Matrices et systèmes linéaires

Exercice 1 (\bigstar). On considère les matrices $A = \begin{pmatrix} -1 & 0 & 3 \\ 4 & -2 & 5 \\ 1 & 0 & 0 \\ 0 & 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 2 & 0 \\ -1 & 1 \end{pmatrix}$ et $C = \begin{pmatrix} 0 & 0 & 1 & -1 \\ 2 & 0 & 0 & 2 \\ 1 & -1 & 1 & -1 \end{pmatrix}$. Quels sont les produits possibles de deux de ces trois matrices

Résultat attendu : $AB = \begin{pmatrix} -3 & 2 \\ -9 & 9 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$, $CA = \begin{pmatrix} 1 & -2 & -1 \\ -2 & 4 & 8 \\ -4 & 0 & -3 \end{pmatrix}$, $AC = \begin{pmatrix} 3 & -3 & 2 & -2 \\ 1 & -5 & 9 & -13 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$. Les autres produits sont impossible

Exercice 2 (\bigstar) . Soient S et T les matrices : $S = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. Calculer S^2 , T^2 , ST, TS. **Résultat attendu**: $S^2 = I_3$, $T^2 = I_3$, $ST = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, $TS = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

Exercice 3 (\bigstar). Calculer $\begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 \end{pmatrix}$ de deux façons différentes. Laquelle est la plus judicieuse?

Résultat attendu : On trouve $\begin{pmatrix} -1 & 1 \\ -1 & 1 \\ 0 & 0 \end{pmatrix}$ (1) = $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ ou $\begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 1 & 1 \end{pmatrix}$ (0) = $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ (plus judicieuse).

Exercice 4 (\bigstar) . Soit $a \in \mathbb{R}$. Résoudre les systèmes d'inconnues $(x, y, z) \in \mathbb{R}^3$:

1.
$$\begin{cases} (2-a)x + y + az = 0 \\ y - az = 2 \\ az = 1 \end{cases}$$
 2.
$$\begin{cases} (2-a)x + y + az = 0 \\ y - az = 2 \\ az = 0 \end{cases}$$

Résultat attendu:

- 1. Si a=0 ou a=2, il n'y a pas de solution. Sinon, l'unique solution est $x=\frac{4}{a-2}$, y=3 et $z=\frac{1}{a}$
- 2. Si a=0, l'ensemble solution est $\{(-1,2,t)|t\in\mathbb{R}\}$. Si a=2, il n'y a pas de solution. Sinon, l'unique solution est $x = \frac{2}{a-2}$, y = 2 et z = 0.

Exercice 5 (\bigstar) . Résoudre par la méthode du Pivot de Gauss les systèmes d'inconnues $(x, y, z) \in \mathbb{R}^3$:

1.
$$\begin{cases} 2x + 3y - 2z = -5 \\ x + 2y + z = 3 \\ x - 5y - 3z = -2 \end{cases}$$
2.
$$\begin{cases} x + 2y - 3z = 1 \\ 3x - y + 2z = 0 \\ x - 5y + 8z = -2 \end{cases}$$
3.
$$\begin{cases} x + 2y - 3z = 13 \\ 2x - 5y - 3z = -7 \\ -x + 2y + z = 3 \end{cases}$$

Résultat attendu

- 1. L'unique solution est x = 2, y = -1, z = 3.
- $\text{2. L'ensemble solution peut s'écrire } \left\{ \left(\frac{1-\lambda}{7}, \frac{3+11\lambda}{7}, \lambda\right) \Big| \lambda \in \mathbb{R} \right\} \text{ ou } \left\{ \left(\frac{2-\alpha}{11}, \alpha, \frac{7\alpha-3}{11}\right) \Big| \alpha \in \mathbb{R} \right\} \text{ ou } \left\{ \left(\frac{2-\alpha}{11}, \alpha, \frac{7\alpha-3}{11}\right) \Big| \alpha \in \mathbb{R} \right\} \right\}$ $\{(t, 2-11t, 1-7t)|t \in \mathbb{R}\}.$
- 3. L'unique solution est x = 1, y = 3, z = -2.

