Calcul de primitives

Exercice 1 (\star). Après avoir justifié leur existence (ou éventuellement avoir déterminé pour quels $x \in \mathbb{R}$ elles étaient définies), calculer les intégrales suivantes.

1.
$$\int_{-1}^{1} (2t^2 - 3) dt$$

2.
$$\int_{-1}^{x} (2s+1)^4 ds$$

3.
$$\int_0^x \frac{dt}{(2t+1)^4}$$

4.
$$\int_{x}^{2} \sqrt{u+1} du$$

5.
$$\int_{2x}^{x^2} 2s(s^2+1)^3 ds$$

6.
$$\int_0^{\frac{\pi}{2}} \cos(2t) \sin^5(2t) dt$$

7.
$$\int_{1}^{1+2x} \frac{\ln(u)}{u} du$$

1.
$$\frac{-14}{3}$$

2.
$$\frac{(2x+1)^{-1}}{2}$$

3.
$$\frac{1}{6} \left(1 - \frac{1}{(2x+1)^3} \right) \text{ (pour } x \in] - \frac{1}{2}, +\infty[)$$
5. $\frac{(x^4+1)^4 - (4x^2+1)^4}{4} \text{ (pour } x \in \mathbb{R})$
7. $\frac{(\ln(1+2x))^2}{2} \text{ (pour } x \in] - \frac{1}{2}, +\infty[)$

2.
$$\frac{(2x+1)^5+1}{10} \text{ (pour } x \in \mathbb{R})$$
4.
$$\frac{2}{3} \left(3^{\frac{3}{2}} - (x+1)^{\frac{3}{2}}\right) \text{ (pour } x \in [-1, +\infty[)$$

5.
$$\frac{(x^4+1)^4-(4x^2+1)^4}{4}$$
 (pour $x \in \mathbb{R}$)

7.
$$\frac{(\ln(1+2x))^2}{2}$$
 (pour $x \in]-\frac{1}{2}, +\infty[$

Exercice 2 (\star). Après avoir justifié leur existence (ou éventuellement avoir déterminé pour quels $x \in \mathbb{R}$ elles étaient définies), calculer les intégrales suivantes.

1.
$$\int_{-x}^{x} \sin(3t)dt$$

1.
$$\int_{-x}^{x} \sin(3t)dt$$
 2. $\int_{x^{2}}^{1} \cos\left(\frac{s-1}{2}\right) ds$ 3. $\int_{0}^{x} \cos^{2}(t)dt$ 5. $\int_{-x^{2}}^{2x^{2}} e^{3t} dt$ 6. $\int_{0}^{1} e^{(2i-5)t} dt$ 7. $\int_{1}^{x} se^{2s^{2}} ds$

3.
$$\int_0^x \cos^2(t) dt$$

4.
$$\int_0^{\frac{\pi}{5}} \sin^2(5u) du$$

5.
$$\int_{-x^2}^{2x^2} e^{3t} dt$$

6.
$$\int_0^1 e^{(2i-5)t} dt$$

7.
$$\int_{1}^{x} se^{2s^{2}} ds$$

$$i. \int_1 se^{-as}$$

Résultat attendu : La justification d'existence se fait par étude de la continuité.

1.
$$0 \text{ (pour } x \in \mathbb{R})$$

2.
$$-2\sin\left(\frac{x^2-1}{2}\right)$$
 (pour $x \in \mathbb{R}$)

3.
$$\frac{x}{2} + \frac{\sin(2x)}{4}$$
 (pour $x \in \mathbb{R}$)

4.
$$\frac{\pi}{10}$$

$$\begin{array}{ll} 3. & \frac{x}{2} + \frac{\sin(2x)}{4} \text{ (pour } x \in \mathbb{R}) \\ 5. & \frac{e^{6x^2} - e^{-3x^2}}{3} \text{ (pour } x \in \mathbb{R}) \end{array}$$

