Matrices et systèmes linéaires

Exercice 1 (\bigstar). On considère les matrices $A = \begin{pmatrix} -1 & 0 & 3 \\ 4 & -2 & 5 \\ 1 & 0 & 0 \\ 0 & 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 2 & 0 \\ -1 & 1 \end{pmatrix}$ et $C = \begin{pmatrix} 0 & 0 & 1 & -1 \\ 2 & 0 & 0 & 2 \\ 1 & -1 & 1 & -1 \end{pmatrix}$. Quels sont les produits possibles de deux de ces trois matrices? Les calculer.

Exercice 2 (\bigstar). Soient S et T les matrices : $S = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. Calculer S^2 , T^2 , ST, TS.

Exercice 3 (\bigstar). Calculer $\begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ de deux façons différentes. Laquelle est la plus judicieuse?

Exercice 4 (\bigstar) . Soit $a \in \mathbb{R}$. Résoudre les systèmes d'inconnues $(x, y, z) \in \mathbb{R}^3$:

1.
$$\begin{cases} (2-a)x + y + az = 0 \\ y - az = 2 \\ az = 1 \end{cases}$$
 2.
$$\begin{cases} (2-a)x + y + az = 0 \\ y - az = 2 \\ az = 0 \end{cases}$$

Exercice 5 (\bigstar) . Résoudre par la méthode du Pivot de Gauss les systèmes d'inconnues $(x,y,z) \in \mathbb{R}^3$:

1.
$$\begin{cases} 2x + 3y - 2z = -5 \\ x + 2y + z = 3 \\ x - 5y - 3z = -2 \end{cases}$$
2.
$$\begin{cases} x + 2y - 3z = 1 \\ 3x - y + 2z = 0 \\ x - 5y + 8z = -2 \end{cases}$$
3.
$$\begin{cases} x + 2y - 3z = 13 \\ 2x - 5y - 3z = -7 \\ -x + 2y + z = 3 \end{cases}$$

Exercice 6 $(\bigstar \bigstar)$. Résoudre, en discutant selon les valeurs du réel m, le système d'inconnue $(x,y,z) \in \mathbb{R}^3$:

(S)
$$\begin{cases} x - 2y + 2z &= 0\\ 2x + y + 2mz &= 1\\ 2x - 2y + 3z &= -1 \end{cases}$$

Exercice 7 (\bigstar). Soit $n \in \mathbb{N}$, calculer la puissance n-ième de $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

Exercice 8 (\bigstar). Soit $n \in \mathbb{N}^*$, calculer la puissance n-ième de la matrice $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

Exercice 9 ($\bigstar \bigstar$). Soient $A = \begin{pmatrix} 2 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$ et $B = \begin{pmatrix} 5 & 1 & 0 \\ -3 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix}$.

- 1. Vérifier que $A^2 \neq 0_3$ et $A^3 = 0_3$.
- 2. Exprimer B en fonction de A et de la matrice I_3 .
- 3. En déduire pour $n \in \mathbb{N}$ la valeur de B^n .

Exercice 10 $(\bigstar \bigstar)$. Soit $A \in \mathcal{M}_n(\mathbb{R})$, on suppose que A^2 est une combinaison linéaire de A et de I_n (autrement dit, il existe $(\lambda, \mu) \in \mathbb{R}^2$ tels que $A^2 = \lambda A + \mu I_n$). Soit $p \in \mathbb{N}$, montrer que A^p est également une combinaison linéaire de A et I_n .

Exercice 11 (\bigstar) . Soit A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ telles que $AB = A + I_n$. Montrer que A est inversible.

Exercice 12 (\bigstar) . Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 = 2A - 5I_n$. Montrer que A est inversible.

Exercice 13 (\bigstar) . Soit $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

Vérifier que $A^2 = 5A - 4I_3$. En déduire que A est inversible et calculer A^{-1} .

Exercice 14 (\bigstar). Soit $M = \begin{pmatrix} 13 & -60 & 20 \\ 0 & 3 & 0 \\ -4 & 24 & -5 \end{pmatrix}$.

- 1. Prouver qu'il existe deux réels a et b tels que $M^2 = aM + bI_3$.
- 2. M est-elle inversible? Si oui, donner son inverse.

