Polyndomes

Cours de E. Bouchet — PCSI

27 novembre 2025

Table des matiéres

|1  Généralités sur les polynémes|

(L1 _Deéfinitions . . . . . . o o
(1.2 Degré et coefficient dominant| . . . . . . . . . . ..

2 Division de polynémes|

|3 Fonctions polynomiales et racines

[3.1 Fonction polynomialel. . . . . . . . ..o
B2 Racies . . . . . o
[3.3  Multiplicité d'une racine| . . . . . . . .. L L e
[3.4  Polyndmes scindés| . . . . . . . L

4 Dérivation de polynémes|
41 Deéfinition et calculd . . . . . . ..

[4.2  Formule de Taylor et conséquences| . . . . . . . . . . . .

[ Polynémes irréductibles et factorisation|

[p.1 Factorisations dans C{X||. . . . . . . ... ... ...
[5.2 Factorisations dans RIX|. . . . . . . . . .. .
6 F - - s

w N

U O W >

O



Dans tout ce chapitre, on notera n un entier naturel et K I'un des ensembles R ou C.

1 Généralités sur les polynomes

1.1 Définitions

Définition 1.1 (Polynoéme, coefficients)

Un polynéme d’indéterminée X, a coefficients dans K est une expression pouvant s’écrire sous la forme

n
PX)=) X' =ao+ X+ -+ o, X",
k=0

(avec la convention X = 1), oit n € N et Vk € [0,n], oy, € K.
Les ay, s’appellent les coefficients du polynéme P. On note K[X] I'ensemble des polynémes d’indéterminée
X & coefficients dans K.

Remarque. En particulier :
— Si tous les coefficients de P sont nuls, P est le polynéme nul. On note P(X) = 0.
— Si pour tout k € [1,n], ap =0, P est un polyndéme constant.
— Deux polyndémes sont égaux si tous leurs coefficients sont égaux.

Définition 1.2 (Somme de polynémes)

Soit P(X Zaka et Q(X ZﬁkX deux polynémes de K[X], avec n > m. Alors :
k=0 k=0

(P+Q)X) =) (ar+B)XF+ Y apX*.
k=0

k=m+1

Remarque. Si m > n, il suffit d’intervertir les roles.

Définition 1.3 (Produit de polynémes)

Soit P(X Z X et Q(X Z B, X* deux polynomes de K[X]. Alors :
k=0 k=0
m+n m—+n
(PQ)(X) = Z (0Br + 1 fBr—1 + ...+ apfo) X" = Z <Z i Bg— z)
k=0 k=0 \i=0

Remarque. Ce résultat permet aussi de multiplier un polynéme par un scalaire (cas particulier du polynéme
constant) : VA € K, (AP)(X) = Y_7_, A X"

Remarque. Ces régles de calcul permettent de conserver une bonne partie des formules valables sur K, et en
particulier la formule du bindéme de Newton.

Exercice 1. On pose P(X) =5X2+3X +2, Q(X) = X2 + 1. Calculer (P + Q)(X) et (PQ)(X).
Exercice 2. Déterminer un réel a tel que (X —2)(X —5) = X2 + aX + 10.

Définition 1.4 (Composition)

Soit P(X) = iaka et Q(X) deux polynémes de K[X]. Alors : (PoQ)(X) = Zak(Q(X))k
k=0 k=0

Exemple. Si P(X) =5X?%+ 3X + 2, alors P(X?) =5X% 4+ 3X? + 2.



1.2 Degré et coefficient dominant

Définition 1.5 (Degré, coefficient dominant, polynéme unitaire)

Soit P(X) =1, o, X* un polynome de K[X] tel que o, # 0. L’entier n est appelé degré du polynome
P, et oy, est appelé coefficient dominant de P.

Un polynoéme de coefficient dominant 1 est dit unitaire.

On note deg(P) = n, et K,[X] désigne ’ensemble des polynomes de degré inférieur ou égal a n.

