Étude de suites

Cours de É. Bouchet – PCSI

$24~{\rm septembre}~2025$

Table des matières

1	Généralités sur les suites réelles					
	1.1 Un peu de vocabulaire	2				
	1.2 Modes de définition d'une suite					
2	Limite d'une suite	3				
	2.1 Convergence, divergence	3				
	2.2 Opérations sur les limites	4				
	2.3 Passage à la limite et relations d'ordre					
3	Cas des suites monotones	5				
	3.1 Théorème de convergence	5				
	3.2 Suites adjacentes					
	3.3 Approximations décimales d'un réel					
4	Suites extraites	6				
5	Suites à valeurs complexes	7				
6	Quelques suites particulières	7				
	6.1 Suites arithmético-géométriques	7				
	6.2 Suites récurrentes linéaires d'ordre 2					
	6.3 Suites définies par une relation $u_{n+1} = f(u_n)$					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

1 Généralités sur les suites réelles

1.1 Un peu de vocabulaire

Définition 1.1 (Suite réelle)

On appelle **suite réelle** toute fonction u définie de \mathbb{N} dans \mathbb{R} , que l'on note aussi $(u_n)_{n\in\mathbb{N}}$ ou $(u_n)_{n\geqslant 0}$. Si $n\in\mathbb{N}$, on note u_n le n-ième terme de la suite u. On note $\mathbb{R}^{\mathbb{N}}$ l'ensemble des suites à valeurs réelles.

Remarque. Ce chapitre étudie les suites définies sur \mathbb{N} , mais cette définition et les propriétés qui suivront se généralisent sans difficultés à \mathbb{N}^* , $\mathbb{N} \setminus \{0,1\}$, ...

Définition 1.2 (Suite majorée, minorée, bornée)

Soit u une suite réelle. On dit que :

- u est **majorée** quand $\exists M \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}, u_n \leqslant M$.
- u est **minorée** quand $\exists m \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}, u_n \geqslant m$.
- u est **bornée** quand u est à la fois majorée et minorée.

Remarque. Une suite $(u_n)_{n\in\mathbb{N}}$ est bornée si et seulement si $(|u_n|)_{n\in\mathbb{N}}$ est majorée.

Définition 1.3 (Suite croissante, décroissante, monotone, stationnaire)

Soit u une suite réelle. On dit que :

- u est **croissante** quand $\forall n \in \mathbb{N}, u_n \leqslant u_{n+1}$.
- u est **décroissante** quand $\forall n \in \mathbb{N}, u_n \geqslant u_{n+1}$.
- u est **monotone** quand u est croissante ou décroissante.
- u est **stationnaire** quand $\exists (n_0, a) \in \mathbb{N} \times \mathbb{R}$ tels que $\forall n \geq n_0, u_n = a$.

Remarque. Quand les inégalités sont strictes, on dit que u est strictement croissante, strictement décroissante ou strictement monotone.

Remarque. Une suite est stationnaire quand elle est constante à partir d'un certain rang.

Remarque. Pour étudier la monotonie d'une suite, on utilise souvent l'une des deux méthodes suivantes :

- Pour $n \in \mathbb{N}$, étudier le signe de $u_{n+1} u_n$.
- Si $\forall n \in \mathbb{N}, u_n > 0$, comparer pour $n \in \mathbb{N}$ les valeurs $\frac{u_{n+1}}{u_n}$ et 1.

Exercice 1. Soit la suite u définie par $\forall n \in \mathbb{N}$, $u_n = n!$. Montrer de deux manières différentes qu'elle est croissante.

1.2 Modes de définition d'une suite

Définition 1.4 (Suite définie de manière explicite)

Une suite u est **définie de manière explicite** quand il existe une fonction f à valeurs réelles telle que $\forall n \in \mathbb{N}, u_n = f(n)$.

Remarque. C'est le cas le plus simple à étudier : les calculs des termes se font rapidement, et les propriétés de la fonction f (monotonie, positivité, bornes...) se répercutent directement sur la suite (puisque la suite est la restriction de f à \mathbb{N}).

