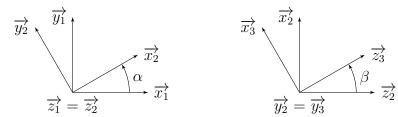
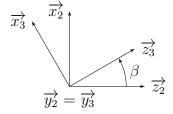
Applications de calcul vectoriel

— Éléments de correction du TD —

1 Centrifugeuse de laboratoire

Avec la description du sujet, il vient les figures géométrales :





Question 1. Par relation de Chasles, on a :

$$\overrightarrow{O_1A_3} = \overrightarrow{O_1O_2} + \overrightarrow{O_2O_3} + \overrightarrow{O_3A_3} \qquad \text{d'où} \qquad \overrightarrow{O_1A_3} = h\overrightarrow{z_1} + R\overrightarrow{x_2} + \ell\overrightarrow{x_3}$$

$$\overrightarrow{O_1 A_3} = h \overrightarrow{z_1} + R \overrightarrow{x_2} + \ell \overrightarrow{x_3}$$

Question 2. Par définition, on a :

$$\left\|\overrightarrow{O_1A_3}\right\|^2 = \overrightarrow{O_1A_3} \cdot \overrightarrow{O_1A_3} = h^2 + R^2 + \ell^2 + 2hR\overrightarrow{z_1} \cdot \overrightarrow{x_2} + 2h\ell\overrightarrow{z_1} \cdot \overrightarrow{x_3} + 2R\ell\overrightarrow{x_2} \cdot \overrightarrow{x_3}$$

avec

$$\overrightarrow{z_1} \cdot \overrightarrow{x_2} = \overrightarrow{z_2} \cdot \overrightarrow{x_2} = 0, \qquad \overrightarrow{z_1} \cdot \overrightarrow{x_3} = \overrightarrow{z_2} \cdot \overrightarrow{x_3} = -\sin(\beta), \qquad \overrightarrow{x_2} \cdot \overrightarrow{x_3} = \cos(\beta)$$

il vient:

$$\left| \left| \overrightarrow{O_1 A_3} \right| \right| = \sqrt{h^2 + R^2 + \ell^2 + 2\ell \left(R \cos(\beta) - h \sin(\beta) \right)} \right|$$

Question 3. Avec la figure géométrale reliant les bases \mathcal{B}_1 et \mathcal{B}_2 , il vient :

$$\overrightarrow{x_2} \wedge \overrightarrow{x_1} = -\sin(\alpha)\overrightarrow{z_1}$$

$$\overrightarrow{x_1} \wedge \overrightarrow{y_2} = \cos(\alpha)\overrightarrow{z_1}$$

Dans la base \mathcal{B}_2 , on a :

$$\overrightarrow{x_2} \wedge \overrightarrow{z_1} = \overrightarrow{x_2} \wedge \overrightarrow{z_2} = -\overrightarrow{y_2}$$

Avec la figure géométrale reliant les bases \mathcal{B}_2 et \mathcal{B}_3 , il vient :

$$\overrightarrow{x_3} \wedge \overrightarrow{z_1} = \overrightarrow{x_3} \wedge \overrightarrow{z_2} = -\cos(\beta)\overrightarrow{y_2}$$

$$\overrightarrow{z_3} \wedge \overrightarrow{z_1} = \overrightarrow{z_3} \wedge \overrightarrow{z_2} = -\sin(\beta)\overrightarrow{y_2}$$

Sachant que $\overrightarrow{x_1}$ et $\overrightarrow{x_3}$ ne sont pas deux vecteurs dont les bases sont reliées par une figure géométrale, il y a deux possibilités pour faire le calcul:

1. exprimer $\overrightarrow{x_3}$ dans \mathcal{B}_2

$$\overrightarrow{x_3} = \cos(\beta)\overrightarrow{x_2} - \sin(\beta)\overrightarrow{z_2}$$

et utiliser la figure géométrale reliant les bases \mathcal{B}_1 et \mathcal{B}_2 . Dans ce cas, il vient :

$$\overrightarrow{x_1} \wedge \overrightarrow{x_3} = \overrightarrow{x_1} \wedge (\cos(\beta)\overrightarrow{x_2} - \sin(\beta)\overrightarrow{z_2})$$

Par linéarité du produit vectoriel et avec

$$\overrightarrow{x_1} \wedge \overrightarrow{x_2} = \sin(\alpha)\overrightarrow{z_1}, \qquad \overrightarrow{x_1} \wedge \overrightarrow{z_2} = \overrightarrow{x_1} \wedge \overrightarrow{z_1} = -\overrightarrow{y_1}$$

il vient :

$$\overrightarrow{x_1} \wedge \overrightarrow{x_3} = \sin(\beta) \overrightarrow{y_1} + \cos(\beta) \sin(\alpha) \overrightarrow{z_1}$$