Exercice 6 $(\bigstar \bigstar)$. Résoudre, en discutant selon les valeurs du réel m, le système d'inconnue $(x, y, z) \in \mathbb{R}^3$:

(S)
$$\begin{cases} x - 2y + 2z &= 0\\ 2x + y + 2mz &= 1\\ 2x - 2y + 3z &= -1 \end{cases}$$

Résultat attendu : Si $m = \frac{3}{4}$, il n'y a pas de solution. Sinon, l'unique solution est $x = \frac{-4m-4}{4m-3}$, $y = \frac{-2m+5}{4m-3}$ et $z = \frac{7}{4m-3}$.

Exercice 7 (\bigstar). Soit $n \in \mathbb{N}$, calculer la puissance n-ième de $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

<u>Résultat attendu :</u> $A^0 = I_3$ et on montre par récurrence que $\forall n \in \mathbb{N}^*, A^n = 2^{n-1}A = \begin{pmatrix} 2^{n-1} & 0 & 2^{n-1} \\ 0 & 0 & 0 \\ 2^{n-1} & 0 & 2^{n-1} \end{pmatrix}$

Exercice 8 (\bigstar). Soit $n \in \mathbb{N}^*$, calculer la puissance n-ième de la matrice $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$. Résultat attendu : On montre avec le binôme de Newton que $A^n = \begin{pmatrix} 2^n & n2^{n-1} & n(n-1)2^{n-3} \\ 0 & 0 & 2^n \\ 0 & 0 & 2^n \end{pmatrix}$.

Exercice 9 ($\bigstar \bigstar$). Soient $A = \begin{pmatrix} 2 & 1 & 0 \\ -3 & -1 & 1 \\ 0 & -1 \end{pmatrix}$ et $B = \begin{pmatrix} 5 & 1 & 0 \\ -3 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix}$.

- 1. Vérifier que $A^2 \neq 0_3$ et $A^3 = 0_3$
- 2. Exprimer B en fonction de A et de la matrice I_3 .
- 3. En déduire pour $n \in \mathbb{N}$ la valeur de B^n .

Résultat attendu:

- 1. On trouve par calcul $A^2 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -2 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ et $A^3 = 0_3$.
- 2. On trouve $B = A + 3I_3$.
- 3. Soit $n \in \mathbb{N}$, la formule du binôme de Newton donne :

$$B^{n} = \begin{pmatrix} 3^{n} + 2n3^{n-1} + \frac{n(n-1)}{2}3^{n-2} & n3^{n-1} + \frac{n(n-1)}{2}3^{n-2} & \frac{n(n-1)}{2}3^{n-2} \\ -n3^{n} - n(n-1)3^{n-2} & 3^{n} - n3^{n-1} - n(n-1)3^{n-2} & n3^{n-1} - n(n-1)3^{n-2} \\ n3^{n-1} + \frac{n(n-1)}{2}3^{n-2} & \frac{n(n-1)}{2}3^{n-2} & 3^{n} - n3^{n-1} + \frac{n(n-1)}{2}3^{n-2} \end{pmatrix}.$$

Exercice 10 $(\bigstar \bigstar)$. Soit $A \in \mathcal{M}_n(\mathbb{R})$, on suppose que A^2 est une combinaison linéaire de A et de I_n (autrement dit, il existe $(\lambda, \mu) \in \mathbb{R}^2$ tels que $A^2 = \lambda A + \mu I_n$). Soit $p \in \mathbb{N}$, montrer que A^p est également une combinaison linéaire de A et I_n .

Résultat attendu : On le montre par récurrence sur $p \in \mathbb{N}$.

Exercice 11 (\bigstar) . Soit A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ telles que $AB = A + I_n$. Montrer que A est inversible. **Résultat attendu :** On a $A(B-I_n)=I_n$ donc A est inversible et $A^{-1}=B-I_n$.

Exercice 12 (\bigstar) . Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 = 2A - 5I_n$. Montrer que A est inversible. **Résultat attendu :** On a $\frac{A(2I_n-A)}{5}=I_n$ donc A est inversible et $A^{-1}=\frac{2I_n-A}{5}$.

Exercice 13 (\bigstar) . Soit $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

Vérifier que $A^2 = 5A - 4I_3$. En déduire que A est inversible et calculer A^{-1} .

Résultat attendu : $A^2 = \begin{pmatrix} 6 & 5 & 5 \\ 5 & 6 & 5 \\ 5 & 5 & 6 \end{pmatrix} = 5A - 4I_3$. Donc A est inversible et $A^{-1} = \frac{5I_3 - A}{4} = \frac{1}{4} \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}$.

