Informatique — MPSI/PCSI

TP n°7 — Récursivité

1 Fonction récursive

On rappelle que la factorielle d’un entier naturel n, notée n! est définie par

o =1
nl = 1x2x...xnsin>0
On peut écrire une fonction Python prenant n en parametre et calculant n! de la maniére suivante.

def factorielle(n):
f=1
for i in range(n):
f=f*(i+1)
return f

Une maniere alternative de procéder est de définir n! par récurrence de la maniére suivante.

0 =1
{ Pourtout n >0, n! = nx(n—1)!
Cela peut se traduire par la fonction Python suivante.

def factorielle_rec(n):

if n==0:
return 1
else:

return nxfactorielle_rec(n-1)

La premiere implémentation est appelée itérative. La seconde est une implémentation récursive,
dans laquelle la fonction s’appelle elle-méme.

De maniere générale, une fonction récursive est une fonction qui retourne directement le résultat dans
un cas élémentaire, et s’appelle elle-méme sur une taille des entrées plus petite sinon. Cette méthode
permet souvent d’écrire du code de fagon particulierement concise et élégante.

Il est a noter que pour garantir I’arrét d’une fonction récursive, ’appel de la fonction par elle-méme
doit se faire & I'intérieur d’une instruction conditionnelle. Il est de plus nécessaire de vérifier que la fonction
s’arréte bien quelle que soient les valeurs des parametres d’entrée. C’est le cas par exemple pour la fonction

factorielle définie ci-dessus : en effet, le parametre passé en appel diminue de 1 & chaque fois, jusqu’a
atteindre la valeur 0, pour laquelle la fonction cesse de s’appeler.

Un appel d’une fonction récursive ne se termine pas avant que tous les sous-problémes soient résolus.
Pendant tout ce temps, les parametres et variable locales de cet appel sont stockés dans une pile d’appels
(en anglais stack), ce qui peut étre gourmand en place mémoire. La taille maximale de la pile d’appel est
bornée et son ordre de grandeur est de 1000 (la valeur exacte dépend de votre plate-forme informatique).
11 est possible (avec prudence) de modifier cette valeur par

import sys
sys.setrecursionlimit(n)

Exercice 7.1

On rappelle l'algorithme d’Euclide permettant de déterminer le pged de deux entiers naturel a et b : on
défint une suite (finie) d’entiers naturels u par ug = a, u; = b, et, tant que u,4+1 7# 0, Up42 est le reste de
la division euclidienne de u,, par u,+1. Le pged de a et b est alors le dernier terme u,, non nul.

Ecrire une version itérative de 1'algorithme a ’aide de while, puis une version récursive.

Exercice 7.2 1. Ecrire une fonction Python récursive prenant en entrée un entier strictement positif
n et affichant n lignes d’étoiles sur le modele suivant.

b R S I
b

*

* ok

2. Ecrire une fonction Python récursive prenant en entrée un entier strictement positif n et affichant n
lignes d’étoiles sur le modele suivant.

b R R I
* o
* ot

Exercice 7.3
On désire écrire deux fonctions permettant d’obtenir le quotient et le reste de deux entiers naturels sans
utiliser les opérateurs Python // et ¥%.

1. On peut remarquer que r(a,b) = a si a < b et r(a,b) = r(a — b, b) sinon.
Ecrire une fonction prenant en paramétres deux entiers strictement positifs a et b et calculant le
reste r(a,b) de la division euclidienne de a par b de maniére récursive.

2. En adaptant 'idée de la question précédente, écrire une fonction prenant en parametres deux entiers
naturels a et b (b > 0) et calculant le quotient de la division euclidienne de a par b de maniére
récursive.

Exercice 7.4
On désire écrire une fonction prenant en entrée une chaine de caractéres deux a deux distincts non vide
et retournant une liste de toutes les permutations possibles de la chaine. (Par exemple, une liste des
permutations possibles de ’abc’ est ['abc’, ’ach’, ’bac’, 'bea’, ’cab’, cba’l.)

On peut utiliser pour cela I’algorithme suivant :

1. Si la chaine est de longueur 1, elle admet une unique permutation.
2. Sinon, on procede de la maniére ci-dessous.

(a) Isoler le premier caractére de la chaine

(b) Appliquer récursivement l’algorithme pour générer I'ensemble des permutations de la sous-chaine
de caracteres restante.

(c) Pour chacun des éléments de la liste obtenue, générer toutes les permutations de la chaine
initiale obtenues en insérant le premier caractére de la chaine a un emplacement quelconque.
(Par exemple, si le premier caractére est ’a’ et la permutation de la sous-chaine de deux
caractéres restants est 'bc¢’, on géneére les permutations ’abc’; "bac’ et "bea’.)

Ecrire une fonction récursive Python répondant au probléme posé en utilisant 1’algorithme ci-dessus.