Exemple. La suite définie par $\forall n \in \mathbb{N}, u_n = n^2$.

Définition 1.5 (Suite définie par récurrence)

Une suite u est **définie par récurrence** quand on donne son premier terme u_0 et une relation de récurrence de type $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$ (avec f une fonction réelle).

Remarque. Ce cas est plus compliqué : pour calculer u_n , on a besoin d'avoir calculé avant $u_0, u_1, \ldots, u_{n-1}$. De plus, les propriétés de f ne se répercutent pas sur u.

Exemple. On définit la suite u par $u_0 = \frac{1}{2}$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n^2$.

La fonction $x \to x^2$ est croissante sur \mathbb{R}_+ , et pourtant $\forall n \in \mathbb{N}, u_n = \left(\frac{1}{2}\right)^{2^n}$, donc la suite u est décroissante.

Définition 1.6 (Suite définie de manière implicite)

Une suite u est **définie de manière implicite** quand pour $n \in \mathbb{N}$, le terme u_n est défini comme la solution d'une équation qui dépend de n.

Remarque. Les suites implicites seront étudiées dans le chapitre « Limites et continuité », on les utilise souvent quand on sait que l'équation admet une unique solution, mais qu'on ne sait pas la calculer.

Remarque. Une même suite peut être définie de plusieurs manières différentes suivant la façon dont l'exercice veut la présenter. Par exemple, la suite u définie de manière explicite par $\forall n \in \mathbb{N}$, $u_n = 2^n$ est aussi définie :

- Par récurrence, avec la valeur initiale $u_0 = 1$ et la relation $\forall n \in \mathbb{N}, u_{n+1} = 2u_n$.
- De manière implicite, en remarquant que $\forall n \in \mathbb{N}, u_n$ est l'unique solution réelle de l'équation $x 2^n = 0$.

2 Limite d'une suite

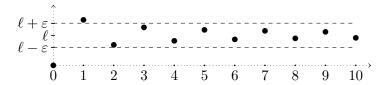
2.1 Convergence, divergence

Définition 2.1 (Convergence d'une suite vers un réel)

Soit ℓ un nombre réel. On dit que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ lorsque :

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ tel que } \forall n \geqslant n_0, |u_n - \ell| \leqslant \varepsilon.$$

Exemple. Représentation graphique :



Remarque. On utilise l'une des notations $\lim u_n = \ell$ ou $u_n \longrightarrow \ell$. En cas d'ambiguïté, on peut préciser la variable dont on prend la limite avec l'écriture $\lim_{n \to +\infty} u_n = \ell$ ou $u_n \xrightarrow[n \to +\infty]{} \ell$.

Remarque. Les premiers termes de la suite n'ont donc aucune influence sur la valeur de son éventuelle limite.

Remarque. Plus on choisit ε petit, plus n_0 devra être grand pour compenser.

Définition 2.2 (Divergence d'une suite vers l'infini)

La suite $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$ lorsque : $\forall A>0, \exists n_0\in\mathbb{N}$ tel que $\forall n\geqslant n_0, u_n\geqslant A$. La suite $(u_n)_{n\in\mathbb{N}}$ diverge vers $-\infty$ lorsque : $\forall A<0, \exists n_0\in\mathbb{N}$ tel que $\forall n\geqslant n_0, u_n\leqslant A$.

Remarque. On note alors $\lim u_n = +\infty$ ou $u_n \longrightarrow +\infty$, de même avec $-\infty$.

Remarque. On peut rencontrer trois types de cas différents en étudiant une limite :

- 1. La limite existe et est finie : la suite converge vers cette limite (il faut montrer l'existence ET trouver la valeur de la limite).
- 2. La limite existe mais n'est pas finie $(\pm \infty)$: la suite diverge vers cette limite.
- 3. La limite n'existe pas : la suite diverge (par absence de limite).

Proposition 2.3 (Unicité de la limite)

Lorsque la limite de la suite u existe, elle est unique.

Proposition 2.4 (Convergence et bornes)

Toute suite convergente est bornée.

Remarque. La réciproque est fausse : $((-1)^n)_{n\in\mathbb{N}}$ est bornée (par -1 et 1) et diverge.

