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Dans tout ce chapitre, on notera n un entier naturel et K l’un des ensembles R ou C.

1 Généralités sur les polynômes

1.1 Définitions

Définition 1.1 (Polynôme, coefficients)

Un polynôme d’indéterminée X, à coefficients dans K est une expression pouvant s’écrire sous la forme

P (X) =
n∑

k=0

αkX
k = α0 + α1X + · · ·+ αnX

n,

(avec la convention X0 = 1), où n ∈ N et ∀k ∈ [[0, n]], αk ∈ K.
Les αk s’appellent les coefficients du polynôme P . On note K[X] l’ensemble des polynômes d’indéterminée
X à coefficients dans K.

Remarque. En particulier :
— Si tous les coefficients de P sont nuls, P est le polynôme nul. On note P (X) = 0.
— Si pour tout k ∈ [[1, n]], αk = 0, P est un polynôme constant.
— Deux polynômes sont égaux si tous leurs coefficients sont égaux.

Définition 1.2 (Somme de polynômes)

Soit P (X) =
n∑

k=0

αkX
k et Q(X) =

m∑
k=0

βkX
k deux polynômes de K[X], avec n ⩾ m. Alors :

(P +Q)(X) =
m∑
k=0

(αk + βk)X
k +

n∑
k=m+1

αkX
k.

Remarque. Si m ⩾ n, il suffit d’intervertir les rôles.

Définition 1.3 (Produit de polynômes)

Soit P (X) =
n∑

k=0

αkX
k et Q(X) =

m∑
k=0

βkX
k deux polynômes de K[X]. Alors :

(PQ)(X) =
m+n∑
k=0

(α0βk + α1βk−1 + . . .+ αkβ0)X
k =

m+n∑
k=0

(
k∑

i=0

αiβk−i

)
Xk.

Remarque. Ce résultat permet aussi de multiplier un polynôme par un scalaire (cas particulier du polynôme
constant) : ∀λ ∈ K, (λP )(X) =

∑n
k=0 λαkX

k.

Remarque. Ces règles de calcul permettent de conserver une bonne partie des formules valables sur K, et en
particulier la formule du binôme de Newton.

Exercice 1. On pose P (X) = 5X2 + 3X + 2, Q(X) = X2 + 1. Calculer (P +Q)(X) et (PQ)(X).

Exercice 2. Déterminer un réel a tel que (X − 2)(X − 5) = X2 + aX + 10.

Définition 1.4 (Composition)

Soit P (X) =
n∑

k=0

αkX
k et Q(X) deux polynômes de K[X]. Alors : (P ◦Q)(X) =

n∑
k=0

αk(Q(X))k.

Exemple. Si P (X) = 5X2 + 3X + 2, alors P (X2) = 5X4 + 3X2 + 2.
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1.2 Degré et coefficient dominant

Définition 1.5 (Degré, coefficient dominant, polynôme unitaire)

Soit P (X) =
∑n

k=0 αkX
k un polynôme de K[X] tel que αn ̸= 0. L’entier n est appelé degré du polynôme

P , et αn est appelé coefficient dominant de P .
Un polynôme de coefficient dominant 1 est dit unitaire.
On note deg(P ) = n, et Kn[X] désigne l’ensemble des polynômes de degré inférieur ou égal à n.

Remarque. Par convention le degré du polynôme nul est donné par : deg(0) = −∞. Cela signifie notamment que
Kn[X] contient le polynôme nul.

Remarque. En particulier, K0[X] = K.

Exercice 3. Soit (a, b, c) ∈ R3, déterminer le degré de P (X) = aX2 + bX + c.

Proposition 1.6 (Degré de la somme et du produit)

Soit P et Q deux polynômes de K[X],

deg(P +Q) ⩽ max (deg(P ),deg(Q)) avec égalité en particulier si deg(P ) ̸= deg(Q),

deg(PQ) = deg(P ) + deg(Q) et en particulier ∀α ∈ K∗, deg(αP ) = deg(P ).

