Dérivabilité
Cours de E. Bouchet — PCSI

27 novembre 2025

Table des matiéres

I Dérvabilitd

(1.1 Dérivabilité en un point| . . . . . . . . .

|2 Principaux théorémes|

[2.2 Théoréme de Rolle et égalité des accroissements finis| . . . . . . . . . ... .. ... .. ... ...,
[2.3  Inégalité des accroissements finis| . . . . . . . . ..o

B Dérve ves

|5 Fonctions a valeurs complexes|

S O U W w w NN

N oS

co Qo



Dans tout le chapitre, les fonctions f considérées sont définies sur un intervalle I C R non vide et non réduit & un
point. Elle sont toutes supposées & valeurs réelles (sauf dans la derniére section).

1 Dérivabilité
1.1 Dérivabilité en un point
Définition 1.1 (Fonction dérivable en un point, nombre dérivé, rappel)

Soit a € I. On dit que f est dérivable en a lorsque lim w existe et est finie. Cette limite est alors

r—a
notée f'(a) et appelée nombre dérivé de f en a.

Remarque. Cette définition équivaut & dire que f est dérivable en a si et seulement si lim w eR.

h—0

Remarque. Dans le cas d’une fonction physique, la dérivée au point a correspond a la vitesse instantanée.
Proposition 1.2 (Dérivabilité et approximation locale)

Soit a € I. La fonction f est dérivable en a si et seulement si il existe v € R et une fonction € tels que
lim e(h) = 0 et qu’au voisinage de 0, f(a+h) = f(a)+v.h+ h.e(h). Le réel v est alors unique et vaut f'(a).

h—0

Proposition 1.3 (Tangente a la courbe, rappel)

Soit a € I. Si f est dérivable en a, alors la courbe Cy admet au point de coordonnées (a, f(a)) une tangente
d’équation y = f(a) + f'(a)(x — a).

Remarque. Interprétation géométrique :

Définition 1.4 (Dérivée a droite ou a gauche en un point)

Soit @ € I. On dit que f est dérivable a droite (respectivement dérivable & gauche) en a lorsque

lim W (resp. lim M) existe et est finie. On note alors cette limite fj(a) (resp. fy(a)).

T—a
z—at T—a~

Proposition 1.5 (Demi-tangente a la courbe)

Soit a € I. Si f est dérivable a gauche en a, Cy admet une demi-tangente d’équation y = f(a) + f;(a)(z —a),
avec T < a.
Si f est dérivable a droite en a, Cy admet une demi-tangente d’équation y = f(a)+ f(a)(z —a), avec z > a.

Exemple. Soit f la fonction définie sur R par : z +— |z|. Elle est :

P ~ . _ . _O _
— dérivable a droite en 0, f;(0) = mlif& = =1L
— dérivable a gauche en 0, f;(0) = Ili)mﬁ -0 = 1.

N



Proposition 1.6 (Lien entre dérivabilité, dérivabilité & droite et dérivabilité & gauche)

Soit a € I. Si f est dérivable & droite et & gauche en a et si f}(a) = f;(a) =/( € R, alors [ est dérivable en
aet f'(a) =1.

1.2 Deérivabilité et continuité

Proposition 1.7 (Continuité d’une fonction dérivable)

Toute fonction f dérivable en un point a est continue en a.

Remarque. Attention : La réciproque est FAUSSE, la continuité n’implique pas la dérivabilité.

Exemple. La fonction définie sur R par x — |x|, est continue, mais pas dérivable en 0.

1.3 Deérivabilité sur un intervalle

Définition 1.8 (Dérivée sur un intervalle, fonction dérivée)

On dit que la fonction f est dérivable sur I lorsque f est dérivable en tout point de I (sauf pour les bornes
de I, pour lesquelles on se restreint a la dérivabilité a droite ou & gauche).
On définit alors la fonction dérivée de f notée f’, définie sur I par f': x — f'(x).