2 Généralisation

Dans tous les cas précédents, une fonction dépendant d’'un parametre entier n s’appelait elle-méme
avec le parametre n — 1 lorsque n était strictement positif. On peut généraliser ce principe a des cas ou la
fonction s’appelle elle-méme a un indice compris entre 0 et n — 1. (Cette idée est analogue a la définition
par récurrences forte en mathématiques.)

Dans tous ce qui suit, pour tout réel x, la partie entiere de z sera notée |x|. Rappelons les propriétés
suivantes, déja utilisées cette années au moment de la description de la méthode d’exponentiation rapide :
pour tout réel x et pour tout entier naturel n,

20 =1
" = (xL%J)z si n pair
" = X (:EL%J)2 si n impair

La procédure d’exponentiation rapide peut donc s’implémenter de la facon suivante.

def exp_rapide(x,n):
if n==0:
return 1
else:
m=n//2
y=exp_rapide(x,m)
if nJ2==0:
return yx*y
else:
return y*y*x

Exercice 7.5
Appliquer "a la main" la fonction ci-dessus pour n = 13. Combien d’appel a la fonction sont-ils réalisés
et avec quels parametres 7 Combien de multiplication sont-elles effectuées au total 7 Comparer avec le

nombre de multiplications effectuées avec la définition usuelle 213 =z x z x ... x x

Exercice 7.6

Etant donnée un nombre réel z et une liste (non vide) de n entiers classées dans I’ordre croissant
[x0,1,...,%n_1] on désire déterminer si x appartient & la liste. Pour cela, on utilise I’algorithme de
recherche dichotomique suivant,

— Si la liste est de longueur 0, I’élément n’est pas dans la liste.
— Sinon, on note n la longueur de la liste et on pose m = [3.

- sl xym—1 = x, T appartient a la liste et on s’arréte.
- 8l Zy—1 > , on itére lalgorithme en lappliquant & z et & la liste [zg, 21, ..., Tm—1]
- sinon, on itére l’algorithme en Pappliquant a z et a la liste [T, Tmt1,-- - Tn-1]

Implémenter 'algorithme en Python au moyen d’une fonction récursive.

3 Similitudes et fractales

3.1 Similitudes
Une similitude directe du plan est une transformation multipliant toutes les longueurs par un réel k
strictement positif fixé et conservant les angles orientés. On peut montrer (nous ne le ferons pas ici) que si

u est une transformation du plan de ce type, seuls deux cas sont possibles :

1. w est une translation
2. u admet point fixe I et elle est la composée d'une homothétie de centre I et de rapport k et d’une
rotation de centre I et d’angle 6 (voir figure 1). On intéressera par la suite a ce second cas.

On peut noter que si k = 1, u est une rotation, et que si # = 0, u est une homothétie.

FIGURE 1 — La similitude est la composée d’une homothétie et d’une rotation toutes deux de centre I.

Dans tout ce qui suit, un point sera codé en Python par une liste de deux nombres flottants représentants
ses coordonnées.
Exercice 7.7 1. On donne dans le fichier TPO7_rotation.py le code d’une fonction python prenant

en argument les coordonnées de deux points I et M et un angle t et retournant les coordonnées du

point image de M par la rotation de centre I et d’angle ¢.
Ecrire une fonction simil(I,M,k,theta) utilisant la fonction précédante et prenant en argument la
liste des coordonnées d’un point I et celle d’un point M, deux nombres flottants k et ¢ et retournant
I'image du point M par la similitude de centre I, de rapport k et d’angle t.

(On pourra donner les valeurs par défaut 1 & k et 0 & ¢.)
2. En déduire une fonction simil_poly(I,L,k,t) prenant en entrée un point I, une liste de points

L , deux nombres flottants k et theta et retournant la liste des images des éléments de L par la

similitude de centre I, de rapport k et d’angle theta.

3.2 Flocon de von Koch

La flocon de Von Koch est une courbe construite par étapes de la maniére suivante.

— On part d’un triangle équilatéral.
— A chaque étape, on transforme tous les segment de la figure de la maniére suivante (voir figure 2) :

1. On divise le segment de base en trois segments de longueurs égales
2. On construit un triangle équilatéral ayant pour base le segment médian de la premiere étape
3. On supprime le segment de droite qui était la base du triangle de la deuxiéme étape.

FIGURE 2 — Transformation d’un segment

FIGURE 3 — Les quatre premieres étapes de la construction du flocon

Le flocon de Von Koch désigne la courbe limite obtenue en itérant "a l'infini" le procédé ci-dessus (voir
figue 3) . Chacune des figures obtenues a partir d’un des cotés du triangle initial posséde une propriété
remarquable : si vous prenez le premier tiers du c6té et que vous la grossissez trois fois, vous obtenez &
nouveau un coté complet.

Les objets de ce type sont appelé fractales. Des exemples de fractales sont connues depuis longtemps.
Ces objets ont été étudiés notamment par le mathématicien frangais Benoit Mandelbrot (1924-2010).

