Étude de suites

Exercice 1 (**). Déterminer le comportement asymptotique (convergence/divergence, limite éventuelle) des suites définies pour tout $n \in \mathbb{N}^*$ par :

1.
$$a_n = \frac{\sin(n)}{\sqrt{n}}$$

2.
$$b_n = ((-1)^n + n^3) e^{-n}$$

3.
$$c_n = ((-1)^n + e^{-n}) n^3$$

$$4. d_n = (\cos(n) + 3)\ln(n)$$

5.
$$e_n = \frac{3n+1}{2n^2-1}$$

6.
$$f_n = \frac{2n^2 + 3^n + 1}{5n^2 + 4n - 2}$$

7.
$$g_n = \frac{(\ln(n))^2 - 2}{\ln(n) + n}$$

8.
$$h_n = \frac{\sin(\frac{\pi}{2}n) - 3r}{n+3}$$

9.
$$i_n = \frac{(-1)^n + 2n}{n^2}$$

$$10. \ j_n = n^2 \left(1 + \cos \left(\frac{\pi}{2} n \right) \right)$$

1.
$$d_n = \frac{1}{\sqrt{n}}$$
 2. $b_n = ((-1)^n + n^n)e$ 3. $c_n = ((-1)^n + e^n)h$
4. $d_n = (\cos(n) + 3)\ln(n)$ 5. $e_n = \frac{3n+1}{2n^2-1}$ 6. $f_n = \frac{2n^2+3^n+1}{5n^2+4n-2}$
7. $g_n = \frac{(\ln(n))^2-2}{\ln(n)+n}$ 8. $h_n = \frac{\sin(\frac{\pi}{2}n)-3n}{n+3}$ 9. $i_n = \frac{(-1)^n+2n}{n^2}$
10. $j_n = n^2\left(1+\cos\left(\frac{\pi}{2}n\right)\right)$ 11. $k_n = n^2\left(\frac{11}{10}+\cos\left(\frac{\pi}{2}n\right)\right)$ 12. $\ell_n = n\left(2+\cos\left(\frac{\pi n}{4}\right)\right)-\sqrt{n}$

12.
$$\ell_n = n\left(2 + \cos\left(\frac{\pi n}{4}\right)\right) - \sqrt{n}$$

Résultat attendu:

- 1. Converge vers 0
- 2. Converge vers 0
- 3. Diverge

- 4. Diverge vers $+\infty$
- 5. Converge vers 0
- 6. Diverge vers $+\infty$

- 7. Converge vers 0
- 8. Converge vers -3
- 9. Converge vers 0

- 10. Diverge
- 11. Diverge vers $+\infty$
- 12. Diverge vers $+\infty$

Exercice 2 (\bigstar) . Démontrer que la suite u définie par $\forall n \in \mathbb{N}^*, u_n = \left((-1)^n - \frac{3}{n}\right)\cos\left(\frac{2\pi n}{7}\right)$ est bornée. On explicitera un majorant et un minorant.

Résultat attendu : On étudie $(|u_n|)$ pour éviter les problèmes de signe, puis un calcul direct donne une minoration par -4 et une majoration par 4.

Exercice 3 ($\bigstar \bigstar$). Démontrer que la suite v définie par $\forall n \in \mathbb{N}^*, v_n = \frac{\ln(n+1)}{n+1} \times \frac{n^2+1}{n^2+2} + 3e^{-n} - 10\sin(n)$

Résultat attendu: Un calcul direct donne une minoration par -10 et une majoration par 14. On peut aussi utiliser les propriétés des suites convergentes, qui donnent l'existence d'un majorant sans fournir sa valeur.

Exercice 4 (\bigstar) . Soit $(v_n)_{n\in\mathbb{N}}$ une suite réelle vérifiant $v_0\in[0,1]$ et $\forall n\in\mathbb{N},\ v_{n+1}=v_n(1-v_n)$.

- 1. Montrer par récurrence que pour tout $n \in \mathbb{N}$, $v_n \in [0,1]$.
- 2. Étudier la monotonie de la suite $(v_n)_{n\in\mathbb{N}}$.
- 3. Étudier la convergence de la suite $(v_n)_{n\in\mathbb{N}}$.

Résultat attendu : La suite v est décroissante, convergente et converge vers 0.

Exercice 5 (\bigstar). Soit $n \in \mathbb{N}^*$, on pose $v_n = \sum_{k=1}^n \frac{1}{n^3 + k^3}$. Montrer que $(v_n)_{n \in \mathbb{N}^*}$ converge, et donner sa limite.

Résultat attendu : On montre par théorème d'encadrement que v converge vers 0.

Exercice 6 (\bigstar). Démontrer que la suite u définie pour tout $n \in \mathbb{N}$ par $u_n = \sum_{k=0}^n \frac{\cos(\frac{\pi k^2}{7}) + 2}{2^k}$ est convergente.

