Calcul de primitives

Exercice 1 (\star). Après avoir justifié leur existence (ou éventuellement avoir déterminé pour quels $x \in \mathbb{R}$ elles étaient définies), calculer les intégrales suivantes.

1.
$$\int_{-1}^{1} (2t^2 - 3) dt$$

2.
$$\int_{-1}^{x} (2s+1)^4 ds$$

3.
$$\int_0^x \frac{dt}{(2t+1)^4}$$

4.
$$\int_{x}^{2} \sqrt{u+1} du$$

5.
$$\int_{2\pi}^{x^2} 2s(s^2+1)^3 ds$$

1.
$$\int_{-1}^{1} (2t^2 - 3)dt$$
 2. $\int_{-1}^{x} (2s + 1)^4 ds$ 3. $\int_{0}^{x} \frac{dt}{(2t + 1)^4}$ 5. $\int_{2x}^{x^2} 2s(s^2 + 1)^3 ds$ 6. $\int_{0}^{\frac{\pi}{2}} \cos(2t) \sin^5(2t) dt$ 7. $\int_{1}^{1 + 2x} \frac{\ln(u)}{u} du$

7.
$$\int_{1}^{1+2x} \frac{\ln(u)}{u} du$$

Exercice 2 (\bigstar) . Après avoir justifié leur existence (ou éventuellement avoir déterminé pour quels $x \in \mathbb{R}$ elles étaient définies), calculer les intégrales suivantes.

1.
$$\int_{-x}^{x} \sin(3t) dt$$

1.
$$\int_{-x}^{x} \sin(3t)dt$$
 2. $\int_{x^{2}}^{1} \cos\left(\frac{s-1}{2}\right) ds$ 3. $\int_{0}^{x} \cos^{2}(t)dt$ 4. $\int_{0}^{\frac{\pi}{5}} \sin^{2}(5u)du$ 5. $\int_{-x^{2}}^{2x^{2}} e^{3t}dt$ 6. $\int_{0}^{1} e^{(2i-5)t}dt$ 7. $\int_{1}^{x} se^{2s^{2}}ds$

3.
$$\int_0^x \cos^2(t) dt$$

4.
$$\int_0^{\frac{\pi}{5}} \sin^2(5u) du$$

5.
$$\int_{-x^2}^{2x^2} e^{3t} dt$$

6.
$$\int_0^1 e^{(2i-5)t} dt$$

7.
$$\int_{1}^{x} se^{2s^2} ds$$

Exercice 3 (\bigstar) . Après avoir justifié leur existence (ou éventuellement avoir déterminé pour quels $x \in \mathbb{R}$ elles étaient définies), calculer les intégrales suivantes.

$$1. \int_3^x \frac{1}{t+2} dt$$

2.
$$\int_{-5}^{x} \frac{1}{t+2} dt$$

3.
$$\int_{-1}^{x} \frac{1}{3-2s} ds$$

4.
$$\int_{-1}^{1} \frac{2u+1}{1+u+u^2} du$$

5.
$$\int_0^{3x} \tan(t) dt$$

6.
$$\int_{-1}^{0} \frac{3t}{\sqrt{2t^2+1}} dt$$

1.
$$\int_{3}^{x} \frac{1}{t+2} dt$$
 2. $\int_{-5}^{x} \frac{1}{t+2} dt$ 3. $\int_{-1}^{x} \frac{1}{3-2s} ds$ 4. $\int_{-1}^{1} \frac{2u+1}{1+u+u^2} du$ 5. $\int_{0}^{3x} \tan(t) dt$ 6. $\int_{-1}^{0} \frac{3t}{\sqrt{2t^2+1}} dt$ 7. $\int_{x-1}^{x+1} \frac{1}{e^s \sqrt{2e^{-s}+1}} ds$

Exercice 4 (**). Déterminer une primitive de chacune des fonctions suivantes, en précisant l'intervalle de validité de la primitive calculée.