2.2 Opérations sur les limites

Limite de la somme de deux suites u et v dans le cas où u et v admettent des limites :

Somme	$\lim_{n \to +\infty} v_n = \ell$	$\lim_{n \to +\infty} v_n = +\infty$	$\lim_{n \to +\infty} v_n = -\infty$
$\lim_{n \to +\infty} u_n = \ell'$	$\ell + \ell'$	$+\infty$	$-\infty$
$ \lim_{n \to +\infty} u_n = +\infty $	$+\infty$	$+\infty$	F.I.
$\lim_{n \to +\infty} u_n = -\infty$	$-\infty$	F.I.	$-\infty$

Limite du produit de deux suites u et v dans le cas où u et v admettent des limites :

Produit	$\lim v_n = \ell > 0$	$\lim_{n \to +\infty} v_n = \ell < 0$	$\lim_{n \to \infty} v_n = 0$	$\lim_{n \to \infty} v_n = +\infty$	$\lim_{n \to +\infty} v_n = -\infty$
	$n \rightarrow +\infty$	$n \rightarrow +\infty$	$n \rightarrow +\infty$	$n \rightarrow +\infty$	$n \rightarrow +\infty$
$\lim_{n \to +\infty} u_n = \ell' > 0$	$\ell\ell'$	$\ell\ell'$	0	$+\infty$	$-\infty$
$\lim_{n \to +\infty} u_n = \ell' < 0$	$\ell\ell'$	$\ell\ell'$	0	$-\infty$	$+\infty$
$ \lim_{n \to +\infty} u_n = 0 $	0	0	0	F.I.	F.I.
$\lim_{n \to +\infty} u_n = +\infty$	$+\infty$	$-\infty$	F.I.	$+\infty$	$-\infty$
$ \lim_{n \to +\infty} u_n = -\infty $	$-\infty$	$+\infty$	F.I.	$-\infty$	$+\infty$

Limite de l'inverse $\frac{1}{u}$ dans le cas où u ne s'annule pas et admet une limite :

Inverse	$\lim_{n \to +\infty} u_n = \ell \neq 0$	$\lim_{n \to +\infty} u_n = 0 +$	$\lim_{n \to +\infty} u_n = 0 -$	$\lim_{n \to +\infty} u_n = +\infty$	$\lim_{n \to +\infty} u_n = -\infty$
	$\frac{1}{\ell}$	$+\infty$	$-\infty$	0	0

Les limites de quotients se déduisent directement des règles de produit et de passage à l'inverse.

2.3 Passage à la limite et relations d'ordre

Proposition 2.5 (Cas d'une limite strictement positive)

Soit u une suite qui converge vers un réel $\ell > 0$. Alors à partir d'un certain rang $u_n > 0$.

Proposition 2.6 (Passage à la limite dans une relation d'ordre)

Soient u et v deux suites convergentes, vérifiant à partir d'un certain rang l'inégalité $u_n \leqslant v_n$. On a alors :

$$\lim_{n \to +\infty} u_n \leqslant \lim_{n \to +\infty} v_n.$$

Remarque. Attention, ces résultats ne s'appliquent que si on sait déjà que les limites existent.

Remarque. Attention, ce résultat ne se généralise pas aux inégalités strictes : $u_n < v_n \not\Rightarrow \lim_{n \to +\infty} u_n < \lim_{n \to +\infty} v_n$. Par exemple, $(\frac{1}{n})_{n \in \mathbb{N}^*}$ est à valeurs strictement positives, mais ça n'empêche pas sa limite d'être nulle.

Proposition 2.7 (Théorème d'encadrement)

Soient u, v et w trois suites réelles que, à partir d'un certain rang, $u_n \leq v_n \leq w_n$. Si u et w convergent vers une même limite $\ell \in \mathbb{R}$ alors v converge vers ℓ .

Remarque. Ce théorème donne à la fois l'existence et la valeur de la limite.

Exercice 2. Soient $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout entier n non nul par $u_n = \sum_{k=0}^n \frac{n}{n^2 + k}$.