Résultat attendu : On montre que u est croissante et majorée par 6, donc convergente.

Exercice 7 $(\bigstar \bigstar)$. Soit la suite $(u_n)_{n \in \mathbb{N}^*}$ définie pour tout n entier non nul par : $u_n = \frac{1}{n} \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$.

- 1. Montrer que $(u_n)_{n\in\mathbb{N}^*}$ converge.
- 2. Montrer que pour tout n non nul, $u_{2n} \frac{1}{2}u_n \leqslant \frac{1}{2\sqrt{n}}$.
- 3. En déduire la limite de $(u_n)_{n\in\mathbb{N}^*}$.

Résultat attendu:

- 1. La suite est décroissante et minorée, donc converge.
- 2. On simplifie l'expression puis majore la somme obtenue.
- 3. On complète l'inégalité de la question précédente pour obtenir un encadrement de $u_{2n} \frac{1}{2}u_n$, puis on passe à la limite dans cet encadrement. La suite u converge vers 0.

Exercice 8 $(\bigstar \bigstar)$. Soit $u \in \mathbb{R}^{\mathbb{N}}$ telle que les trois suites $(u_{2n})_{n \in \mathbb{N}}$, $(u_{2n+1})_{n \in \mathbb{N}}$ et $(u_{5n})_{n \in \mathbb{N}}$ convergent. Montrer que la suite u converge.

Résultat attendu : On utilise les propriétés des suites extraites pour montrer que $(u_{5n})_{n\in\mathbb{N}}$ et $(u_{2n})_{n\in\mathbb{N}}$ ont la même limite, puis que $(u_{5n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ ont la même limite. On conclut ensuite par propriété de cours.

Exercice 9 $(\bigstar \bigstar)$. Montrer que la suite u définie pour tout $n \in \mathbb{N}^*$ par $u_n = \sum_{k=1}^n \frac{(-1)^k}{k}$ converge.

Indication: on pourra commencer par étudier les suites (u_{2n}) et (u_{2n+1}) .

Résultat attendu : On montre que (u_{2n}) et (u_{2n+1}) sont adjacentes, elles convergent donc vers une même limite. La convergence de u en découle.

Exercice 10 ($\star\star\star$). On définit les deux suites réelles $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ par $b_0>a_0>0$ et :

$$\forall n \in \mathbb{N}, \quad a_{n+1} = \sqrt{a_n b_n} \quad \text{ et } \quad b_{n+1} = \frac{a_n + b_n}{2}.$$

Montrer que ces deux suites sont bien définies et qu'elles convergent vers un même réel $\ell.$

<u>Résultat attendu</u>: On montre séparément la convergence des deux suites, puis on passe à la limite dans la deuxième relation de récurrence.

Exercice 11 (\bigstar). Soit u la suite réelle définie par $u_0 = 3$ et $\forall n \in \mathbb{N}$, $u_{n+1} = 3u_n - 2$. Soit $n \in \mathbb{N}$, déterminer une expression de u_n en fonction de n.

Résultat attendu : $\forall n \in \mathbb{N}, u_n = 2 \times 3^n + 1.$

Exercice 12 (\bigstar). Soit w la suite définie par $w_0 = \frac{1}{2}$ et $\forall n \in \mathbb{N}, w_{n+1} = -3w_n + 1$.

- 1. Déterminer le terme général de w.
- 2. Déterminer le comportement de w_n (convergence, divergence, limite) lorsque $n \to +\infty$.

Résultat attendu:

- 1. $\forall n \in \mathbb{N}, w_n = \frac{1}{4}(-3)^n + \frac{1}{4}$.
- 2. (w_{2n}) diverge vers $+\infty$ et (w_{2n+1}) diverge vers $-\infty$, donc (w_n) diverge.

Exercice 13 ($\bigstar \bigstar$). Soit $\lambda \in \mathbb{R}$ et u la suite réelle définie par $u_0 = 2$ et $\forall n \in \mathbb{N}, u_{n+1} = \lambda u_n + 3$. Soit $n \in \mathbb{N}$, déterminer une expression de u_n en fonction de n.

Résultat attendu : Si
$$\lambda \neq 1$$
, $u_n = \lambda^n \left(2 - \frac{3}{1 - \lambda}\right) + \frac{3}{1 - \lambda}$. Si $\lambda = 1$, $u_n = 2 + 3n$.

Exercice 14 (★★). Dans chacune des situations suivantes, déterminer la limite de la suite réelle étudiée.

- 1. u est une suite telle que $\forall n \in \mathbb{N}, u_{n+1} \geqslant u_n + \frac{1}{3}$.
- 2. v est une suite positive telle que $\forall n \in \mathbb{N}, v_{n+1} \leq \frac{3}{4}v_n$.
- 3. w est une suite telle que $\forall n \geq 3$, $|w_{n+1} \sqrt{5}| \leq (e-2)|w_n \sqrt{5}|$.