Remarque. La formule de degré de la somme n’est pas une égalité dans le cas général. En effet, si P (X) = 2X2

et Q(X) = −2X2 + 3X, les termes en X2 se simplifient et deg(P +Q) = 1 < 2.

Remarque. Le degré est très pratique pour manipuler les polynômes dont il n’est pas simple de déterminer les
coefficients (par exemple quand ils sont sous forme factorisée parce que ça demanderait beaucoup de calculs).

Proposition 1.7 (Cas d’un produit nul)

Soit (P,Q) ∈ (K[X])2, (PQ)(X) = 0 ⇐⇒ P (X) = 0 ou Q(X) = 0.

Exercice 4. Pour quels (α, β) ∈ R2 a-t-on (αX + β)(3X2 + 6) = 0 ?

2 Division de polynômes

Définition 2.1 (Multiple, diviseur)

Soit A et B deux polynômes de K[X], avec B non nul. On dit que le polynôme B est un diviseur du
polynôme A, ou que le polynôme A est un multiple du polynôme B, lorsqu’il existe un polynôme Q de
K[X] tel que A(X) = B(X)Q(X).

Exemple. (X + 1) et (X − 1) sont des diviseurs de X2 − 1.

Proposition 2.2 (Division euclidienne)

Soit A et B deux polynômes de K[X], avec B non nul. Alors il existe un unique couple de polynômes (Q,R)
de K[X] qui vérifient A(X) = B(X)Q(X) +R(X) avec deg(R) < deg(B).
On appelle Q le quotient et R le reste de la division euclidienne de A par B.

Remarque. Autrement dit, B est un diviseur de A lorsque le reste de la division de A par B est le polynôme nul.

Exemple. La division euclidienne de X2 +X + 1 par X s’écrit X2 +X + 1 = X(X + 1) + 1, le quotient est donc
X + 1 et le reste 1 est de degré 0 < 1.
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Exercice 5. Effectuer la division euclidienne de X4 + 3X3 + 3X + 2 par X2 + 1.

Proposition 2.3 (Degré du quotient)

Soit (A,B) ∈ K[X]2 avec B ̸= 0, et Q le quotient de la division euclidienne de A par B. Si deg(A) ⩾ deg(B),
alors deg(Q) = deg(A)− deg(B).

3 Fonctions polynomiales et racines

3.1 Fonction polynomiale

Définition 3.1 (Fonction polynomiale)

Soit P (X) =
n∑

k=0

αkX
k ∈ K[X]. On appelle fonction polynomiale associée à P la fonction p, définie de

K dans K par : ∀x ∈ K, p(x) =
n∑

k=0

αkx
k.

Remarque. x est un nombre réel ou complexe, mais X n’en est pas un, c’est une indéterminée. On dit qu’on
évalue le polynôme P (X) en x.

Remarque. Les formules de combinaison linéaire et produit de fonctions polynomiales sont compatibles avec celles
sur les polynômes.

Remarque. Pour calculer la valeur en q ∈ K de P (X) =
∑n

k=0 αkX
k = α0 + α1X + . . . + αnX

n, on utilise
habituellement l’algorithme de Horner, consistant à calculer :

P (q) = α0 + q(α1 + q(α2 + . . .+ (αn−2 + q(αn−1 + qαn)))).

Cet algorithme nécessite beaucoup moins d’opérations que l’algorithme naïf qui calcule les puissances.

Exemple. Si P (X) = 3X2 + 5X + 3, l’algorithme de Horner donne P (q) = 3 + q(5 + 3q).

3.2 Racines

Définition 3.2 (Racine d’un polynôme)

Soit P ∈ K[X] et r ∈ K. On dit que r est une racine (ou un zéro) du polynôme P si P (r) = 0.

Remarque. Le polynôme nul a donc une infinité de racines.

Proposition 3.3 (Racines et divisibilité)

Soit P ∈ K[X] et r ∈ K. Le scalaire r est racine du polynôme P (X) si et seulement si X − r divise P (X).