4.
$$\frac{\pi}{10}$$
6. $\frac{(1-e^{2i-5})(5+2i)}{20}$

7.
$$\frac{e^{2x^2} - e^2}{4} \text{ (pour } x \in \mathbb{R})$$

Exercice 3 (\bigstar) . Après avoir justifié leur existence (ou éventuellement avoir déterminé pour quels $x \in \mathbb{R}$ elles étaient définies), calculer les intégrales suivantes.

$$1. \int_3^x \frac{1}{t+2} dt$$

2.
$$\int_{-5}^{x} \frac{1}{t+2} dt$$

3.
$$\int_{-1}^{x} \frac{1}{3-2s} ds$$

4.
$$\int_{-1}^{1} \frac{2u+1}{1+u+u^2} du$$

5.
$$\int_0^{3x} \tan(t) dt$$

6.
$$\int_{-1}^{0} \frac{3t}{\sqrt{2t^2+1}} dt$$

1.
$$\int_{3}^{x} \frac{1}{t+2} dt$$
 2. $\int_{-5}^{x} \frac{1}{t+2} dt$ 3. $\int_{-1}^{x} \frac{1}{3-2s} ds$ 4. $\int_{-1}^{1} \frac{2u+1}{1+u+u^{2}} du$ 5. $\int_{0}^{3x} \tan(t) dt$ 6. $\int_{-1}^{0} \frac{3t}{\sqrt{2t^{2}+1}} dt$ 7. $\int_{x-1}^{x+1} \frac{1}{e^{s}\sqrt{2e^{-s}+1}} ds$

Résultat attendu : La justification d'existence se fait par étude de la continuité.

1.
$$\ln(x+2) - \ln(5)$$
 (pour $x \in]-2, +\infty[$)

2.
$$\ln(-x-2) - \ln(3)$$
 (pour $x \in]-\infty, -2[$)

3.
$$\ln\left(\sqrt{\frac{5}{3-2x}}\right) \text{ (pour } x \in]-\infty, \frac{3}{2}[)$$

4.
$$\ln(3)$$

5.
$$-\ln(\cos(3x))$$
 (pour $x \in]-\frac{\pi}{6}, \frac{\pi}{6}[)$
7. $\sqrt{2e^{-x+1}+1}-\sqrt{2e^{-x-1}+1}$ (pour $x \in \mathbb{R}$)

6.
$$\frac{3}{2} \left(1 - \sqrt{3} \right)$$

Exercice 4 (**). Déterminer une primitive de chacune des fonctions suivantes, en précisant l'intervalle de validité de la primitive calculée.

1.
$$f_1: t \mapsto \cos(t)e^{-t}$$

2.
$$f_2: t \mapsto \sin(2t)e^t$$

3.
$$f_3: t \mapsto \sin^2(t)e^t$$

Résultat attendu:

1.
$$\forall t \in \mathbb{R}, F_1(t) = \frac{e^{-t}}{2} (\sin(t) - \cos(t))$$

2.
$$\forall t \in \mathbb{R}, F_2(t) = \frac{e^t}{5} (\sin(2t) - 2\cos(2t))$$

1.
$$\forall t \in \mathbb{R}, F_1(t) = \frac{e^{-t}}{2}(\sin(t) - \cos(t))$$

3. $\forall t \in \mathbb{R}, F_3(t) = \frac{e^t}{2} - \frac{e^t}{10}(\cos(2t) + 2\sin(2t))$

Exercice $5 \ (\bigstar)$. Calculer les intégrales suivantes :

1.
$$A = \int_{1}^{2} t \ln(t) dt$$

2.
$$B = \int_0^1 t \arctan(t) dt$$

Résultat attendu : Dans les deux cas, on procède par intégration par parties.

1.
$$A = 2\ln(2) - \frac{3}{4}$$

2.
$$B = \frac{\pi}{4} - \frac{1}{2}$$

Exercice 6 (**). En procédant par intégration par parties, déterminer une primitive de chacune des fonctions suivantes, en précisant l'intervalle de validité de la primitive calculée.