Montrer que $(u_n)_{n\in\mathbb{N}}$ converge, et donner sa limite.

Proposition 2.8 (Encadrement avec des valeurs absolues)

Soient u et v deux suites réelles et $\ell \in \mathbb{R}$. Si v est de limite nulle et qu'à partir d'un certain rang, $|u_n - \ell| \leq v_n$, alors u converge vers ℓ .

Remarque. Ce résultat est particulièrement pratique si on sait conjecturer la valeur de la limite.

Exercice 3. Étudier la limite de la suite u définie par $\forall n \in \mathbb{N}^*, u_n = 2 + \frac{(-1)^n}{n}$.

Proposition 2.9 (Produit d'une suite bornée et d'une suite de limite nulle)

Soit u une suite bornée et v une suite de limite nulle, alors la suite uv est également de limite nulle.

Exercice 4. Étudier la limite de la suite u définie par $\forall n \in \mathbb{N}^*, u_n = \frac{\sin(n)}{n}$.

Proposition 2.10 (Théorème de comparaison)

Soient u et v deux suites réelles telles que, à partir d'un certain rang, $u_n \leq v_n$.

- Si u diverge vers $+\infty$ alors v diverge vers $+\infty$.
- Si v diverge vers $-\infty$ alors u diverge vers $-\infty$.

Exercice 5. Étudier la limite de la suite u définie par $\forall n \in \mathbb{N}, u_n = (-1)^n + n^2$.

3 Cas des suites monotones

3.1 Théorème de convergence

Proposition 3.1 (Théorème de la limite monotone)

- Toute suite croissante et majorée converge vers ℓ , sa borne supérieure.
- Toute suite décroissante et minorée converge vers ℓ , sa borne inférieure.
- Toute suite croissante non majorée diverge vers $+\infty$.
- Toute suite décroissante non minorée diverge vers $-\infty$.

Remarque. Attention, connaître un majorant quelconque ne signifie pas qu'il s'agit de la limite de la suite.

Exercice 6. Soit $x \in \mathbb{R}$,

- 1. Montrer que $\left(\left|\frac{x^n}{n!}\right|\right)_{n\in\mathbb{N}}$ converge.
- 2. Montrer que $\lim_{n\to+\infty} \frac{x^n}{n!} = 0$.

Ce résultat s'ajoute aux résultats de croissances comparées déjà connus et pourra être utilisé sans le redémontrer.

5

3.2 Suites adjacentes

Définition 3.2 (Suites adjacentes)

Soient u et v deux suites réelles. On dit qu'elles sont **adjacentes** lorsque l'une est croissante, l'autre est décroissante et $(u_n - v_n)_{n \in \mathbb{N}}$ converge vers 0.

Proposition 3.3 (Convergence des suites adjacentes)

Soit u et v deux suites adjacentes telles que u est croissante et v est décroissante. Alors u et v convergent vers une même limite réelle ℓ avec pour tout $n \in \mathbb{N}$, $u_n \leqslant \ell \leqslant v_n$.

Exercice 7. Soit, pour tout $n \ge 1$, $u_n = \sum_{p=0}^n \frac{1}{p!}$ et $v_n = u_n + \frac{1}{n!}$. Démontrer que ces suites convergent.

3.3 Approximations décimales d'un réel

Définition 3.4 (Approximations décimales de x)

Soit $x \in \mathbb{R}$. Les suites $(q_n)_{n \in \mathbb{N}}$ et $(p_n)_{n \in \mathbb{N}}$ définies par : $\forall n \in \mathbb{N}, q_n = \frac{\lfloor 10^n x \rfloor}{10^n}$ et $p_n = q_n + \frac{1}{10^n}$ sont deux suites de décimaux qui convergent vers x.

On appelle q_n (resp. p_n) la valeur décimale approchée de x par défaut (resp. par excès) à 10^{-n} près.

Remarque. Tout réel est donc limite d'une suite de rationnels.