Exercice 15 ($\bigstar \star$). Soit $n \geq 2$, on pose $A = J_n - I_n$, où J_n est la matrice de $\mathcal{M}_n(\mathbb{K})$ dont tous les coefficients sont des 1. Montrer que $A^2 = (n-2)A + (n-1)I_n$. En déduire que A est inversible, et déterminer son inverse en fonction de J_n et I_n .

Exercice 16 (\bigstar) . Inverser les matrices $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ et $B = \begin{pmatrix} 5 & 2 \\ 7 & 3 \end{pmatrix}$.

Exercice 17 $(\star\star)$. Étudier l'inversibilité et déterminer l'inverse éventuel de :

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 3 \\ -1 & 1 & 1 \\ 2 & -3 & -4 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 \\ 3 & -1 & 0 & 1 \\ -2 & 0 & -1 & -1 \end{pmatrix}.$$

Exercice 18 ($\bigstar \bigstar$). Soit $m \in \mathbb{R}$.

- 1. Pour quelles valeurs de m la matrice $M = \begin{pmatrix} m & 1 & 1 & 1 \\ 1 & m & 1 & 1 \\ 1 & 1 & m & 1 \\ 1 & 1 & 1 & m \end{pmatrix}$ est-elle inversible?
- 2. Résoudre, en discutant selon les valeurs de m, le système d'inconnue $(x, y, z, t) \in \mathbb{R}^4$:

(S)
$$\begin{cases} mx + y + z + t &= 0 \\ x + my + z + t &= 0 \\ x + y + mz + t &= 0 \\ x + y + z + mt &= 0 \end{cases}$$

Exercice 19 $(\bigstar \bigstar)$. Pour $t \in \mathbb{R}$, on pose $M(t) = \begin{pmatrix} 1 & 0 & 0 \\ -t^2 & 1 & t \\ -2t & 0 & 1 \end{pmatrix}$. Soit $G = \{M(t) | t \in \mathbb{R}\}$. Montrer que le produit de deux matrices de G est une matrice de G, que les matrices de G sont inversibles et

que l'inverse d'une matrice de G est encore une matrice de G.

Exercice 20 ($\star\star\star$). Soit $n \geq 2$ et N une matrice de $\mathcal{M}_n(\mathbb{R})$ nilpotente, c'est-à-dire telle qu'il existe $p \geq 1$ tel que $N^p = 0$.

- 1. Montrer que la matrice A = I N est inversible et déterminer son inverse.
- 2. Montrer que $I A^{-1}$ est nilpotente.

Exercice 21 ($\star\star\star$). Soit $n\in\mathbb{N}^*$. On étudie quelques propriétés des matrices symétriques et antisymétriques.

- 1. Déterminer $\mathcal{S}_n(\mathbb{C}) \cap \mathcal{A}_n(\mathbb{C})$.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Prouver que A peut s'écrire de manière unique comme la somme d'une matrice symétrique et d'une matrice antisymétrique.
- 3. Le produit de deux matrices de $S_n(\mathbb{C})$ est-il une matrice de $S_n(\mathbb{C})$?

Exercice 22 (Type DS). Soit $a \in \mathbb{R}$. On pose $M(a) = \begin{pmatrix} 1-2a & a & a \\ a & 1-2a & a \\ a & 1-2a \end{pmatrix}$, et $E = \{M(a) \in \mathcal{M}_3(\mathbb{R}) | a \in \mathbb{R}\}$.

- 1. Montrer que, pour tous réels a, b, le produit M(a)M(b) est dans E.
- 2. En déduire toutes les valeurs de a pour lesquelles la matrice M(a) est inversible et exprimer son inverse lorsqu'il existe.
- 3. Déterminer le réel a_0 non nul tel que : $(M(a_0))^2 = M(a_0)$.
- 4. On considère les matrices $P = M(a_0)$ et $Q = I_3 P$.
 - (a) Montrer qu'il existe un unique réel α , que l'on exprimera en fonction de a, tel que $M(a) = P + \alpha Q$.
 - (b) Exprimer P^2 , QP, PQ, Q^2 en fonction de P et Q.
 - (c) Soit $n \in \mathbb{N}^*$, exprimer $(M(a))^n$ en fonction de a.