Remarque. ATTENTION : Une fonction peut étre dérivable sur [a,b] et sur [b, ¢] sans étre dérivable sur [a, c].
L’étude locale de la dérivabilité en b est indispensable pour affirmer qu’elle est dérivable sur [a, c].

Exercice 1. Soit f la fonction définie sur R par Va > 0, f(z) = 2% et V2 < 0, f(z) = 0.
Etudier sa dérivabilité sur R.

1.4 Opérations sur les fonctions dérivables
Proposition 1.9 (Linéarité)
Soient u et v deux fonctions dérivables sur un intervalle I et o un réel. Alors au + v est dérivable sur I et
(au+v) = au' + .
Proposition 1.10 (Dérivée d’un produit et d’un quotient)

Soient u et v deux fonctions dérivables sur un intervalle I. Alors uv est dérivable sur I et (uv)’ = v'v + uv'.

. . L, . !/ Ty—uv!
Si de plus, la fonction v ne s’annule sur I, alors ¢+ est dérivable sur I et (%) =

Proposition 1.11 (Dérivée d’une composée)

Soient f une fonction dérivable sur un intervalle I et g une fonction dérivable sur f(I). Alors g o f est
dérivable sur I, et (go f) = f"- (¢’ o f).

Proposition 1.12 (Dérivée de la fonction réciproque)

Soit f une fonction dérivable et strictement monotone sur un intervalle I et & valeurs dans J = f(I). Soit
a € I. La fonction réciproque f~! est dérivable en b = f(a) si et seulement si f'(a) # 0 et lorsqu’elle est

dérivable, (f_l),(b) = f/(f}l(b)) - f’%a)'




2 Principaux théorémes

2.1 Caractérisation d’un extremum local

Définition 2.1 (Maximum/minimum local)

— On dit que f admet un maximum local en a € I lorsqu’au voisinage de a, f(z) < f(a).
— On dit que f admet un minimum local en a € I lorsqu’au voisinage de a, f(z) > f(a).

Exemple. Représentation graphique :

maximum global (et minimum local sur la partie constante)

maximum local
maximum local
>

minimum local
minimum global

Définition 2.2 (Point critique)

Soit f une fonction dérivable sur I et a € I. On dit que a est un point critique de f lorsque f'(a) = 0.

Proposition 2.3 (Caractérisation d’un extremum par la dérivée)

Soit f une fonction dérivable sur un intervalle I. Soit a € I qui n’est pas une borne de I. Si f admet un
extremum local en a alors f’(a) = 0.

Remarque. ATTENTION : la réciproque est fausse! Il se peut que f’(a) = 0 sans que f n’admette d’extremum
en a. Par exemple, la fonction définie sur R par x — 23 a une dérivée nulle en 0, mais n’atteint ni un maximum ni
un minimum en ce point.

Exercice 2. Sans utiliser de tableau de variations, trouver les extremums locaux de la fonction f définie sur R
par Vz € R, f(z) = 2* + 2.

Remarque. Cette technique sera surtout utile dans les cas ot le tableau de variations de la fonction est compliqué
a obtenir. On verra plus tard d’autres stratégies d’étude locale.

2.2 Théoréme de Rolle et égalité des accroissements finis

Proposition 2.4 (Théoréme de Rolle)
Soit @ < b. Si f est une fonction continue sur [a,b], dérivable sur ]a, b et qui vérifie f(a) = f(b), alors il

existe ¢ €]a, b[ tel que f'(c) = 0.

Remarque. Le réel ¢ n’est pas forcément unique.

Remarque. Interprétation graphique : il existe donc un point de la courbe admettant une tangente paralléle a
I’axe des abscisses.



Proposition 2.5 (Egalité des Accroissements Finis)

Soit a < b. Si f est une fonction continue sur [a,b] et dérivable sur |a,b[ alors il existe ¢ €]a,b[ tel que

b)—f(a
fle) = I

Remarque. w est le coefficient directeur du segment [AB], donc il existe un point de Cy admettant une

tangente paralléle & ce segment.