1.
$$f_1: t \mapsto \cos(t)e^{-t}$$

2.
$$f_2: t \mapsto \sin(2t)e^t$$

3.
$$f_3: t \mapsto \sin^2(t)e^t$$

Exercice $5 \ (\bigstar)$. Calculer les intégrales suivantes :

1.
$$A = \int_{1}^{2} t \ln(t) dt$$

2.
$$B = \int_0^1 t \arctan(t) dt$$

Exercice 6 (**). En procédant par intégration par parties, déterminer une primitive de chacune des fonctions suivantes, en précisant l'intervalle de validité de la primitive calculée.

1.
$$f_1: t \mapsto t\sin(t)$$

2.
$$f_2: t \mapsto t \ln(t)$$

$$3. f_3: t \mapsto t^2 e^{-t}$$

4.
$$f_4: t \mapsto \arctan(t)$$

2.
$$f_2: t \mapsto t \ln(t)$$

5. $f_5: t \mapsto t \sin(t) \cos(2t)$

Exercice 7 (\bigstar) . Calculer les intégrales suivantes en effectuant le changement de variable proposé :

1.
$$M = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(x) \sin^2(x) dx \quad (u = \sin(x))$$

2.
$$L = \int_0^1 \frac{t^2 dt}{\sqrt{t+1}}$$
 $(u = \sqrt{t+1})$

Exercice 8 (**). En utilisant des changements de variables, déterminer une primitive de chacune des fonctions suivantes, en précisant l'intervalle de validité de la primitive calculée.

1.
$$f_1: t \mapsto \frac{2t}{1+t^4}$$

2.
$$f_2: t \mapsto \frac{e^{2t}}{1+e^t}$$

3.
$$f_3: t \mapsto \frac{1}{\operatorname{ch}(t)}$$

1.
$$f_1: t \mapsto \frac{2t}{1+t^4}$$
 2. $f_2: t \mapsto \frac{e^{2t}}{1+e^t}$ 3. $f_3: t \mapsto \frac{1}{\operatorname{ch}(t)}$ 4. $f_4: t \mapsto \frac{\sin(t)\cos(t)}{\sin^2(t)+1}$

Exercice 9 $(\bigstar \bigstar)$. Calculer l'intégrale $I = \int_1^4 \frac{\ln\left(\frac{x}{2}\right)}{4+x^2} dx$ en posant le changement de variable $t = \frac{4}{x}$.

Exercice 10 $(\star\star)$. En utilisant des changements de variables, déterminer une primitive de chacune des fonctions suivantes, en précisant l'intervalle de validité de la primitive calculée.

1.
$$g_1: t \mapsto \frac{e^t - 1}{e^t + 1}$$

2.
$$g_2: t \mapsto \frac{t^2}{(1-t^2)^{3/2}}$$

3.
$$g_3: t \mapsto \arcsin^2(t)$$

Indication: pour g_2 , poser $t = \sin(s)$.

Exercice 11 (\bigstar) . Déterminer une primitive (intervalle(s) de validité à préciser) de :

1.
$$f: t \mapsto \frac{1}{2t+1}$$

2.
$$g: t \mapsto \frac{2t}{2t+1}$$

3.
$$h: t \mapsto \frac{3t+1}{2t+1}$$

Exercice 12 (★). Déterminer une primitive (intervalle(s) de validité à préciser) de :

1.
$$\varphi: t \mapsto \frac{1}{t^2 - 2t - 3}$$

2.
$$\psi: t \mapsto \frac{1}{2t^2 - 3t - 2}$$

5. $v: t \mapsto \frac{1}{t^2 + t + 1}$.

3.
$$\mu: t \mapsto \frac{1}{4t^2 + 4t + 1}$$

1.
$$\varphi: t \mapsto \frac{1}{t^2 - 2t - 3}$$

4. $u: t \mapsto \frac{1}{t^2 - 4t + 5}$

5.
$$v: t \mapsto \frac{1}{t^2 + t + 1}$$

Exercice 13 $(\bigstar \bigstar)$. Soit $p \in \mathbb{N}^*$, $a \in \mathbb{R}_+^*$ et $x \in \mathbb{R}$. À quelle condition les intégrales suivantes sont-elles définies, et que valent-elles?