Exercice 14 (\bigstar). Soit $M = \begin{pmatrix} 13 & -60 & 20 \\ 0 & 3 & 0 \\ -4 & 24 & -5 \end{pmatrix}$.

- 1. Prouver qu'il existe deux réels a et b tels que $M^2 = aM + bI_3$.
- 2. M est-elle inversible? Si oui, donner son inverse.

Résultat attendu :
$$1. \ M^2 = \begin{pmatrix} 89 & -480 & 160 \\ 0 & 9 & 0 \\ -32 & 192 & -55 \end{pmatrix} = 8M - 15I_3.$$

2. On en déduit que
$$M$$
 est inversible et $M^{-1} = -\frac{1}{15}(M - 8I_3) = \begin{pmatrix} -\frac{1}{3} & 4 & -\frac{4}{3} \\ 0 & \frac{1}{3} & 0 \\ \frac{4}{15} & -\frac{8}{5} & \frac{13}{15} \end{pmatrix}$.

Exercice 15 ($\bigstar \star$). Soit $n \ge 2$, on pose $A = J_n - I_n$, où J_n est la matrice de $\mathcal{M}_n(\mathbb{K})$ dont tous les coefficients sont des 1. Montrer que $A^2 = (n-2)A + (n-1)I_n$. En déduire que A est inversible, et déterminer son inverse en fonction de J_n et I_n .

Résultat attendu: $A^2 = J_n^2 - 2J_n + I_n = (n-2)J_n + I_n = (n-2)A + (n-1)I_n$. Donc $A = I_n$. Donc A est inversible d'inverse $A^{-1} = \frac{A - (n-2)I_n}{(n-1)} = \frac{1}{n-1}J_n - I_n$.

Exercice 16 (\bigstar). Inverser les matrices $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ et $B = \begin{pmatrix} 5 & 2 \\ 7 & 3 \end{pmatrix}$.

<u>Résultat attendu :</u> Elles sont inversibles, avec $A^{-1} = \frac{1}{5} \begin{pmatrix} -3 & 2 \\ 4 & -1 \end{pmatrix}$ et $B^{-1} = \begin{pmatrix} 3 & -2 \\ -7 & 5 \end{pmatrix}$.

Exercice 17 $(\star\star)$. Étudier l'inversibilité et déterminer l'inverse éventuel de :

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 3 \\ -1 & 1 & 1 \\ 2 & -3 & -4 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 \\ 3 & -1 & 0 & 1 \\ -2 & 0 & -1 & -1 \end{pmatrix}.$$

Résultat attendu : Seules
$$A$$
 et C sont inversibles, $A^{-1} = \begin{pmatrix} \frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \\ \frac{1}{2} & -1 & \frac{1}{2} \\ -\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$ et $C^{-1} = \begin{pmatrix} -\frac{1}{3} & 0 & 0 & -\frac{1}{3} \\ -\frac{1}{3} & 1 & -1 & -\frac{1}{3} \\ 0 & -1 & 0 & -1 \\ \frac{2}{3} & 1 & 0 & \frac{2}{3} \end{pmatrix}$.

Exercice 18 $(\bigstar \bigstar)$. Soit $m \in \mathbb{R}$.

- 1. Pour quelles valeurs de m la matrice $M = \begin{pmatrix} m & 1 & 1 & 1 \\ 1 & m & 1 & 1 \\ 1 & 1 & m & 1 \\ 1 & 1 & 1 & m \end{pmatrix}$ est-elle inversible?
- 2. Résoudre, en discutant selon les valeurs de m, le système d'inconnue $(x, y, z, t) \in \mathbb{R}^4$:

(S)
$$\begin{cases} mx + y + z + t &= 0 \\ x + my + z + t &= 0 \\ x + y + mz + t &= 0 \\ x + y + z + mt &= 0 \end{cases}$$

Résultat attendu:

- 1. M est inversible si et seulement si $m \neq 1$ et $m \neq -3$.
- 2. Si $m \neq 1$ et $m \neq -3$, l'unique solution est (0,0,0,0).
 - Si m=1, l'ensemble solution peut s'écrire $\{(\lambda,\lambda,\lambda,-3\lambda)|\lambda\in\mathbb{R}\}$ ou $\{(\lambda,\lambda,-3\lambda,\lambda)|\lambda\in\mathbb{R}\}$ ou $\{(\lambda, -3\lambda, \lambda, \lambda) | \lambda \in \mathbb{R}\}\$ ou $\{(-3\lambda, \lambda, \lambda, \lambda) | \lambda \in \mathbb{R}\}.$
 - Si m = -3, l'ensemble solution est $\{(\lambda, \lambda, \lambda, \lambda) | \lambda \in \mathbb{R}\}$.