2.3 Inégalité des accroissements finis

Définition 2.6 (Fonction lipschitzienne)

Soit M > 0. On dit quune fonction f définie sur un intervalle I est M-lipschitzienne si V(z,y) € I?,
[f(x) = fyI <Mz —y|.

Remarque. Cela signifie que pour tout (x,y) € I?, la distance entre f(x) et f(y) (qui se lit sur 'axe des ordonnées)
peut étre majorée proportionnellement a la distance entre = et y (qui se lit sur ’axe des abscisses).

f@)—f()
-y
M-lipschitzienne si et seulement si ses accroissements sont bornés par M.

Remarque. C’est équivalent & dire que pour tous x # vy,

‘ < M. Autrement dit, une fonction est

Exercice 3. Montrer que la fonction f: x — % est lipschitzienne sur [1, 4o00].

Proposition 2.7 (Continuité d’une fonction lipschitzienne)

Soit M > 0. Si f est M-lipschitzienne sur I, alors f est continue sur [.

Proposition 2.8 (Inégalité des Accroissements Finis)

Soit f une fonction dérivable sur un intervalle I de R et telle que | f’| est majorée par un réel K, alors f est
K-lipschitzienne.

Exercice 4. Montrer que Vx € R, |cos(x) — 1| < |z|.
Proposition 2.9 (Application des accroissements finis aux suites récurrentes)

Soit u une suite d’éléments de I définie par la relation de récurrence Vn € N, uny1 = f(uy). On suppose
qu’il existe un intervalle J tel que :

— J est stable par f et contient au moins un terme de la suite.

— sur J, f admet un unique point fixe £.

— sur J, f est k-lipschitzienne pour k € [0, 1].
Alors u converge vers /.

Remarque. L’'un des gros intéréts de cette méthode est qu’elle montre au passage Vn > ng, |un, — €] < K770 |uy, — 4.
Cela permet de déterminer la vitesse de convergence (au moins géométrique), ce qui donne des approximations
numeériques de la valeur de la limite.

Exercice 5. Soit u € RN une suite définie par ug > —2 et la relation Vn € N, Un+1 = 5 1 Apres avoir démontré

+un
que cette suite était bien définie, étudier son comportement en +oc.



2.4 Caractérisation des fonctions constantes et monotones

Proposition 2.10 (Variations de fonctions dérivables)

Soit f une fonction dérivable sur un intervalle I. Alors :
— f est croissante sur [ si et seulement si : Vo € I, f(z) >0
— f est décroissante sur [ si et seulement si : Vo € I, f'(z) < 0.
— f est constante sur I si et seulement si : Vo € I, f'(x) =0

Proposition 2.11 (Cas particulier de la stricte monotonie)

Soit f une fonction dérivable sur un intervalle I de R, et soit J un ensemble obtenu en retirant un nombre
fini de points & I. Si Va € J, f'(z) > 0 (resp. f'(x) < 0) et Vo € T\ J, f'(x) = 0, alors f est strictement
croissante (resp. strictement décroissante) sur I.

Remarque. L’annulation en un nombre fini de points n’empéche donc pas la stricte croissance de la fonction.

2.5 Théoréme de la limite de la dérivée

Proposition 2.12 (Limite de la dérivée)

Soit @ € I. Soit f une fonction continue sur I, dérivable sur I \ {a} et telle que lim f’'(x) = ¢ € R.
Tr—a

r#a
Alors f est dérivable en a et f'(a) = £.

Remarque. On montre au passage que la fonction f’ est continue en a.

Exercice 6. Soit f la fonction définie sur R par Vz > 0, f(z) = 22 et Vo < 0, f(z) = 0. Etudier sa dérivabilité
sur R, cette fois-ci en utilisant le théoréme de limite de la dérivée.

Remarque. Si lim f'(z) = +00 ou —oo, on peut adapter ce raisonnement pour montrer que f n’est pas dérivable
Tr—a
r#a

en a. Son graphe admet alors une tangente verticale en ce point.

3 Dérivées successives

3.1 Définitions et rappels
Définition 3.1 (Classe C!)

On dit que f est de classe C! sur I lorsque f est dérivable sur I et que f’ est continue sur 7. On note alors
f € CYI,R).