Exemple. 1 est racine de X2 − 1, et donc X − 1 divise X2 − 1.

Remarque. Ce résultat se généralise aux fonctions polynomiales. On l’avait d’ailleurs déjà rencontré dans le
chapitre sur les nombres complexes : si P est une fonction polynomiale à coefficients complexes admettant a ∈ C
comme racine, alors on peut factoriser P (z) par z − a.

Proposition 3.4 (Racines distinctes et divisibilité)

Soit P (X) un polynôme de K[X] et r1, r2, . . ., rm des éléments deux à deux distincts de K. Le polynôme
(X − r1)(X − r2) . . . (X − rm) divise P (X) si et seulement si r1, r2, . . ., rm sont des racines de P (X).
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Proposition 3.5 (Degré et nombre de racines distinctes)

Un polynôme de Kn[X] qui possède n+ 1 racines distinctes est le polynôme nul.

Remarque. Par contraposée, tout polynôme non nul de degré inférieur ou égal à n admet au plus n racines
distinctes.

Remarque. En particulier, tout polynôme qui admet une infinité de racines distinctes est le polynôme nul, résultat
qui nous sera très utile dans les exercices.

Remarque. On a vu plus tôt dans le chapitre qu’il était possible d’évaluer une égalité de polynômes en un point
x ∈ K pour obtenir une égalité dans K. Ce résultat permet au contraire de « désévaluer » des relations dans K pour
se ramener à des relations en X.

Exercice 6. Soit (a, b, c) ∈ R3. On suppose que ∀x ∈ [−1, 1], ax2 + bx+ c = 0. Montrer qu’alors a = b = c = 0.

Proposition 3.6 (Fonction polynomiale et retour au polynôme)

Soit P ∈ K[X]. Si ∀x ∈ K, P (x) =
n∑

k=0

αkx
k, alors P (X) =

n∑
k=0

αkX
k.

Remarque. Autrement dit, si on connaît une fonction polynomiale, on peut retrouver le polynôme associé.

3.3 Multiplicité d’une racine

Définition 3.7 (Ordre de multiplicité)

Soit P ∈ K[X], p ∈ N∗ et r ∈ K. On dit que r est une racine d’ordre de multiplicité p du polynôme P
lorsque (X − r)p divise P (X) et (X − r)p+1 ne divise pas P (X).

Remarque. Autrement dit, r est une racine d’ordre de multiplicité p du polynôme P lorsqu’il existe un polynôme
Q de K[X] tel que P (X) = (X − r)pQ(X) et Q(r) ̸= 0.

Remarque. Attention ! Pour montrer que r est une racine d’ordre p de P , il faut penser à vérifier la deuxième
condition : que (X − r)p+1 ne divise pas P .

Exemple. 1 est une racine double du polynôme (X − 1)2(X − 2).

Proposition 3.8 (Ordres de multiplicité et divisibilité)

Soit P (X) ∈ K[X], (n1, . . ., nm) ∈ (N∗)m et r1, . . ., rm des éléments deux à deux distincts de K. Le polynôme
(X − r1)

n1(X − r2)
n2 . . . (X − rm)nm divise P (X) si et seulement si r1, . . ., rm sont des racines de P de

multiplicités respectives au moins n1, . . ., nm.

Proposition 3.9 (Nombre maximum de racines avec multiplicité)

Un polynôme P ∈ Kn[X] non nul admet au plus n racines, comptées avec leurs ordres de multiplicité.

3.4 Polynômes scindés

Définition 3.10 (Polynôme scindé)

On dit qu’un polynôme P ∈ K[X] est scindé sur K s’il n’est pas constant et peut s’écrire comme un produit
de polynômes de degré 1, c’est-à-dire s’il existe λ ∈ K et (α1, . . ., αn) ∈ Kn tels que P (X) = λ

∏n
i=1(X−αi).
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Proposition 3.11 (Somme et produit des racines d’un polynôme scindé)

Soit n ∈ N∗ et soit P (X) =
∏n

i=1(X − αi) un polynôme de degré n, scindé et unitaire. Alors :
— le coefficient en Xn−1 de P (X) vaut −s, où s = α1 + . . .+ αn,
— le coefficient constant de P (X) vaut (−1)np, où p = α1. . .αn.