Exemple. Les premiers développements décimaux de π donnent les valeurs suivantes :

$$q_0 = 3$$
 et $p_0 = 4$, $q_1 = 3, 1$ et $p_1 = 3, 2$, $q_2 = 3, 14$ et $p_2 = 3, 15$, $q_3 = 3, 141$ et $p_3 = 3, 142, \dots$

4 Suites extraites

Définition 4.1 (Suite extraite)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On appelle **suite extraite** de $(u_n)_{n\in\mathbb{N}}$ toute suite de la forme $(u_{\varphi(n)})_{n\in\mathbb{N}}$, où φ est une fonction de \mathbb{N} dans \mathbb{N} strictement croissante.

Exemple. Les sous-suites paire et impaire $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont deux suites extraites de $(u_n)_{n\in\mathbb{N}}$.

Proposition 4.2 (Suite extraite d'une suite convergente)

Si une suite $(u_n)_{n\in\mathbb{N}}$ possède une limite, toutes ses suites extraites possèdent la même limite.

Remarque. Ce résultat est très pratique pour montrer la divergence d'une suite : il suffit de construire deux suites extraites n'ayant pas la même limite.

Exercice 8. Montrer que la suite $((-1)^n)_{n\in\mathbb{N}}$ diverge.

Proposition 4.3 (Convergence des sous-suites paire et impaire)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle et $\ell\in\mathbb{R}$. Si $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ tendent vers ℓ , alors $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ .

5 Suites à valeurs complexes

Définition 5.1 (Suite complexe)

On appelle **suite complexe** toute fonction u définie de \mathbb{N} dans \mathbb{C} et on note $\mathbb{C}^{\mathbb{N}}$ l'ensemble des suites à valeurs complexes.

Remarque. Le symbole \leq n'a aucun sens entre deux nombres complexes. Les notions de suite croissante, décroissante, majorée, minorée, divergente vers $+\infty$ n'ont donc pas de sens dans le cadre complexe.

Par conséquent, on n'utilisera pas non plus de théorème d'encadrement, de convergence monotone ou de suites adjacentes.

Définition 5.2 (Suite bornée)

Soit u une suite complexe. On dit que u est **bornée** quand $\exists K \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}, |u_n| \leq K$.

Remarque. Autrement dit, une suite complexe u est bornée s'il existe un disque de centre 0 qui contient tous les u_n (K représente alors le rayon du disque).

Définition 5.3 (Convergence d'une suite vers un complexe)

Soit ℓ un nombre complexe. On dit que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ lorsque :

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ tel que } \forall n \geqslant n_0, |u_n - \ell| \leqslant \varepsilon.$$

Remarque. Autrement dit, une suite complexe u converge vers $\ell \in \mathbb{C}$ si quel que soit $\varepsilon > 0$, à partir d'un certain rang, tous les u_n sont dans le disque de centre ℓ et de rayon ε .

Remarque. Il est équivalent d'écrire $\lim_{n\to+\infty}u_n=\ell$ (convergence dans $\mathbb C$) et $\lim_{n\to+\infty}|u_n-\ell|=0$ (convergence dans $\mathbb R$). Ce résultat peut aider à montrer des convergences de suites complexes.

Exercice 9. Étudier la convergence de la suite complexe définie par $\forall n \in \mathbb{N}^*, u_n = i + \frac{e^{in\frac{\pi}{3}}}{n}$.

Remarque. Plusieurs résultats sur les convergences réelles restent valables dans \mathbb{C} :

- l'unicité de la limite,
- une suite complexe qui converge est nécessairement bornée,
- les opérations usuelles sur les limites (à l'exception de l'utilisation des symboles ∞).

Proposition 5.4 (Convergence des parties réelle et imaginaire)

Soit $u \in \mathbb{C}^{\mathbb{N}}$ une suite à valeurs complexes et soit $\ell \in \mathbb{C}$. On a alors :

$$\lim_{n \to +\infty} u_n = \ell \iff \lim_{n \to +\infty} \operatorname{Re}(u_n) = \operatorname{Re}(\ell) \text{ et } \lim_{n \to +\infty} \operatorname{Im}(u_n) = \operatorname{Im}(\ell).$$

Exemple. La suite complexe définie par $\forall n \in \mathbb{N}^*, u_n = 2 + \frac{i}{n}$ converge vers 2.