Remarque. Par convention le degré du polynéme nul est donné par : deg(0) = —oo. Cela signifie notamment que
K, [X] contient le polynéme nul.

Remarque. En particulier, Ko[X] = K.
Exercice 3. Soit (a,b,c) € R3, déterminer le degré de P(X) = aX? +bX +c.

Proposition 1.6 (Degré de la somme et du produit)

Soit P et (Q deux polynomes de K[X],

deg(P + Q) < max (deg(P), deg(Q)) avec égalité en particulier si deg(P) # deg(Q),

deg(PQ) = deg(P) + deg(Q) et en particulier Va € K*, deg(aP) = deg(P).

Remarque. La formule de degré de la somme n’est pas une égalité dans le cas général. En effet, si P(X) = 2X?
et Q(X) = —2X? 43X, les termes en X? se simplifient et deg(P + Q) =1 < 2.

Remarque. Le degré est trés pratique pour manipuler les polyndémes dont il n’est pas simple de déterminer les
coefficients (par exemple quand ils sont sous forme factorisée parce que ga demanderait beaucoup de calculs).

Proposition 1.7 (Cas d’un produit nul)

Soit (P, Q) € (K[X])?, (PQ)(X) =0+= P(X)=0o0uQ(X)=0.

Exercice 4. Pour quels (o, 3) € R? a-t-on (aX + 3)(3X2%2+6) =07

2 Division de polynomes
Définition 2.1 (Multiple, diviseur)

Soit A et B deux polynoémes de K[X], avec B non nul. On dit que le polynéme B est un diviseur du
polynéme A, ou que le polynéme A est un multiple du polyndéme B, lorsqu’il existe un polynéme @ de
K[X] tel que A(X) = B(X)Q(X).

Exemple. (X + 1) et (X — 1) sont des diviseurs de X2 — 1.
Proposition 2.2 (Division euclidienne)

Soit A et B deux polynémes de K[X], avec B non nul. Alors il existe un unique couple de polynémes (Q, R)
de K[X] qui vérifient A(X) = B(X)Q(X) + R(X) avec deg(R) < deg(B).
On appelle @ le quotient et R le reste de la division euclidienne de A par B.

Remarque. Autrement dit, B est un diviseur de A lorsque le reste de la division de A par B est le polynéme nul.

Exemple. La division euclidienne de X? 4+ X + 1 par X s’écrit X2 4+ X +1 = X (X +1) + 1, le quotient est donc
X + 1 et le reste 1 est de degré 0 < 1.



Exercice 5. Effectuer la division euclidienne de X% + 3X3 +3X + 2 par X2 + 1.
Proposition 2.3 (Degré du quotient)

Soit (A4, B) € K[X]? avec B # 0, et Q le quotient de la division euclidienne de A par B. Si deg(A) > deg(B),
alors deg(Q) = deg(A) — deg(B).

3 Fonctions polynomiales et racines

3.1 Fonction polynomiale

Définition 3.1 (Fonction polynomiale)
n

Soit P(X) = Zaka € K[X]. On appelle fonction polynomiale associée a P la fonction p, définie de
k=0

n
K dans K par : Vo € K, p(z) = Zakmk.
k=0

Remarque. z est un nombre réel ou complexe, mais X n’en est pas un, c¢’est une indéterminée. On dit qu’on
évalue le polynoéme P(X) en x.

Remarque. Les formules de combinaison linéaire et produit de fonctions polynomiales sont compatibles avec celles
sur les polynémes.

Remarque. Pour calculer la valeur en ¢ € K de P(X) = Y}, apX? = ag+ a1 X + ...+ a, X", on utilise
habituellement I'algorithme de Horner, consistant a calculer :

P(q) = ag + qlon + qlaz + ... + (n_2 + qlan_1 + qom)))).
Cet algorithme nécessite beaucoup moins d’opérations que ’algorithme naif qui calcule les puissances.