Autrement dit,
P (X) = Xn − sXn−1 + . . .+ (−1)np.

Remarque. s correspond à la somme des racines de P (comptées avec multiplicité), p à leur produit.

Remarque. Dans le cas d’un polynôme non-unitaire, il suffit d’écrire P (X) = λ
∏n

i=1(X − αi), où λ ̸= 0 désigne
son coefficient dominant, et on trouve P (X) = λ

(
Xn − sXn−1 + . . .+ (−1)np

)
.

Exemple. Dans le cas particulier d’un polynômes unitaire de degré 2, de racines α1 et α2, on a donc :

P (X) = X2 − (α1 + α2)X + α1α2.

4 Dérivation de polynômes

4.1 Définition et calculs

Définition 4.1 (Polynôme dérivé)

Soit P (X) =
n∑

k=0

αkX
k ∈ K[X]. On appelle polynôme dérivé de P le polynôme P ′(X) =

n∑
k=1

kαkX
k−1.

Exemple. Si P (X) = 4X2 + 3X + 1, alors P ′(X) = 8X + 3.

Remarque. Le changement d’indice j = k − 1 donne aussi P ′(X) =
n−1∑
j=0

(j + 1)αj+1X
j .

Remarque. Cette définition coïncide avec la fonction dérivée d’une fonction polynomiale définie et à valeurs dans
R. Attention, on n’a par contre pas de notion de dérivation pour une fonction polynomiale définie sur C.

Remarque. Il n’y a pas de condition d’existence du polynôme dérivé, au contraire d’une fonction dérivée.

Remarque. Comme dans le cas des fonctions, on peut définir par récurrence des polynômes dérivés successifs :
pour tout j ∈ N∗, si P (j) est un polynôme de K[X], alors P (j+1) est le polynôme dérivé de P (j), avec la convention
P (0) = P .

Proposition 4.2 (Opérations sur les polynômes dérivés)

Soit (P,Q) ∈ K[X]2 et λ ∈ K, (λP +Q)′ = λP ′ +Q′ et (PQ)′ = P ′Q+Q′P .

Remarque. Ces formules permettent de montrer la formule de Leibniz : (PQ)(n) =

n∑
k=0

(
n

k

)
P (k)Q(n−k). Sa preuve

sera détaillée dans le prochain chapitre, pour dans le cas des dérivées de fonctions.

Proposition 4.3 (Degré du polynôme dérivé)

Soit P (X) ∈ K[X]. Si deg(P ) ⩾ 1, alors deg(P ′) = deg(P )− 1. Sinon, P ′(X) = 0 donc deg(P ′) = −∞.
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Proposition 4.4 (Expression des polynômes dérivés successifs)

Soit P (X) =
n∑

k=0

αkX
k ∈ K[X] de degré n. Alors,

∀k ∈ [[0, n]], deg(P (k)) = n− k, et P (k)(X) =
n∑

i=k

i!

(i− k)!
αiX

i−k et ∀k ⩾ n+ 1, P (k)(X) = 0.

Remarque. i!
(i−k)! = (i− k + 1)× . . .× (i− 1)× i, et ce produit contient i− (i− k + 1) + 1 = k termes.

4.2 Formule de Taylor et conséquences

Proposition 4.5 (Formule de Taylor)

Si P est un polynôme de degré n, alors ∀a ∈ K, P (X) =
n∑

k=0

P (k)(a)

k!
(X − a)k.

Exemple. Soit P (X) = X2 + 3X + 5. Alors P ′(X) = 2X + 3, P ′′(X) = 2 et pour a = 1, on obtient :

P (X) = 9 +
5

1
(X − 1) +

2

2
(X − 1)2 = 9 + 5(X − 1) + (X − 1)2.