1.
$$f_1: t \mapsto t\sin(t)$$

2.
$$f_2: t \mapsto t \ln(t)$$

3.
$$f_3: t \mapsto t^2 e^{-t}$$

4.
$$f_4: t \mapsto \arctan(t)$$

5.
$$f_5: t \mapsto t\sin(t)\cos(2t)$$

Résultat attendu:

1.
$$\forall x \in \mathbb{R}, F_1(x) = \sin(x) - x\cos(x)$$

2.
$$\forall x \in \mathbb{R}_+^*, F_2(x) = \ln(x) \frac{x^2}{2} - \frac{x^2}{4}$$

3.
$$\forall x \in \mathbb{R}, F_3(x) = e^{-x}(-x^2 - 2x - 2)$$

2.
$$\forall x \in \mathbb{R}_+^*$$
, $F_2(x) = \ln(x) \frac{x^2}{2} - \frac{x^2}{4}$
4. $\forall x \in \mathbb{R}$, $F_4(x) = x \arctan(x) - \frac{1}{2} \ln(1 + x^2)$

3.
$$\forall x \in \mathbb{R}, F_3(x) = e^{-x}(-x^2 - 2x - 2)$$

5. $\forall x \in \mathbb{R}, F_5(x) = \frac{x \cos(x)}{2} - \frac{x \cos(3x)}{6} + \frac{\sin(3x)}{18} - \frac{\sin(x)}{2}$

Exercice 7 (\bigstar) . Calculer les intégrales suivantes en effectuant le changement de variable proposé :

1.
$$M = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(x) \sin^2(x) dx \quad (u = \sin(x))$$

2.
$$L = \int_0^1 \frac{t^2 dt}{\sqrt{t+1}}$$
 $(u = \sqrt{t+1})$

Résultat attendu:

1.
$$M = \frac{1}{3} - \frac{\sqrt{3}}{8}$$

2.
$$L = \frac{14}{15}\sqrt{2} - \frac{16}{15}$$

Exercice $8 \ (\bigstar)$. En utilisant des changements de variables, déterminer une primitive de chacune des fonctions suivantes, en précisant l'intervalle de validité de la primitive calculée.

1.
$$f_1: t \mapsto \frac{2t}{1+t^4}$$

2.
$$f_2: t \mapsto \frac{e^{2t}}{1+e^t}$$

3.
$$f_3: t \mapsto \frac{1}{\operatorname{ch}(t)}$$

4.
$$f_4: t \mapsto \frac{\sin(t)\cos(t)}{\sin^2(t)+1}$$

Résultat attendu:

1.
$$\forall x \in \mathbb{R}, F_1(x) = \arctan(x^2)$$

2.
$$\forall x \in \mathbb{R}, F_2(x) = e^x - \ln(1 + e^x)$$

3.
$$\forall x \in \mathbb{R}, F_3(x) = 2 \arctan(e^x)$$

2.
$$\forall x \in \mathbb{R}, F_2(x) = e^x - \ln(1 + e^x)$$

4. $\forall x \in \mathbb{R}, F_4(x) = \frac{\ln(\sin^2(x) + 1)}{2}$

Exercice 9 ($\bigstar \bigstar$). Calculer l'intégrale $I = \int_1^4 \frac{\ln(\frac{x}{2})}{4+x^2} dx$ en posant le changement de variable $t = \frac{4}{x}$. Résultat attendu : Le changement de variable donne I = -I, donc I = 0.

Exercice 10 $(\star\star)$. En utilisant des changements de variables, déterminer une primitive de chacune des fonctions suivantes, en précisant l'intervalle de validité de la primitive calculée.

1.
$$g_1: t \mapsto \frac{e^t - 1}{e^t + 1}$$

2.
$$g_2: t \mapsto \frac{t^2}{(1-t^2)^{3/2}}$$

3.
$$g_3: t \mapsto \arcsin^2(t)$$

Indication: pour g_2 , poser $t = \sin(s)$.