Exercice 19 $(\bigstar \bigstar)$. Pour $t \in \mathbb{R}$, on pose $M(t) = \begin{pmatrix} 1 & 0 & 0 \\ -t^2 & 1 & t \\ -2t & 0 & 1 \end{pmatrix}$. Soit $G = \{M(t) | t \in \mathbb{R}\}$. Montrer que le produit de deux matrices de G est une matrice de G, que les matrices de G sont inversibles et

que l'inverse d'une matrice de G est encore une matrice de G.

Résultat attendu : Soit $(t_1, t_2) \in \mathbb{R}^2$, $M(t_1)M(t_2) = M(t_1 + t_2)$, d'où la stabilité par produit. De plus, $I_3 = M(0)$, donc si $t \in \mathbb{R}$, M(t) est inversible d'inverse M(-t).

Exercice 20 $(\star\star\star)$. Soit $n\geqslant 2$ et N une matrice de $\mathcal{M}_n(\mathbb{R})$ nilpotente, c'est-à-dire telle qu'il existe $p\geqslant 1$ tel que $N^p = 0$.

- 1. Montrer que la matrice A = I N est inversible et déterminer son inverse.
- 2. Montrer que $I A^{-1}$ est nilpotente.

Résultat attendu:

1. On force l'apparition d'un télescopage ou d'un binôme de Newton pour exploiter le N^p .

On trouve alors
$$A^{-1} = \sum_{k=0}^{p-1} N^k$$
, ou $A^{-1} = \sum_{k=1}^p \binom{p}{k} (-A)^{k-1}$, ou $A^{-1} = \sum_{k=0}^{p-1} \binom{p}{k} N^k A^{p-k-1} \dots$

2. On montre que $(I - A^{-1})^p$ est un multiple de N^p , donc nul. Suivant la façon dont on choisit de mener le calcul, on peut ou non utiliser le résultat de la question précédente.

Exercice 21 $(\star\star\star\star)$. Soit $n\in\mathbb{N}^*$. On étudie quelques propriétés des matrices symétriques et antisymétriques.

- 1. Déterminer $\mathcal{S}_n(\mathbb{C}) \cap \mathcal{A}_n(\mathbb{C})$.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Prouver que A peut s'écrire de manière unique comme la somme d'une matrice symétrique et d'une matrice antisymétrique.
- 3. Le produit de deux matrices de $S_n(\mathbb{C})$ est-il une matrice de $S_n(\mathbb{C})$?

Résultat attendu:

- 1. On montre par double inclusion que $\mathcal{S}_n(\mathbb{C}) \cap \mathcal{A}_n(\mathbb{C}) = \{0_n\}$
- 2. On montre par analyse-synthèse que la décomposition est unique et vaut $A = \frac{A + A^{\top}}{2} + \frac{A A^{\top}}{2}$.
- 3. Non. Soit $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. A et B sont symétriques, mais $AB = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \notin \mathcal{S}_n(\mathbb{C})$.

Exercice 22 (Type DS). Soit $a \in \mathbb{R}$. On pose $M(a) = \begin{pmatrix} 1-2a & a & a \\ a & 1-2a & a \\ a & 1-2a \end{pmatrix}$, et $E = \{M(a) \in \mathcal{M}_3(\mathbb{R}) | a \in \mathbb{R}\}$.

- 1. Montrer que, pour tous réels a, b, le produit M(a)M(b) est dans E.
- 2. En déduire toutes les valeurs de a pour lesquelles la matrice M(a) est inversible et exprimer son inverse lorsqu'il existe.
- 3. Déterminer le réel a_0 non nul tel que : $(M(a_0))^2 = M(a_0)$.
- 4. On considère les matrices $P = M(a_0)$ et $Q = I_3 P$.
 - (a) Montrer qu'il existe un unique réel α , que l'on exprimera en fonction de a, tel que $M(a) = P + \alpha Q$.
 - (b) Exprimer P^2 , QP, PQ, Q^2 en fonction de P et Q.
 - (c) Soit $n \in \mathbb{N}^*$, exprimer $(M(a))^n$ en fonction de a.