Exemple. Si P(X) = 3X? 45X + 3, 'algorithme de Horner donne P(q) = 3 + q(5 + 3¢).

3.2 Racines
Définition 3.2 (Racine d’un polynoéme)

Soit P € K[X] et r € K. On dit que 7 est une racine (ou un zéro) du polynéme P si P(r) = 0.

Remarque. Le polynéme nul a donc une infinité de racines.
Proposition 3.3 (Racines et divisibilité)

Soit P € K[X] et r € K. Le scalaire r est racine du polynéme P(X) si et seulement si X — r divise P(X).

Exemple. 1 est racine de X2 — 1, et donc X — 1 divise X? — 1.

Remarque. Ce résultat se généralise aux fonctions polynomiales. On 'avait d’ailleurs déja rencontré dans le
chapitre sur les nombres complexes : si P est une fonction polynomiale a coefficients complexes admettant a € C
comme racine, alors on peut factoriser P(z) par z — a.

Proposition 3.4 (Racines distinctes et divisibilité)

Soit P(X) un polynéme de K[X] et 71, ro, ..., ry des éléments deux & deux distincts de K. Le polynome
(X —r1)(X —r9)... (X —rp) divise P(X) si et seulement si 71, ro, ..., 7y sont des racines de P(X).



Proposition 3.5 (Degré et nombre de racines distinctes)

Un polyndéme de K, [X] qui posséde n + 1 racines distinctes est le polynéme nul.
Remarque. Par contraposée, tout polynéme non nul de degré inférieur ou égal a n admet au plus n racines
distinctes.

Remarque. En particulier, tout polynéme qui admet une infinité de racines distinctes est le polynéme nul, résultat
qui nous sera trés utile dans les exercices.

Remarque. On a vu plus t6t dans le chapitre qu’il était possible d’évaluer une égalité de polynémes en un point
x € K pour obtenir une égalité dans K. Ce résultat permet au contraire de « désévaluer » des relations dans K pour
se ramener & des relations en X.

Exercice 6. Soit (a,b,c) € R3. On suppose que Vx € [~1,1], az? + bz + ¢ = 0. Montrer qu’alors a = b = ¢ = 0.
Proposition 3.6 (Fonction polynomiale et retour au polynoéme)

n n
Soit P € K[X]. Si Vx € K, P(z) = Zakxk, alors P(X) = Zaka.
k=0 k=0

Remarque. Autrement dit, si on connait une fonction polynomiale, on peut retrouver le polyndéme associé.

3.3 Multiplicité d’une racine
Définition 3.7 (Ordre de multiplicité)
Soit P € K[X], p € N* et r € K. On dit que r est une racine d’ordre de multiplicité p du polynéme P
lorsque (X — r)P divise P(X) et (X — r)P*! ne divise pas P(X).
Remarque. Autrement dit, r est une racine d’ordre de multiplicité p du polynéme P lorsqu’il existe un polyndéme
Q@ de K[X] tel que P(X) = (X —r)PQ(X) et Q(r) # 0.

Remarque. Attention! Pour montrer que r est une racine d’ordre p de P, il faut penser & vérifier la deuxiéme
condition : que (X — r)P*! ne divise pas P.

Exemple. 1 est une racine double du polynome (X — 1)%(X — 2).

Proposition 3.8 (Ordres de multiplicité et divisibilité)

Soit P(X) € K[X], (n1,...,nm) € (N)™ et rq, ..., ry, des éléments deux & deux distincts de K. Le polynoéme
(X —r)" (X —r9)" ... (X — rp)™ divise P(X) si et seulement si 71, ..., 7, sont des racines de P de
multiplicités respectives au moins ni, ..., Ny,.

Proposition 3.9 (Nombre maximum de racines avec multiplicité)

Un polynéme P € K, [X] non nul admet au plus n racines, comptées avec leurs ordres de multiplicité.