Définition 3.2 (Fonction deux fois dérivable, classe C?)

On dit que f est deux fois dérivable sur I lorsque f est de classe C! sur I et que f’ est dérivable sur I.
On note alors (f')' = f?).

On dit que f est de classe C? sur I lorsque f est deux fois dérivable sur I et que f(2) est continue sur 1.
On note alors f € C2(I,R).

Remarque. On peut ensuite définir récursivement toutes les dérivées suivantes : soit p un entier naturel non nul,
/

si f(P) est dérivable sur I alors f est (p + 1) fois dérivable sur I, avec pour tout = € I, fP1)(z) = (f®) (). Si,

de plus, f®P*1) est continue sur I alors f est de classe CP+! sur I.



Définition 3.3 (Classe C*°)
On dit que f est de classe C'° sur [ lorsque f est indéfiniment dérivable, c’est & dire dérivable & tout ordre.
On note alors f € C*(I,R).

Remarque. Si f est continue sur I, on notera par convention f € C(I,R) et O = 7.

3.2 Formulaire

La plupart des fonctions usuelles sont de classe C*° sur tout intervalle inclus dans leur domaine de dérivabilité. Les
formules suivantes sont a connaitre et se montrent par récurrence (n’hésitez pas a écrire explicitement la récurrence
dans le cas ou la formule ne vous parait pas évidente).

f(@) Dy (@) fz) | Dy (@)
e R e cos(z) R cos (z +n%)
Pl on sin(z) R sin (z +n%)

a? (peN*) | R p-ny" TSP 1

; 1 —1)"n!
0 dnzp IRV | o

z* (€ R\N) | RL | a(la—1)...(a =n+1)z*™" ) |
2N e R\{a} | vy
= H(a—z) x a—x (@ — z)ntl
i=0

3.3 Opérations sur les dérivées
Proposition 3.4 (Linéarité des dérivées successives)

Soit p € N, a € R, et soient f et g des fonctions de classe CP sur l'intervalle I. Alors :
— f+gestde classe CP sur I et (f + g)® = f®) 4 @),
— af est de classe C? sur I et (af)®) = af®.

Remarque. Ce résultat reste vrai si on remplace « de classe CP » par « p fois dérivable » ou « de classe C'*° ».

Exercice 7. Soit k € N*, déterminer la dérivée k-iéme sur |1, +oo[ de f: z +— %
Proposition 3.5 (Formule de Leibniz : dérivées successives du produit)

Soit n € N et soient f et g des fonctions de classe C™ sur 'intervalle I. Alors fg est de classe C™ sur [ et

(fo)™ =>" (Z) F®gn=h),

k=0

Remarque. Attention & ne pas se laisser induire en erreur par la notation en exposant : cette formule porte sur
des dérivées, pas sur des puissances !

2

Exercice 8. Etudier la dérivabilité de la fonction définie sur R par : Vo € R, f (x) = z%e”, et calculer ses dérivées.

Proposition 3.6 (Formule de composition)

Soit n € N. Soit I et J deux intervalles de R, f une application définie sur I et g une application définie sur
J avec f(I) C J. Alors :
— Si f est dérivable n fois sur I et g est dérivable n fois sur J, alors g o f est dérivable n fois sur I.
— Si f et g sont de classe C"™ respectivement sur I et J alors g o f est de classe C™ sur [I.
— Si f et g sont de classe C'*° respectivement sur I et J alors g o f est de classe C'*° sur [.



Proposition 3.7 (Formule de réciproque)

Soit n € N*. Soit f une application bijective de I dans J = f(I). Alors :
— Si f est dérivable n fois sur I et f/ ne s’annule pas sur I, alors f~! est dérivable n fois sur J.
— Si f est de classe C™ sur I et f’ ne s’annule pas sur I, alors f~! est de classe C" sur .J.
— Si f est de classe C™ sur I et f’ ne s’annule pas sur I, alors f~! est de classe C™ sur J.