Résultat attendu:

1. $\forall (a,b) \in \mathbb{R}^2$,

$$M(a)M(b) = \begin{pmatrix} 1 - 2b - 2a + 6ab & b - 3ab + a & b - 3ab + a \\ b - 3ab + a & 1 - 2b - 2a + 6ab & b - 3ab + a \\ b - 3ab + a & b - 3ab + a & 1 - 2b - 2a + 6ab \end{pmatrix} = M(a + b - 3ab).$$

Or $M(a+b-3ab) \in E$. D'où le résultat.

- 2. Soit $a \in \mathbb{R}$ fixé. Par 1., si on trouve $b \in \mathbb{R}$ tel que $M(a+b-3ab)=I_3$, alors on saura que M(a) est inversible, d'inverse M(b). Or, $M(a+b-3ab)=I_3 \Leftrightarrow a+b-3ab=0 \Leftrightarrow b(3a-1)=a$. Donc :
 - Si $a \neq \frac{1}{3}$, alors M(a) est inversible et $M(a)^{-1} = M\left(\frac{a}{3a-1}\right)$.
 - $M\left(\frac{1}{3}\right) = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ n'est pas inversible (à montrer par pivot de Gauss).
- 3. Soit $a \in \mathbb{R}^*$. D'après 1., $M(a)^2 = M(2a 3a^2)$. D'où

$$M(a)^2 = M(a) \Leftrightarrow M(2a - 3a^2) = M(a) \Leftrightarrow 2a - 3a^2 = a,$$

par identification des coefficients des deux matrices. Or

$$2a - 3a^2 = a \Leftrightarrow a - 3a^2 = 0 \Leftrightarrow a(1 - 3a) = 0 \Leftrightarrow a = \frac{1}{3}$$

puisque $a \neq 0$. Donc $a_0 = \frac{1}{3}$ est l'unique réel non nul vérifiant $[M(a_0)]^2 = M(a_0)$.

4. (a) On utilise le a_0 trouvé en 3. Par identification des coefficients des matrices,

$$M(a) = P + \alpha Q \Leftrightarrow \begin{pmatrix} \frac{1-2a}{a} & a & a \\ \frac{1}{a} & \frac{1-2a}{a} & \frac{a}{a} \\ \frac{1}{a} & \frac{1-2a}{a} & \frac{1-2a}{3} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} + \frac{\alpha}{3} \begin{pmatrix} \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{2}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} \end{pmatrix}$$

- (b) Par 3., $P^2 = M(a_0)^2 = M(a_0) = P$, puis $QP = (I P)P = P P^2 = P P = 0$ et de même PQ = 0. Enfin $Q^2 = (I P)^2 = I P P + P^2 = I P = Q$.
- (c) Comme PQ = QP par 4b., on peut utiliser le binôme de Newton : $\forall n \in \mathbb{N}^*$,

$$(M(a))^n = (P + \alpha Q)^n = \sum_{k=0}^n \binom{n}{k} P^k \alpha^{n-k} Q^{n-k}.$$

4b. donne également par récurrence immédiate : $\forall k \in \mathbb{N}^*, P^k = P \text{ et } Q^k = Q.$ D'où : $\forall n \geq 2$,

$$(M(a))^{n} = \binom{n}{0} P^{0} \alpha^{n} Q + \sum_{k=1}^{n-1} \binom{n}{k} \alpha^{n-k} PQ + \binom{n}{n} P\alpha^{0} Q^{0} = \alpha^{n} Q + 0 + P = \alpha^{n} Q + P.$$

Pour n=1 on a bien aussi $M(a)=P+\alpha Q$. Donc en remplaçant avec le α de 4a., $\forall n\in\mathbb{N}^*$,

$$(M(a))^n = \frac{1}{3} \begin{pmatrix} 1 + 2(1 - 3a)^n & 1 - (1 - 3a)^n & 1 - (1 - 3a)^n \\ 1 - (1 - 3a)^n & 1 + 2(1 - 3a)^n & 1 - (1 - 3a)^n \\ 1 - (1 - 3a)^n & 1 - (1 - 3a)^n & 1 + 2(1 - 3a)^n \end{pmatrix}.$$