Résultat attendu:

1.
$$\forall x \in \mathbb{R}, G_1(x) = 2\ln(e^x + 1) - \ln(e^x)$$

2.
$$\forall x \in]-1,1[, G_2(x) = \tan(\arcsin(x)) - \arcsin(x) = \frac{x}{\sqrt{1-x^2}} - \arcsin(x)$$

3.
$$\forall x \in [-1, 1], G_3(x) = x \arcsin(x) + 2 \arcsin(x) \sqrt{1 - x^2} - 2x$$

Exercice 11 (★). Déterminer une primitive (intervalle(s) de validité à préciser) de :

1.
$$f: t \mapsto \frac{1}{2t+1}$$

2.
$$g: t \mapsto \frac{2t}{2t+1}$$

3.
$$h: t \mapsto \frac{3t+1}{2t+1}$$

Résultat attendu:

1.
$$\forall x \in]-\infty, -\frac{1}{2}[\text{ ou } \forall x \in]-\frac{1}{2}, +\infty[, F(x) = \frac{\ln(|2x+1|)}{2}]$$

2.
$$\forall x \in]-\infty, -\frac{1}{2}[\text{ ou } \forall x \in]-\frac{1}{2}, +\infty[, G(x)=x-\frac{\ln(|2x+1|)}{2}]$$
.

3.
$$\forall x \in]-\infty, -\frac{1}{2}[\text{ ou } \forall x \in]-\frac{1}{2}, +\infty[, H(x) = \frac{3x}{2} - \frac{\ln(|4x+2|)}{4}]$$

Exercice 12 (★). Déterminer une primitive (intervalle(s) de validité à préciser) de :

$$\begin{array}{ll} 1. \ \varphi:t\mapsto \frac{1}{t^2-2t-3}\\ 4. \ u:t\mapsto \frac{1}{t^2-4t+5} \end{array}$$

2.
$$\psi: t \mapsto \frac{1}{2t^2 - 3t - 2}$$

5. $v: t \mapsto \frac{1}{t^2 + t + 1}$.

3.
$$\mu: t \mapsto \frac{1}{4t^2 + 4t + 1}$$

4.
$$u: t \mapsto \frac{1}{t^2 - 4t + 5}$$

5.
$$v: t \mapsto \frac{1}{t^2 + t + 1}$$

Résultat attendu:

1.
$$\forall x \in]-\infty, -1[$$
 ou $\forall x \in]-1, 3[$ ou $\forall x \in]3, +\infty[, \Phi(x)=\frac{\ln(|x-3|)}{4}-\frac{\ln(|x+1|)}{4}]$

2.
$$\forall x \in]-\infty, -\frac{1}{2}[\text{ ou } \forall x \in]-\frac{1}{2}, 2[\text{ ou } \forall x \in]2, +\infty[, \Psi(x) = \frac{\ln(|t-2|)}{5} - \frac{\ln(|t+\frac{1}{2}|)}{5}]$$

3.
$$\forall x \in]-\infty, -\frac{1}{2}[\text{ ou } \forall x \in]-\frac{1}{2}, +\infty[, M(x)=-\frac{1}{4x+2}]$$

4.
$$\forall x \in \mathbb{R}, U(x) = \arctan(x-2).$$

5.
$$\forall x \in \mathbb{R}, V(x) = \frac{2}{\sqrt{3}} \arctan\left(\frac{2(t+1)}{\sqrt{3}}\right)$$
.

Exercice 13 $(\bigstar \bigstar)$. Soit $p \in \mathbb{N}^*$, $a \in \mathbb{R}_+^*$ et $x \in \mathbb{R}$. À quelle condition les intégrales suivantes sont-elles définies, et que valent-elles?

