbb{N}$, supposons que P(n) est vraie : $u_n \ge e^n$. Par B.1., $u_n \ge 2$ donc $\ln(u_n) \ge 0$ et $u_n + \ln(u_n) \ge e^n$. Puis par produit avec $e^{u_n-1} \ge 0$: $f(u_n) \ge e^n e^{u_n-1}$. Or $u_n \ge 2$, donc $e^{u_n-1} \ge e$ et $f(u_n) \ge e^{n+1}$. Donc $u_{n+1} \ge e^{n+1}$ et P(n+1) est vraie.

Donc $\forall n \in \mathbb{N}, u_n \geqslant e^n$.

Rmq : pour l'hérédité, on pouvait écrire $f(u_n) \ge f(e^n)$, mais minorer par e^{n+1} pose problème si n = 0.

3. $\lim_{n \to +\infty} e^n = +\infty$, donc $\lim_{n \to +\infty} u_n = +\infty$.