Résultat attendu: u diverge vers $+\infty$, v converge vers 0, w converge vers $\sqrt{5}$.

Pour le montrer, il faut exploiter les relations de récurrence fournies, de manière à établir des inégalités reliant le n-ième terme de la suite et son premier terme. On exploite ensuite ces inégalités avec un théorème d'encadrement ou de comparaison.

Exercice 15 (\star). Pour chacune des suites réelles suivantes, exprimer le terme général de la suite en fonction de n:

- 1. La suite $(w_n)_{n\in\mathbb{N}}$ définie par $\forall n\in\mathbb{N}, w_{n+2}=3w_{n+1}-2w_n, w_0=0$ et $w_1=1$.
- 2. La suite $(u_n)_{n\in\mathbb{N}}$ définie par $\forall n\in\mathbb{N}, u_{n+2}=-u_{n+1}-\frac{1}{4}u_n, u_0=1$ et $u_1=1$.
- 3. La suite $(v_n)_{n\in\mathbb{N}}$ définie par $\forall n\in\mathbb{N},\,v_{n+2}=-v_{n+1}-v_n,\,v_0=1$ et $v_1=-1$.

Résultat attendu : $\forall n \in \mathbb{N}, w_n = 2^n - 1, u_n = \left(-\frac{1}{2}\right)^n \left(-3n + 1\right) \text{ et } v_n = \cos\left(-\frac{2n\pi}{3}\right) + \frac{\sqrt{3}}{3}\sin\left(-\frac{2n\pi}{3}\right).$

Exercice 16 $(\bigstar \bigstar)$. Soit la suite $(u_n)_{n \in \mathbb{N}}$ définie pour tout $n \in \mathbb{N}$ par $u_{n+2} = \sqrt{u_{n+1}u_n}$, $u_0 = 1$, $u_1 = 2$.

- 1. Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ définie pour tout entier n par $v_n=\ln(u_n)$ existe.
- 2. Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est récurrente linéaire double.
- 3. En déduire l'expression de v_n puis de u_n en fonction de n.

Résultat attendu:

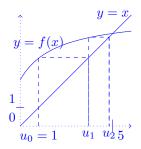
- 1. On montre par récurrence double que u_n existe et $u_n > 0$.
- 2. Par propriétés du logarithme, $\forall n \in \mathbb{N}, v_{n+2} = \frac{1}{2}v_{n+1} + \frac{1}{2}v_n$.
- 3. $\forall n \in \mathbb{N}, v_n = \frac{2\ln(2)}{3} \frac{2\ln(2)}{3} \left(-\frac{1}{2}\right)^n$. Par passage à l'exponentielle, $\forall n \in \mathbb{N}, u_n = 2^{\frac{2}{3}\left(1-\left(-\frac{1}{2}\right)^n\right)}$.

Exercice 17 (\bigstar). Soit la suite u définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{6u_n + 5}{u_n + 2}$.

- 1. Étudier et tracer la courbe représentative de la fonction f définie sur \mathbb{R}_+ par $f(x) = \frac{6x+5}{x+2}$. En déduire que la suite est bien définie, et tracer la représentation des réels u_0 , u_1 et u_2 .
- 2. Étudier la monotonie et les bornes éventuelles de la suite u.
- 3. Montrer que la suite u converge et déterminer sa limite.

Résultat attendu:

1. L'étude de f montre que \mathbb{R}_+ est stable par f, donc la suite u est bien définie.



- 2. La suite u est croissante et majorée (par 5 ou 6 suivant le choix de raisonnement).
- 3. La question 2 donne la convergence, puis le calcul se fait par théorème du point fixe : u converge vers 5.

Exercice 18 $(\bigstar \bigstar)$. Soit u vérifiant $u_0 \in [0, \frac{\pi}{2}]$ et $\forall n \in \mathbb{N}, u_{n+1} = \sin(u_n)$. Déterminer le comportement de u_n lorsque $n \to +\infty$.

<u>Résultat attendu :</u> u est décroissante, et $u_n \underset{n \to +\infty}{\longrightarrow} 0$.

Exercice 19 ($\star\star\star$). Déterminer le comportement en $+\infty$ de la suite u définie par le premier terme $u_0 \geqslant 0$ et la relation de récurrence : $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{1+u_n}$.

Résultat attendu : Si $u_0 \in \left[0, \frac{1+\sqrt{5}}{2}\right]$, la suite u est croissante et majorée. Sinon, elle est décroissante et minorée. Dans les deux cas, elle converge vers $\frac{1+\sqrt{5}}{2}$.

Exercice 20 (Type DS). On définit la suite de terme général a_n par : $\forall n \ge 1, a_n = \frac{\sqrt{n} \binom{2n}{n}}{A^n}$.