Exercice 7.8 1. On va commencer par appliquer le processus & un segment [AB]. Ecrire une fonction
récursive cote_von_koch_cote(L,n) prenant en entrée une liste de deux éléments L contenant les
couples de coordonnées de deux points A et B et un entier n et retournant la liste des couples de
coordonnées des sommets de la ligne polygonale obtenue en appliquant n fois & [AB] la construction
décrite ci-dessus.

2. Ecrire une fonction von_koch(n) prenant en entrée un entier n et représentant la construction le
flocon obtenu a ’étape n a l’aide du module mathplotlib.pyplot.

3.3 Courbe du dragon

La courbe du dragon est une fractale étudiée la premiere fois dans les années 60 par John Heighway,
Bruce Banks, et William Harter. Elle peut étre construite en pliant plusieurs fois une feuille de papier
dans le sens de la longueur, puis en la dépliant de fagon a ce que les plis forment un angle droit (la figure
4 montre les résultats obtenus aprés un, deux et trois plis!). La courbe du dragon est la courbe obtenue
en itérant ce procédé a l'infini.

Gen. 1 —— — /\

— -
Gen. 2

L =
Gen-3 @ 9<\/2/

FIGURE 4 — Construction de la courbe du dragon par pliages

Soit m un entier naturel et A et B deux points du plan. La courbe reliant les points A et B obtenue
apres n plis peut étre définie de la maniére suivante :
1. Sin =0, la courbe est le segment [AB]
2. Si n > 0, la courbe est obtenue en prenant 'image de la courbe obtenue a l'ordre n — 1 par la
similitude de centre A, de rapport k = % et d’angle 7, puis I'image de cette premiere courbe par
une rotation de centre le dernier sommet de la premiere image et d’angle 5.

FI1GURE 5 — Construction de la courbe du dragon par images par des similitudes successives

Exercice 7.9 1. Ecrire une fonction récursive points_dragon(L,n) prenant en argument une liste
L contenant les coordonnées des points A et B et un entier naturel n et retournant la liste des
coordonnées des sommets de la courbe obtenue apres n itérations et joignant les points A et B.

2. Ecrire une fonction dragon(n) tracant la courbe du dragon a l’ordre n. On pourra prendre pour
points de départ A(0;0) et B(1;0).

1. Source : https ://mathcurve.com

4 Appels récursifs multiples

On va étudier maintenant le cas ou une fonction peut faire plusieurs appels a elle méme.

Commengons par un exemple bien connu. La suite de Fibonacci est définie par

Ug = Uy = 1
Pour tout n > 2,u,, = Up_1+ Un_o
Le calcul des termes de la suite de Fibonacci peut se faire de manieére itérative.

def fibo_it(n):
if n<=1:
return 1
else:
u=1
v=1
for i in range(n):
w=u+v
u=v
v=w
return w

Il est également possible d’implémenter une version récursive du calcul des termes.

def fibo_rec(n):

if n<=1:
return 1
else:
return fibo_rec(n-2)+fibo_rec(n-1)

Il est important de préciser que cette fagcon de procéder est trés mauvaise en pratique,
car elle implique de refaire plusieurs fois les mémes calculs. Supposons par exemple que vous
appeliez fibo_rec(5)} : la fonction va appeler fibo_rec(3) et fibo_rec(4), mais fibo_rec(4) va a
son tout appeler fibo_rec(3), et ainsi de suite jusqu’a effectuer de nombreux appels redondants.

Voue verrez en seconde année un procédé appelé memoisation, consistant a conserver en mémoire les
calculs déja effectués, permettant d’éviter ce probleme. Pour I'instant, nous nous contenterons de donner
quelques exemples classiques de récursion de ce type.

Exercice 7.10

Soit n un entier positif. On cherche a déterminer de combien de manieére il est possible de découper une
barre de n metre en morceaux de 2 ou 3 metres en tenant compte de l’ordre. Une barre de 8 m pour par
exemple se découper de quatre manieres différentes : 8 =2+2+2+2=24+34+3=3+2+3=3+3+2.

Soit d(n) le nombre de découpes possibles pour un morceau de longueur n. On a d(0) = d(1) =0 et
d(2) = 1. Si n > 3, on peut séparer la situation en deux cas : soit le premier morceaux est de taille 2,
et il y a d(n — 2) fagon de découper le morceau restant, soit il est de taille 3, et il y a d(n — 3) fagon de
découper le morceau restant. On en déduit que pour tout n > 3, d(n) = d(n — 2) + d(n — 3).

Ecrire une fonction récursive prenant en entrée un entier n et retournant d(n).

	Fonction récursive
	Généralisation
	Similitudes et fractales
	Similitudes
	Flocon de von Koch
	Courbe du dragon

	Appels récursifs multiples