Proposition 4.6 (Multiplicité et dérivées successives)

Soit P un polynôme de K[X] non nul, r ∈ K et p un entier naturel non nul. Le scalaire r est une racine
d’ordre p du polynôme P si et seulement si ∀k ∈ [[0, p− 1]], P (k)(r) = 0 et P (p)(r) ̸= 0.

Exercice 7. Soit P (X) = X4 − 2X3 + 3X2 − 4X + 2. Montrer que 1 est racine et déterminer son ordre de
multiplicité.

Proposition 4.7 (Ordre de multiplicité et racines des dérivées)

Soit r est une racine d’ordre p ⩾ 1 du polynôme P , alors :
— r est une racine d’ordre p− 1 de P ′,
— pour tout j ∈ [[0, p− 1]], r est une racine d’ordre p− j de P (j).

5 Polynômes irréductibles et factorisation

5.1 Factorisations dans C[X]

Proposition 5.1 (Théorème de d’Alembert-Gauss)

Tout polynôme de C[X] non constant (donc de degré supérieur ou égal à un) admet au moins une racine
dans C.

Remarque. Les seuls polynômes irréductibles (polynômes P non constants et dont les seuls diviseurs sont les λ
et les λP pour λ ∈ K∗) de C[X] sont donc les polynômes de degré 1.

Proposition 5.2 (Décomposition en facteurs irréductibles dans C)

Tout polynôme P ∈ C[X] de degré n et de coefficient dominant αn peut s’écrire P (X) = αn

m∏
k=1

(X − rk)
pk ,

avec rk ∈ C des racines distinctes de P , pk ∈ N∗ leurs ordres de multiplicité, et
∑m

k=1 pk = n.
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Remarque. Autrement dit, tout polynôme non constant de C[X] est scindé.

Exercice 8. Factoriser dans C[X] le polynôme P (X) = X3 +X.

Exercice 9. Soit n ∈ N∗. Factoriser 2Xn − 2 dans C[X].

5.2 Factorisations dans R[X]

Proposition 5.3 (Racines conjuguées)

Soit z un nombre complexe, et P un polynôme de R[X]. Si z est racine du polynôme P , alors z est également
racine de P , avec le même ordre de multiplicité.

Proposition 5.4 (Décomposition en facteurs irréductibles dans R)

Tout polynôme de R[X] peut s’écrire comme produit d’un réel, de polynômes à coefficients réels de degré 1
et de polynômes à coefficients réels de degré 2 n’ayant pas de racine réelle.

Remarque. Les polynômes irréductibles de R[X] sont donc :
— les polynômes de degré 1 ;
— les polynômes de degré 2 et de discriminant strictement négatif.

Exercice 10. Factoriser dans R[X] le polynôme P (X) = X3 +X.

6 Fractions rationnelles

Définition 6.1 (Fraction rationnelle)

On appelle fraction rationnelle tout quotient de type P
Q où (P,Q) ∈ K[X]2 avec Q ̸= 0.

Proposition 6.2 (Décomposition en éléments simples)

Soit R = P
Q une fraction rationnelle sur K. Si Q est scindé de racines simples distinctes λ1, . . ., λr, alors il

existe une unique décomposition de la forme :

R(X) = E(X) +

r∑
i=1

ai
X − λi

,

avec E(X) ∈ K[X] et ∀i ∈ [[1, r]], ai ∈ K.

Remarque. Dans le cas où le polynôme au dénominateur aurait des racines multiples ou ne serait pas scindé, la
forme cherchée pour la décomposition est plus complexe et sera fournie par l’exercice.

Exercice 11. Décomposer en éléments simples la fraction R(X) =
X3 + 3X + 1

X2 − 1
.

Remarque. Dans le cas de décompositions plus complexes, on peut aussi utiliser des limites en ±∞ ou l’évaluation
en d’autres valeurs particulières pour déterminer les valeurs des constantes.

Exercice 12. Déterminer une primitive de f : x 7→ x3 + 3x+ 1

x2 − 1
sur ]1,+∞[.
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