1.
$$\int_{0}^{\pi} (1 - pt) \sin(pt) dt$$

2.
$$\int_{-1}^{x} (t+x)^p dt$$

3.
$$\int_0^1 \frac{e^{2s}}{e^s+1} ds$$

$$4. \int_{-x}^{x} \frac{ds}{\sqrt{1-as}}$$

5.
$$\int_0^{e^p} \ln(1+r^2)dr$$

$$6. \int_1^2 \frac{dt}{t + t \ln(t)}$$

$$\begin{array}{llll} 1. & \int_{0}^{\pi}(1-pt)\sin(pt)dt & 2. & \int_{-1}^{x}(t+x)^{p}dt & 3. & \int_{0}^{1}\frac{e^{2s}}{e^{s}+1}ds & 4. & \int_{-x}^{x}\frac{ds}{\sqrt{1-as}}\\ 5. & \int_{0}^{e^{p}}\ln(1+r^{2})dr & 6. & \int_{1}^{2}\frac{dt}{t+t\ln(t)} & 7. & \int_{-a}^{2a}t\sqrt{p-t^{2}}dt & 8. & \int_{1}^{x}\frac{\ln(au)}{\sqrt{2u}}du\\ 9. & \int_{0}^{x^{2}}\frac{ds}{s^{2}-p^{2}} & 10. & \int_{0}^{\frac{\pi}{2}}\sin(2t)e^{a\sin(t)}dt & \end{array}$$

$$8. \int_1^x \frac{\ln(au)}{\sqrt{2u}} du$$

Résultat attendu:

1.
$$\frac{1-(1-p\pi)\cos(p\pi)-\sin(p\pi)}{n}$$

1.
$$\frac{-(-p_n) \cos(p_n)}{p}$$

5.
$$e - 1 - \ln(e + 1) + \ln(2)$$

5. $e^p \ln(1 + e^{2p}) - 2e^p + 2 \arctan$

7.
$$\frac{(\sqrt{p-a^2})^3 - (\sqrt{p-4a^2})^3}{(11 \text{ faut } p > 4a^2)^3}$$

9.
$$\frac{1}{2p} \ln \left(\left| \frac{x^2 - p}{x^2 + p} \right| \right)$$
 (il faut $x^4 \neq p^2$)

2.
$$\frac{(2x)^{p+1}-(x-1)^{p+1}}{x+1}$$

Lésultat attendu :
$$1. \frac{1 - (1 - p\pi) \cos(p\pi) - \sin(p\pi)}{p} \qquad \qquad 2. \frac{(2x)^{p+1} - (x-1)^{p+1}}{p+1}$$

$$3. e - 1 - \ln(e+1) + \ln(2) \qquad \qquad 4. -\frac{2}{a} \left(\sqrt{1 - ax} - \sqrt{1 + ax}\right) \text{ (il faut } ax \in [-1, 1])$$

$$5. e^{p} \ln(1 + e^{2p}) - 2e^{p} + 2 \arctan(e^{p}) \qquad \qquad 6. \ln(1 + \ln(2))$$

$$7. \frac{(\sqrt{p-a^{2}})^{3} - (\sqrt{p-4a^{2}})^{3}}{2} \text{ (il faut } p \geqslant 4a^{2}) \qquad \qquad 8. \ln(ax)\sqrt{x} - \ln(a) - 2\sqrt{x} + 2 \text{ (il faut } x > 0)$$

$$9. \frac{1}{2p} \ln\left(\left|\frac{x^{2} - p}{x^{2} + p}\right|\right) \text{ (il faut } x^{4} \neq p^{2}) \qquad \qquad 10. \frac{2}{a} \left(e^{a} - \frac{e^{a}}{a} + \frac{1}{a}\right)$$

6.
$$\ln(1 + \ln(2))$$

8.
$$\ln(ax)\sqrt{x} - \ln(a) - 2\sqrt{x} + 2$$
 (il faut $x > 0$)

10.
$$\frac{2}{a} \left(e^a - \frac{e^a}{a} + \frac{1}{a} \right)$$

Exercice 14 (\bigstar). Étudier le sens de variation de la fonction g définie pour tout réel x par $g(x) = \int_{-2}^{x} \frac{u-1}{u^4+1} du$. **Résultat attendu :** $\forall x \in \mathbb{R}, g'(x) = \frac{x-1}{x^4+1}$. Donc g est décroissante sur $]-\infty,1[$ et croissante sur $]1,+\infty[$.

Exercice 15 ($\bigstar \star$). On pose, pour tout x > 0, $G(x) = \int_x^{2x} \frac{e^t}{t} dt$. Justifier que G est bien définie et dérivable sur \mathbb{R}_+^* , déterminer l'expression de sa dérivée, et ses variations.