6 Quelques suites particulières

6.1 Suites arithmético-géométriques

Définition 6.1 (Suite arithmético-géométrique)

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **arithmético-géométrique** lorsqu'il existe $(a,b)\in\mathbb{C}^2$ tels que :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = au_n + b.$$

Remarque. On connaît déjà quelques cas particuliers :

- Si a=1, c'est une suite arithmétique et si $p \in \mathbb{N}$, $\forall n \geqslant p$, $u_n=u_p+(n-p)b$.
- Si b=0, c'est une suite géométrique et si $p\in\mathbb{N}, \forall n\geqslant p, u_n=u_pa^{n-p}$.

Proposition 6.2 (Terme général d'une suite arithmético-géométrique)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmético-géométrique qui vérifie pour tout $n\in\mathbb{N},\ u_{n+1}=au_n+b,\ avec\ a\neq 1.$ Alors, pour tous entiers n et p tels que $n\geqslant p,\ u_n=a^{n-p}(u_p-c)+c$ avec $c=\frac{b}{1-a}.$

Remarque. La suite constante égale à c est l'unique suite constante qui vérifie la relation de récurrence, c'est-à-dire l'unique solution sur \mathbb{C} de l'équation x = ax + b.

Exercice 10. Soit u la suite définie par $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = -2u_n + 3$. Soit $n \in \mathbb{N}$, déterminer l'expression de u_n en fonction de n.

6.2 Suites récurrentes linéaires d'ordre 2

Définition 6.3 (Suite récurrente linéaire d'ordre 2, équation caractéristique)

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **récurrente linéaire d'ordre 2 à coefficients constants** lorsqu'il existe $(a,b)\in\mathbb{C}^2\setminus\{(0,0)\}$ tels que pour tout $n\in\mathbb{N},\ u_{n+2}=au_{n+1}+bu_n$.

On appelle **équation caractéristique** associée l'équation $q^2 = aq + b$, d'inconnue $q \in \mathbb{C}$.

Remarque. Étudions le cas particulier des suites géométriques. Soit $q \in \mathbb{C}^*$ et $\forall n \in \mathbb{N}, u_n = q^n$. Alors :

$$\forall n \in \mathbb{N}, \quad u_{n+2} = au_{n+1} + bu_n \Longleftrightarrow \forall n \in \mathbb{N}, q^{n+2} = aq^{n+1} + bq^n \Longleftrightarrow q^2 = aq + b,$$

où on a divisé par $q^n \neq 0$. On a donc retrouvé l'équation caractéristique dans un cas particulier.

Proposition 6.4 (Étude d'une suite récurrente linéaire d'ordre 2, cas complexe)

Soit u une suite récurrente linéaire d'ordre 2 à coefficients complexes, d'équation caractéristique (E).

- Si (E) a deux solutions complexes distinctes q_1 et q_2 , $\exists ! (\alpha, \beta) \in \mathbb{C}^2$ tels que $\forall n \in \mathbb{N}, u_n = \alpha q_1^n + \beta q_2^n$.
- Si (E) a une unique solution complexe $q_0, \exists ! (\alpha, \beta) \in \mathbb{C}^2$ tels que $\forall n \in \mathbb{N}, u_n = (\alpha n + \beta)q_0^n$.

Remarque. Résoudre (E) revient à déterminer les racines d'un polynôme de degré 2 à coefficients complexes, ce qu'on apprendra à faire dans le chapitre « Applications des nombres complexes ».

Proposition 6.5 (Étude d'une suite récurrente linéaire d'ordre 2, cas réel)

Soit u une suite récurrente linéaire d'ordre 2 à coefficients réels, d'équation caractéristique (E).