3.4 Polynomes scindés

Définition 3.10 (Polynéme scindé)

On dit qu’un polynéme P € K[X] est scindé sur K s’il n’est pas constant et peut s’écrire comme un produit
de polynoémes de degré 1, c’est-a-dire s’il existe A € Ket (v, ..., ay,) € K" tels que P(X) = AT (X — ).



Proposition 3.11 (Somme et produit des racines d’'un polynoéme scindé)

Soit n € N* et soit P(X) =[] (X — ;) un polynoéme de degré n, scindé et unitaire. Alors :
— le coefficient en X"~ ! de P(X) vaut —s, ot 8§ = a1 + ... + ap,
— le coefficient constant de P(X) vaut (—1)"p, ol p = ay...ay
Autrement dit,
P(X)=X"—sX" 4. .. 4+ (=1)"p.

Remarque. s correspond & la somme des racines de P (comptées avec multiplicité), p a leur produit.

Remarque. Dans le cas d’un polynéme non-unitaire, il suffit d’écrire P(X) = A", (X — ), ot A # 0 désigne
son coefficient dominant, et on trouve P(X) = A (X" — sX" 1 + ...+ (=1)"p).

Exemple. Dans le cas particulier d’'un polynémes unitaire de degré 2, de racines o et ai, on a donc :

P(X) = X*— (a1 + 02) X + a1

4 Dérivation de polynémes

4.1 Définition et calculs

Définition 4.1 (Polynéme dérivé)

n
Soit P(X Z ap Xk e K[X]. On appelle polynéme dérivé de P le polynoéme P'(X) = Z ko XF1.

Exemple. Si P(X) =4X?%+3X + 1, alors P/(X) =8X + 3.

n—1
Remarque. Le changement d’indice j = k — 1 donne aussi P'(X) = Z(] + Doy X7,
=0

Remarque. Cette définition coincide avec la fonction dérivée d’une fonction polynomiale définie et a valeurs dans
R. Attention, on n’a par contre pas de notion de dérivation pour une fonction polynomiale définie sur C.

Remarque. Il n’y a pas de condition d’existence du polyndéme dérivé, au contraire d’une fonction dérivée.

Remarque. Comme dans le cas des fonctions, on peut définir par récurrence des polynoémes dérivés successifs :
pour tout j € N*, si PU) est un polynome de K[X], alors PUTY est le polynome dérivé de PU) | avec la convention
pO) = p.

Proposition 4.2 (Opérations sur les polyndmes dérivés)

Soit (P,Q) e KIX? et A€ K, AP+ Q) =\P' +Q' et (PQ) =P'Q+Q'P.

n

Remarque. Ces formules permettent de montrer la formule de Leibniz : (PQ) (” Z < > (k)Q("_k). Sa preuve
k=0
sera détaillée dans le prochain chapitre, pour dans le cas des dérivées de fonctions.

Proposition 4.3 (Degré du polynome dérivé)

Soit P(X) € K[X]. Si deg(P) > 1, alors deg(P’) = deg(P) — 1. Sinon, P/(X) = 0 donc deg(P’) = —oc.



Proposition 4.4 (Expression des polynomes dérivés successifs)

Soit P(X) = Zaka € K[X] de degré n. Alors,
k=0

n

1l )
Vk € [0,n], deg(P®)) = n —k, et PW(X) =" ﬁaiX“k et Vk = n+1, PR (X) =0.
- !

Remarque. (ij!k)! =({—k+1)x...x(i—1) x4, et ce produit contient i — (i — k + 1) + 1 = k termes.

4.2 Formule de Taylor et conséquences

Proposition 4.5 (Formule de Taylor)

n
pk)
Si P est un polyndéme de degré n, alors Va € K, P(X) = Z k'(a)

k=0

(X —a)k.