Indication: inutile de calculer une primitive de $t\mapsto \frac{e^t}{t}$. Résultat attendu: $\forall x>0,\ G'(x)=\frac{e^x(e^x-1)}{x}\geqslant 0$. Donc G est croissante sur \mathbb{R}_+^* .

Exercice 16 (\bigstar) . Soit f une fonction continue sur \mathbb{R} .

- 1. Soit $a \in \mathbb{R}_+^*$. Si f est impaire sur [-a, a], que peut-on dire de $\int_{-a}^a f(x) dx$? Prouvez-le.
- 2. Même question si f est paire.
- 3. Soit $T \in \mathbb{R}_+^*$. Si f est T-périodique sur \mathbb{R} et $(a,b) \in \mathbb{R}^2$, que peut-on dire de $\int_{a+T}^{b+T} f(t)dt$? Prouvez-le.

 $\underline{\textbf{R\'esultat attendu:}} \ \textbf{Des changements de variables judicieux donnent:}$

1.
$$\int_{-a}^{a} f(x)dx = 0$$

2.
$$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(t)dt$$
 3. $\int_{a+T}^{b+T} f(t)dt = \int_{a}^{b} f(t)dt$

B.
$$\int_{a+T}^{b+T} f(t)dt = \int_a^b f(t)dt$$

Exercice 17 $(\star\star\star)$. Soit $f:\mathbb{R}\to\mathbb{R}$ continue, non identiquement nulle et vérifiant pour tous x,y réels, f(x+y) = f(x)f(y). Montrer que f est de classe C^1 sur \mathbb{R} .

Résultat attendu: Plusieurs approches (avec ou sans primitives) sont possibles. On peut notamment primitiver la relation de l'énoncé pour obtenir une nouvelle expression de f.

Exercice 18 (Type DS). Pour tout couple d'entiers $(p,q) \in \mathbb{N}^2$, on note $I(p,q) = \int_0^1 t^p (1-t)^q dt$.

- 1. Pour tout $(p,q) \in \mathbb{N}^2$, justifier l'existence de I(p,q). Calculer I(0,0), I(1,0) et I(1,1).
- 2. À l'aide d'un changement de variable, montrer que $\forall (p,q) \in \mathbb{N}^2$, I(p,q) = I(q,p).
- 3. Pour tout $p \in \mathbb{N}$, déterminer I(p, 0).
- 4. À l'aide d'une intégration par parties, montrer que $\forall (p,q) \in \mathbb{N}^2$, $I(p,q+1) = \frac{q+1}{p+1}I(p+1,q)$.
- 5. Déduire des deux questions précédentes la valeur pour $p \in \mathbb{N}$ de I(p,1), puis celle de I(p,2).
- 6. Montrer par récurrence que pour tout $(p,q) \in \mathbb{N}^2$, $I(p,q) = \frac{p!q!}{(p+q+1)!}$
- 7. Soit $(p,q) \in \mathbb{N}^2$. En déduire la valeur de l'intégrale $J(p,q) = \int_0^{\frac{\pi}{2}} \sin^{2p+1}(\theta) \cos^{2q+1}(\theta) d\theta$. Indication: poser le changement de variable $t = \sin^2(\theta)$.

Résultat attendu:

1. Pour tous $(p,q) \in \mathbb{N}^2$, la fonction $t \mapsto t^p(1-t)^q$ est continue sur [0,1], donc I(p,q) est bien définie. On calcule $I(0,0)=\int_0^1 1dt=1$, puis $I(1,0)=\int_0^1 tdt=\left\lceil\frac{t^2}{2}\right\rceil_0^1=\frac{1}{2}$ et :

$$I(1,1) = \int_0^1 t(1-t)dt = \int_0^1 tdt - \int_0^1 t^2 dt = \frac{1}{2} - \left[\frac{t^3}{3}\right]_0^1 = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}.$$