- 1. Calculer a_1 puis, pour tout entier $n \ge 1$, montrer que $\frac{a_{n+1}}{a_n} = \frac{2n+1}{2\sqrt{n(n+1)}}$.
- 2. Démontrer par récurrence que pour tout entier $n \ge 1$: $a_n \le \sqrt{\frac{n}{2n+1}}$.

Indication : on pourra commencer par simplifier $\frac{n+1}{2n+3} - \frac{2n+1}{4n+4}$ pour en étudier le signe.

3. Déterminer le sens de variation de la suite $(a_n)_{n\in\mathbb{N}^*}$, puis montrer qu'elle converge vers un réel ℓ tel que : $\frac{1}{2} \leqslant \ell \leqslant \frac{1}{\sqrt{2}}$.

Résultat attendu:

1. $a_1 = \frac{\sqrt{1}\binom{2}{1}}{4} = \frac{2}{4} = \frac{1}{2}$. De plus soit $n \ge 1$, $a_n \ne 0$, donc on peut diviser :

$$\begin{split} \frac{a_{n+1}}{a_n} &= \frac{\sqrt{n+1}}{4^{n+1}} \frac{4^n}{\sqrt{n}} \frac{\binom{2n+2}{n+1}}{\binom{2n}{n}} \\ &= \frac{1}{4} \sqrt{\frac{n+1}{n}} \frac{(2n+2)!(n!)^2}{(2n)!((n+1)!)^2} \\ &= \frac{1}{4} \sqrt{\frac{n+1}{n}} \frac{(2n+1)(2n+2)}{(n+1)^2} \\ &= \frac{1}{2} \sqrt{\frac{n+1}{n}} \frac{2n+1}{n+1} \\ \frac{a_{n+1}}{a_n} &= \frac{2n+1}{2\sqrt{n(n+1)}}. \end{split}$$

2. Soit $n \ge 1$, $\frac{n+1}{2n+3} - \frac{2n+1}{4n+4} = \frac{4n^2 + 8n + 4 - 4n^2 - 8n - 3}{(2n+3)(4n+4)} = \frac{1}{(2n+3)(4n+4)} \ge 0$.

On montre alors par récurrence sur \mathbb{N}^* la propriété P(n) : « $a_n \leqslant \sqrt{\frac{n}{2n+1}}$ ».

$$a_{n+1} = \frac{a_{n+1}}{a_n} a_n \overset{P(n)}{\leqslant} \frac{a_{n+1}}{a_n} \sqrt{\frac{n}{2n+1}} \stackrel{\text{l.}}{=} \frac{2n+1}{2\sqrt{n(n+1)}} \sqrt{\frac{n}{2n+1}} = \sqrt{\frac{2n+1}{4n+4}}.$$

Or le calcul précédant la récurrence donne $\frac{n+1}{2n+3}\geqslant \frac{2n+1}{4n+4}$. Donc par croissance de $x\to \sqrt{x}$ sur \mathbb{R}_+ , $a_{n+1}\leqslant \sqrt{\frac{n+1}{2n+3}}=\sqrt{\frac{n+1}{2(n+1)+1}}.$ Donc P(n+1) est vraie.

D'où le résultat demandé : $\forall n \in \mathbb{N}^*, \, a_n \leqslant \sqrt{\frac{n}{2n+1}}$.

3. $\forall n \in \mathbb{N}^*, \frac{a_{n+1}}{a_n} \stackrel{\text{!`}}{=} \frac{2n+1}{2\sqrt{n(n+1)}} = \frac{\sqrt{(2n+1)^2}}{\sqrt{4n(n+1)}} = \sqrt{\frac{4n^2+4n+1}{4n^2+4n}} \geqslant \sqrt{1} = 1$, où on a conclu par croissance de la racine sur \mathbb{R}_+ . Donc $(a_n)_{n \in \mathbb{N}^*}$ est croissante.

De plus, $\forall n \in \mathbb{N}^*$, $a_n \leqslant \sqrt{\frac{n}{2n+1}} = \sqrt{\frac{1}{2+\frac{1}{n}}} \leqslant \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}$, puisque $\frac{1}{n} \geqslant 0$. Donc $(a_n)_{n \in \mathbb{N}^*}$ est majorée par $\frac{1}{\sqrt{2}}$. Étant croissante et majorée, $(a_n)_{n\in\mathbb{N}^*}$ converge vers un réel ℓ .

La croissance et la majoration donnent de plus : $\forall n \geqslant 1, \frac{1}{2} = a_1 \leqslant a_n \leqslant \frac{1}{\sqrt{2}}$. En passant à la limite dans cette inégalité, on trouve $\frac{1}{2} \leqslant \ell \leqslant \frac{1}{\sqrt{2}}$

4