Exemple. Soit P(X) = X2 +3X + 5. Alors P/(X) =2X + 3, P”(X) =2 et pour a = 1, on obtient :
P(X):9+I(X—1)+§(X—1) =9+5(X—-1)+ (X -1)~

Proposition 4.6 (Multiplicité et dérivées successives)
Soit P un polynome de K[X] non nul, » € K et p un entier naturel non nul. Le scalaire  est une racine
d’ordre p du polynéme P si et seulement si Vk € [0,p — 1], P®)(r) = 0 et PP)(r) #£ 0.
Exercice 7. Soit P(X) = X* — 2X3 4+ 3X? — 4X + 2. Montrer que 1 est racine et déterminer son ordre de
multiplicité.
Proposition 4.7 (Ordre de multiplicité et racines des dérivées)

Soit 7 est une racine d’ordre p > 1 du polynéme P, alors :
— 7 est une racine d’ordre p — 1 de P/,
— pour tout j € [0,p — 1], 7 est une racine d’ordre p — j de PU),

5 Polynoémes irréductibles et factorisation

5.1 Factorisations dans C[X]
Proposition 5.1 (Théoréme de d’Alembert-Gauss)

Tout polynéme de C[X] non constant (donc de degré supérieur ou égal & un) admet au moins une racine

dans C.

Remarque. Les seuls polynémes irréductibles (polyndémes P non constants et dont les seuls diviseurs sont les A
et les AP pour A € K*) de C[X] sont donc les polynémes de degré 1.

Proposition 5.2 (Décomposition en facteurs irréductibles dans C)

m

Tout polynéme P € C[X] de degré n et de coefficient dominant c, peut s’écrire P(X) = a, H(X — )P,
k=1

avec rj, € C des racines distinctes de P, pr, € N* leurs ordres de multiplicité, et > ;" | pr = n.



Remarque. Autrement dit, tout polynéme non constant de C[X] est scindé.
Exercice 8. Factoriser dans C[X] le polynome P(X) = X3 + X.

Exercice 9. Soit n € N*. Factoriser 2X" — 2 dans C[X].

5.2 Factorisations dans R[X]
Proposition 5.3 (Racines conjuguées)
Soit z un nombre complexe, et P un polynéme de R[X]. Si z est racine du polynéme P, alors Z est également
racine de P, avec le méme ordre de multiplicité.
Proposition 5.4 (Décomposition en facteurs irréductibles dans R)

Tout polynéme de R[X] peut s’écrire comme produit d’'un réel, de polynomes a coefficients réels de degré 1
et de polyndémes & coefficients réels de degré 2 n’ayant pas de racine réelle.

Remarque. Les polynomes irréductibles de R[X] sont donc :
— les polynémes de degré 1;
— les polynomes de degré 2 et de discriminant strictement négatif.

Exercice 10. Factoriser dans R[X] le polynome P(X) = X3 + X.

6 Fractions rationnelles
Définition 6.1 (Fraction rationnelle)

On appelle fraction rationnelle tout quotient de type g oil (P,Q) € K[X]? avec Q # 0.

Proposition 6.2 (Décomposition en éléments simples)

Soit R = g une fraction rationnelle sur K. Si @ est scindé de racines simples distinctes Ay, ..., A, alors il
existe une unique décomposition de la forme :

T az
RO = B0+ 3
avec E(X) € K[X] et Vi € [1,7], a; € K.

Remarque. Dans le cas ol le polynéme au dénominateur aurait des racines multiples ou ne serait pas scindé, la
forme cherchée pour la décomposition est plus complexe et sera fournie par I’exercice.

CXP+3X 41

Exercice 11. Décomposer en éléments simples la fraction R(X) %7 1

Remarque. Dans le cas de décompositions plus complexes, on peut aussi utiliser des limites en 00 ou I’évaluation
en d’autres valeurs particuliéres pour déterminer les valeurs des constantes.

2 +3z+1

1 .
o sur |1, +o0[

Exercice 12. Déterminer une primitive de f : x —
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