2. exprimer $\overrightarrow{x_1}$ dans \mathcal{B}_2

$$\overrightarrow{x_1} = \cos(\alpha)\overrightarrow{x_2} - \sin(\alpha)\overrightarrow{y_2}$$

et utiliser la figure géométrale reliant les bases \mathcal{B}_2 et \mathcal{B}_3 . Dans ce cas, il vient :

$$\overrightarrow{x_1} \wedge \overrightarrow{x_3} = (\cos(\alpha)\overrightarrow{x_2} - \sin(\alpha)\overrightarrow{y_2}) \wedge \overrightarrow{x_3}$$

Par linéarité du produit vectoriel et avec

$$\overrightarrow{x_2} \wedge \overrightarrow{x_3} = \sin(\beta) \overrightarrow{y_2}, \qquad \overrightarrow{y_2} \wedge \overrightarrow{x_3} = \overrightarrow{y_3} \wedge \overrightarrow{x_3} = -\overrightarrow{z_3}$$

il vient:

$$\overrightarrow{x_1} \wedge \overrightarrow{x_3} = \cos(\alpha)\sin(\beta)\overrightarrow{y_2} + \sin(\alpha)\overrightarrow{z_3}$$

Ce sont deux expressions du même vecteur. En effet, partant de :

$$\overrightarrow{y_2} = \cos(\alpha) \overrightarrow{y_1}
\overrightarrow{z_3} = \cos(\beta) \overrightarrow{z_2} + \sin(\beta) \overrightarrow{x_2} = \cos(\beta) \overrightarrow{z_1} + \sin(\beta) \left(\cos(\alpha) \overrightarrow{x_1} + \sin(\alpha) \overrightarrow{y_1}\right)$$

on retrouve bien la première expression trouvée dans la base \mathcal{B}_1 .

On peut procéder de la même façon pour $\overrightarrow{y_1} \wedge \overrightarrow{z_3}$; soit :

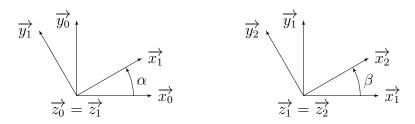
$$\overrightarrow{y_1} \wedge \overrightarrow{z_3} = \overrightarrow{y_1} \wedge (\cos(\beta) \overrightarrow{z_2} + \sin(\beta) \overrightarrow{x_2})$$

$$= \cos(\beta) \overrightarrow{x_1} - \sin(\beta) \sin(\alpha) \overrightarrow{z_1}$$
ou
$$= (\cos(\alpha) \overrightarrow{y_2} + \sin(\alpha) \overrightarrow{x_2}) \wedge \overrightarrow{z_3}$$

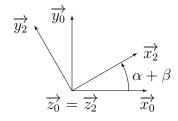
$$= \cos(\alpha) \overrightarrow{x_3} - \sin(\alpha) \cos(\beta) \overrightarrow{y_2}$$

2 Robot Ericc3

Question 4. Avec la description du sujet, il vient les figures géométrales :



qui sont toutes deux coplanaires et nous autorisent donc à réaliser une troisième figure géométrale permettant de relier directement les bases \mathcal{B}_0 et \mathcal{B}_2 :



Question 5. Par relation de Chasles, on a :

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \ell_1 \overrightarrow{x_1} + \ell_2 \overrightarrow{x_2}$$

d'où

$$\left\| \overrightarrow{OB} \right\|^2 = \overrightarrow{OB} \cdot \overrightarrow{OB} = \ell_1^2 + \ell_2^2 + 2\ell_1\ell_2 \overrightarrow{x_1} \cdot \overrightarrow{x_2}$$

avec $\overrightarrow{x_1} \cdot \overrightarrow{x_2} = \cos(\beta)$, il vient :

Question 6. La hauteur (direction $\overrightarrow{y_0}$) du point B par rapport au point O est définie comme la coordonnée :

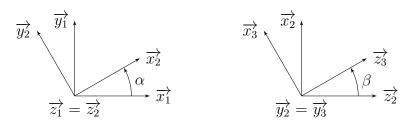
$$h = \overrightarrow{OB} \cdot \overrightarrow{y_0} = (\ell_1 \overrightarrow{x_1} + \ell_2 \overrightarrow{x_2}) \cdot \overrightarrow{y_0}$$

ďoù

$$h = \ell_1 \sin(\alpha) + \ell_2 \sin(\alpha + \beta)$$

3 « Robot de peinture »

Question 7. Avec la description du sujet, on constate que les bases \mathcal{B}_0 et \mathcal{B}_1 sont confondues. Il vient les figures géométrales :



Question 8. Par relation de Chasles, on a :

$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BP} = \lambda \overrightarrow{y_1} + H \overrightarrow{z_1} + L \overrightarrow{z_3}$$