2. Soit $(p,q) \in \mathbb{N}^2$. La fonction $t \mapsto 1-t$ est de classe C^1 sur [0,1], on peut donc poser le changement de variable s = 1 - t. On a alors ds = -dt, et:

$$I(p,q) = \int_0^1 t^p (1-t)^q dt = \int_1^0 (1-s)^p s^q (-ds) = \int_0^1 s^q (1-s)^p ds = I(q,p).$$

- 3. Soit $p \in \mathbb{N}$, $I(p,0) = \int_0^1 t^p dt = \left[\frac{t^{p+1}}{p+1}\right]_0^1 = \frac{1}{p+1}$.
- 4. Soit $(p,q) \in \mathbb{N}^2$. Les fonctions $t \mapsto \frac{t^{p+1}}{p+1}$ et $t \mapsto (1-t)^{q+1}$ sont de classe C^1 sur [0,1], donc une intégration par parties donne: $I(p,q+1) = \int_{0}^{1} t^{p} (1-t)^{q+1} dt = \left[\frac{t^{p+1}}{n+1} (1-t)^{q+1} \right]_{0}^{1} - \int_{0}^{1} \frac{t^{p+1}}{n+1} (-1)(q+1)(1-t)^{q} dt.$

On en déduit alors $I(p, q+1) = 0 + \frac{q+1}{p+1} \int_0^1 t^{p+1} (1-t)^q dt = \frac{q+1}{p+1} I(p+1, q).$

5. Soit $p \in \mathbb{N}$. La question 4 donne $I(p,0+1) = \frac{0+1}{p+1}I(p+1,0)$. Or, d'après la question 3, $I(p+1,0) = \frac{1}{p+2}I(p+1,0)$. Donc $I(p,1) = \frac{1}{(p+1)(p+2)}$.

Soit $p \in \mathbb{N}$, la question 4 donne $I(p,1+1) = \frac{1+1}{p+1}I(p+1,1)$. Appliquer le résultat précédent (valable pour tout entier) en p+1 donne $I(p+1,1) = \frac{1}{(p+2)(p+3)}$. Donc $I(p,2) = \frac{2}{(p+1)(p+2)(p+3)}$.

- 6. Soit $q \in \mathbb{N}$, on pose P(q): « $\forall p \in \mathbb{N}$, $I(p,q) = \frac{p!q!}{(p+q+1)!}$ ».

 $\forall p \in \mathbb{N}$, $I(p,0) = \frac{1}{p+1} = \frac{p!}{(p+1)!} = \frac{p!0!}{(p+0+1)!}$, donc P(0) est vraie.

 Soit $q \in \mathbb{N}$. On suppose que P(q) est vraie. Soit $p \in \mathbb{N}$. D'après la question 4 et P(q),

$$I(p,q+1) = \frac{q+1}{p+1}I(p+1,q) = \frac{q+1}{p+1}\frac{(p+1)!q!}{(p+q+2)!} = \frac{p!(q+1)!}{(p+q+2)!}.$$

Donc P(q+1) est vraie. Donc pour tout $(p,q) \in \mathbb{N}^2$, $I(p,q) = \frac{p!q!}{(p+q+1)!}$

7. Soit $(p,q) \in \mathbb{N}^2$. La fonction $\theta \mapsto \sin^2(\theta)$ est de classe C^1 sur $[0,\frac{\pi}{2}]$, donc on peut poser le changement de variable $t = \sin^2(\theta)$. On a alors $dt = 2\cos\theta\sin\theta d\theta$. Préparons son application :

$$J(p,q) = \int_0^{\frac{\pi}{2}} (\sin^2 \theta)^p (\cos^2 \theta)^q \sin \theta \cos \theta d\theta = \frac{1}{2} \int_0^{\frac{\pi}{2}} (\sin^2 \theta)^p (1 - \sin^2 \theta)^q (2 \sin \theta \cos \theta) d\theta$$

Le changement de variable et les questions précédentes donnent alors :

$$J(p,q) = \frac{1}{2} \int_0^1 t^p (1-t)^q dt = \frac{1}{2} I(p,q) = \frac{1}{2} \frac{p! \, q!}{(p+q+1)!}.$$