1.
$$\int_0^{\pi} (1-pt)\sin(pt)d$$

2.
$$\int_{-1}^{x} (t+x)^p dt$$

3.
$$\int_0^1 \frac{e^{2s}}{e^s + 1} ds$$

4.
$$\int_{-x}^{x} \frac{ds}{\sqrt{1-as}}$$

5.
$$\int_0^{e^p} \ln(1+r^2) dr$$

$$6. \int_1^2 \frac{dt}{t + t \ln(t)}$$

$$7. \int_{-a}^{2a} t \sqrt{p - t^2} dt$$

8.
$$\int_{1}^{x} \frac{\ln(au)}{\sqrt{2u}} du$$

9.
$$\int_0^{x^2} \frac{ds}{s^2 - p^2}$$

1.
$$\int_0^{\pi} (1 - pt) \sin(pt) dt$$
 2. $\int_{-1}^{x} (t + x)^p dt$ 3. $\int_0^1 \frac{e^{2s}}{e^s + 1} ds$ 4. $\int_{-x}^{x} \frac{ds}{\sqrt{1 - as}}$ 5. $\int_0^{e^p} \ln(1 + r^2) dr$ 6. $\int_1^2 \frac{dt}{t + t \ln(t)}$ 7. $\int_{-a}^{2a} t \sqrt{p - t^2} dt$ 8. $\int_1^x \frac{\ln(au)}{\sqrt{2u}} du$ 9. $\int_0^{x^2} \frac{ds}{s^2 - p^2}$ 10. $\int_0^{\frac{\pi}{2}} \sin(2t) e^{a \sin(t)} dt$

Exercice 14 (\bigstar). Étudier le sens de variation de la fonction g définie pour tout réel x par $g(x) = \int_{-2}^{x} \frac{u-1}{u^4+1} du$.

Exercice 15 (\bigstar) . Soit f une fonction continue sur \mathbb{R} .

- 1. Soit $a \in \mathbb{R}_+^*$. Si f est impaire sur [-a, a], que peut-on dire de $\int_{-a}^a f(x) dx$? Prouvez-le.
- 2. Même question si f est paire.
- 3. Soit $T \in \mathbb{R}_+^*$. Si f est T-périodique sur \mathbb{R} et $(a,b) \in \mathbb{R}^2$, que peut-on dire de $\int_{a+T}^{b+T} f(t) dt$? Prouvez-le.

Exercice 16 $(\star\star\star)$. Soit $f:\mathbb{R}\mapsto\mathbb{R}$ continue, non identiquement nulle et vérifiant pour tous x,y réels, f(x+y) = f(x)f(y). Montrer que f est de classe C^1 sur \mathbb{R} .

Exercice 17 (Type DS). Pour tout couple d'entiers $(p,q) \in \mathbb{N}^2$, on note $I(p,q) = \int_0^1 t^p (1-t)^q dt$.

- 1. Pour tout $(p,q) \in \mathbb{N}^2$, justifier l'existence de I(p,q). Calculer I(0,0), I(1,0) et I(1,1).
- 2. À l'aide d'un changement de variable, montrer que $\forall (p,q) \in \mathbb{N}^2$, I(p,q) = I(q,p).
- 3. Pour tout $p \in \mathbb{N}$, déterminer I(p,0).
- 4. À l'aide d'une intégration par parties, montrer que $\forall (p,q) \in \mathbb{N}^2$, $I(p,q+1) = \frac{q+1}{p+1}I(p+1,q)$.
- 5. Déduire des deux questions précédentes la valeur pour $p \in \mathbb{N}$ de I(p,1), puis celle de I(p,2).
- 6. Montrer par récurrence que pour tout $(p,q) \in \mathbb{N}^2$, $I(p,q) = \frac{p!q!}{(p+q+1)!}$.
- 7. Soit $(p,q) \in \mathbb{N}^2$. En déduire la valeur de l'intégrale $J(p,q) = \int_0^{\frac{\pi}{2}} \sin^{2p+1}(\theta) \cos^{2q+1}(\theta) d\theta$. Indication: poser le changement de variable $t = \sin^2(\theta)$.