On remarque que pour exprimer ce vecteur dans la base $\mathcal{B}_0 = \mathcal{B}_1$, il est nécessaire d'exprimer le vecteur $\overrightarrow{z_3}$ dans la base \mathcal{B}_2 puis dans la base \mathcal{B}_1 , ce qui fait successivement apparaitre les angles α et β :

$$\overrightarrow{z_3} = \cos(\beta)\overrightarrow{z_2} + \sin(\beta)\overrightarrow{x_2}$$

$$= \cos(\beta)\overrightarrow{z_1} + \sin(\beta)(\cos(\alpha)\overrightarrow{x_1} + \sin(\alpha)\overrightarrow{y_1})$$

d'où

$$\overrightarrow{OP} = L\sin(\beta)\cos(\alpha)\overrightarrow{x_1} + (\lambda + L\sin(\beta)\sin(\alpha))\overrightarrow{y_1} + (H + L\cos(\beta))\overrightarrow{z_1}$$

Soit avec les composantes dans \mathcal{B}_0 :

$$\overrightarrow{OP} \cdot \overrightarrow{x_0} = L \sin(\beta) \cos(\alpha)$$

$$\overrightarrow{OP} \cdot \overrightarrow{y_0} = \lambda + L \sin(\beta) \sin(\alpha)$$

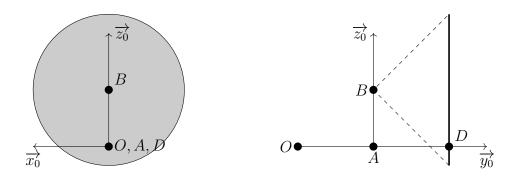
$$\overrightarrow{OP} \cdot \overrightarrow{z_0} = H + L \cos(\beta)$$

Question 9. Par composition des mobilités, on constate que le point P peut décrire librement la surface d'une sphère de centre B et de rayon L dans $\mathbf{1}$. En ajoutant la mobilité en translation de $\mathbf{1}$ par rapport à $\mathbf{0}$, l'ensemble des points accessibles par le point P est contenu dans un cylindre d'axe $(B, \overrightarrow{y_0})$ et de rayon L.

Ainsi, en limitant ses déplacements au plan de normale $\overrightarrow{y_0}$ passant par le point D, tel que

$$\overrightarrow{OD} = b\overrightarrow{y_0}$$

il vient que l'ensemble des positions accessibles est limité par le cercle de centre C tel que $\overrightarrow{DC} = H\overrightarrow{z_0}$ et de rayon L (défini comme l'intersection du plan et du cylindre). Il vient alors les figures :



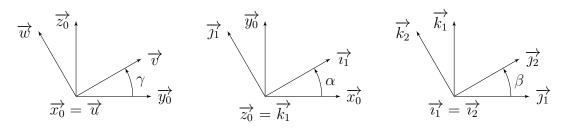
Enfin, on note que ces mouvements sont caractérisés par la contrainte :

$$\overrightarrow{DP} \cdot \overrightarrow{y_0} = 0 \iff b = \lambda + L\sin(\beta)\sin(\alpha)$$

qui signifie que les trois paramètres λ , α et β ne sont plus indépendants et donc qu'il ne reste que deux mobilités (dans le plan).

4 « Fixie »

Question 10. Avec la description du sujet, il vient les figures géométrales :



Question 11. Par relation de Chasles, on a :

$$\overrightarrow{AF} = \overrightarrow{AD} + \overrightarrow{DE} + \overrightarrow{EF} = d\overrightarrow{u} + e\overrightarrow{v} + f\overrightarrow{u}$$

d'où

$$\overrightarrow{AF} = (d+f) \overrightarrow{u} + e \overrightarrow{v}$$

Question 12. Sachant que, par anti-symétrie du produit vectoriel, on a

$$\overrightarrow{V_F} = \overrightarrow{FA} \wedge \omega_P \overrightarrow{x_0} = \omega_P \overrightarrow{x_0} \wedge \overrightarrow{AF}$$

et avec $\overrightarrow{x_0} = \overrightarrow{u}$:

$$\overrightarrow{x_0} \wedge \overrightarrow{u} = \overrightarrow{0}$$
 et $\overrightarrow{x_0} \wedge \overrightarrow{v} = \overrightarrow{w}$

il vient:

$$\overrightarrow{V_F} = e\omega_P \overrightarrow{w}$$

Question 13. Partant de

$$\overrightarrow{V_H} = \overrightarrow{HO_2} \wedge (\omega_F \overrightarrow{z_0} + \omega_r \overrightarrow{\imath_1})$$

avec $\overrightarrow{HO_2} = -r\overrightarrow{\jmath_2}$, il vient :

$$\overrightarrow{\jmath_2} \wedge \overrightarrow{z_0} = \overrightarrow{\jmath_2} \wedge \overrightarrow{k_1} = \cos(\beta) \overrightarrow{\imath_1}$$

$$\overrightarrow{\jmath_2} \wedge \overrightarrow{\imath_1} = \overrightarrow{\jmath_2} \wedge \overrightarrow{\imath_2} = -\overrightarrow{k_2}$$

il vient:

$$\overrightarrow{V_H} = r\left(\omega_r \overrightarrow{k_2} - \omega_F \cos(\beta) \overrightarrow{i_1}\right)$$