- Si (E) a deux solutions réelles distinctes q_1 et q_2 , $\exists ! (\alpha, \beta) \in \mathbb{R}^2$ tels que $\forall n \in \mathbb{N}, u_n = \alpha q_1^n + \beta q_2^n$.
- Si (E) a une unique solution réelle $q_0, \exists ! (\alpha, \beta) \in \mathbb{R}^2$ tels que $\forall n \in \mathbb{N}, u_n = (\alpha n + \beta)q_0^n$.
- Si (E) a deux solutions complexes (non réelles) conjuguées $re^{i\theta}$ et $re^{-i\theta}$ (avec r > 0 et $\theta \in \mathbb{R}$), $\exists ! (\alpha, \beta) \in \mathbb{R}^2$ tels que $\forall n \in \mathbb{N}, u_n = r^n(\alpha \cos(n\theta) + \beta \sin(n\theta))$.

Remarque. Dans le cas des racines complexes, le choix entre θ et $-\theta$ pour l'argument n'a pas d'importance : le résultat final sera le même après prise en compte des conditions initiales.

Exercice 11. Soit u la suite définie par $u_0 = 0$, $u_1 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} + u_n$. Soit $n \in \mathbb{N}$, déterminer l'expression de u_n en fonction de n.

6.3 Suites définies par une relation $u_{n+1} = f(u_n)$

Définition 6.6 (Intervalle stable par une fonction)

Soit E un sous-ensemble de \mathbb{R} et f une fonction réelle définie sur E.

Soit I un intervalle de E. On dit que I est stable par f si $f(I) \subset I$, c'est-à-dire si $\forall x \in I$, $f(x) \in I$.

Exemple. \mathbb{R}_+ et [0,1] sont stables par la fonction $x \to \sqrt{x}$.

Proposition 6.7 (Bonne définition d'une suite récurrente)

Soit f une fonction définie sur un intervalle I stable par f. Soit $a \in I$. On peut définir une suite récurrente $(u_n)_{n \in \mathbb{N}}$ par les relations $u_0 = a$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$. Cette suite est de plus à valeurs dans I.

Remarque. Si l'intervalle n'est pas stable, la suite peut ne pas être bien définie. Par exemple, on ne peut pas définir de suite u par $u_0 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} = 3 + \sqrt{4 - u_n}$: on aurait $u_1 = 3 + \sqrt{4} = 5$, mais la définition de u_2 poserait ensuite problème...

Exercice 12. Montrer qu'on peut définir une suite récurrente par les conditions $u_0 \in \mathbb{R}_+$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{1+u_n}$.

Proposition 6.8 (Étude de la monotonie)

Soit f une fonction définie sur un intervalle I stable par f et $(u_n)_{n\in\mathbb{N}}$ une suite récurrente définie par $u_0\in I$ et $\forall n\in\mathbb{N}, u_{n+1}=f(u_n)$.

- Si $x \mapsto f(x) x$ est positive sur I, alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.
- Si $x \mapsto f(x) x$ est négative sur I, alors la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante.
- Si f est croissante sur I, alors la suite $(u_n)_{n\in\mathbb{N}}$ est monotone (elle est croissante si $u_0 \leqslant u_1$, décroissante sinon).

Remarque. Si f est décroissante sur I, $f \circ f$ sera croissante sur I. Or $\forall n \in \mathbb{N}$, $f \circ f(u_n) = f(f(u_n)) = f(u_{n+1}) = u_{n+2}$. À défaut de mener l'étude directement, on peut donc montrer la monotonie de $(u_{2n})_{n \in \mathbb{N}}$ et $(u_{2n+1})_{n \in \mathbb{N}}$.

Proposition 6.9 (Théorème du point fixe)

Soit f une fonction continue sur un intervalle I stable par f. Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de I définie par la relation de récurrence : $\forall n\in\mathbb{N},\ u_{n+1}=f(u_n)$.

Si la suite u converge vers un réel $\ell \in I$, alors $\ell = f(\ell)$ (on dit alors que ℓ est un point fixe de f).

Remarque. Attention, on ne peut appliquer ce théorème que si on sait déjà que la suite converge.

Exercice 13. Étudier la suite w définie par $w_0 = 1$ et pour tout entier naturel n, $w_{n+1} = \sqrt{12 + w_n}$.

Exercice 14. On considère la suite définie par $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \sqrt{1 + u_n^2}$. Est-elle bien définie? Étudier sa convergence.