Remarque. Attention & ne pas oublier 'hypothése de non-annulation de la dérivée!

4 Fonctions convexes
4.1 Deéfinition
Définition 4.1 (Fonction convexe, concave)

Soit f une fonction définie sur un intervalle I.
— f est convexe sur I lorsque V(x1,22) € 12, Vt € [0,1], f (tz1 + (1 — t)xz2) < tf(x1) + (1 —t) f(22).
— f est concave sur I lorsque V(x1,22) € IQ, Vt € [0,1], f (txr + (1 —t)z2) = tf(x1) + (1 —t) f(x2).

Remarque. Interprétation géométrique : pour ¢t € [0,1], y = tf(z1)+(1—t) f(x2) parcourt le segment d’extrémités
f(z1) et f(z2), tandis que y = f (tx1 + (1 — t)z2) parcourt 'arc de courbe de f situé entre ces mémes points. Donc
la courbe représentative d’une fonction convexe (respectivement concave) est en dessous (respectivement au dessus)
de ses cordes.

Convexe

. Concave

Exercice 9. On admet que le le logarithme est concave sur R.. Montrer que Vu € [1,e], u — 1 < (e — 1) In(u).

Proposition 4.2 (Lien entre convexité et concavité)

Une fonction f est concave sur un intervalle I si et seulement si — f est convexe sur I.

4.2 Convexité et dérivabilité

Proposition 4.3 (Convexité d’une fonction dérivable)

Soit f une fonction dérivable sur un intervalle I. Les propriétés suivantes sont équivalentes :
— f est convexe sur I,
— En tout point de I, la courbe de f est au dessus de ses tangentes,
— f’ est croissante sur I.

Interprétation géométrique :

Exercice 10. Montrer que pour tout x € R, e* > = + 1.

Exercice 11. Montrer que pour tout = €] — 1, +o0[, z > In(x + 1).



Proposition 4.4 (Convexité d'une fonction deux fois dérivable)
Soit f une fonction deux fois dérivable sur un intervalle I. Alors f est convexe sur [ si et seulement si pour

tout z € I, f"(z) = 0.

Remarque. De méme, f est concave sur [ si et seulement si pour tout z € I, f”(z) <0.

5 Fonctions a valeurs complexes

Dans cette section, on considére une fonction f définie sur un intervalle I C R et a valeurs dans C.
Définition 5.1 (Dérivabilité)

Soit @ € I. On dit que f est dérivable en a si lim W € C. On note alors f’(a) la valeur de la limite.

r—a

Proposition 5.2 (Lien avec la dérivabilité des parties réelle et imaginaire)

Soit a € I. f est dérivable en a si et seulement si Re(f) et Im(f) sont dérivables en a. On a alors :
f'(a) = (Re(f))'(a) + i(Im(f))'(a).

Remarque. Si k € N*, on note C*(I,C) l'ensemble des fonctions I — C qui sont k fois dérivables et dont la
dérivée k-ieme est continue. La fonction dérivée k-ieme de f est notée f*), et par convention, (O = f.

Remarque. Les formules usuelles de dérivée (combinaison linéaire, produit, formule de Leibniz) se généralisent
sans difficulté au cas complexe. Ce n’est pas contre pas le cas des résultats évoquant une monotonie, des résultats
de convexité, du théoréme de Rolle ou de 1’égalité des accroissements finis.

Exemple. La fonction ¢ — e est continue et dérivable sur [0,27], vérifie e = 1 = €™ mais sa dérivée t > ie’

ne s’annule pas sur [0, 27].
Proposition 5.3 (Inégalité des accroissements finis, cas complexe)

Soit f une fonction de classe C! sur I. On suppose qu'il existe un réel M tel que V¢t € I, |f'(t)] < M. Alors
V(z,y) € I, | f(z) — f(y)| < M|z —y].



	Dérivabilité
	Dérivabilité en un point
	Dérivabilité et continuité
	Dérivabilité sur un intervalle
	Opérations sur les fonctions dérivables

	Principaux théorèmes
	Caractérisation d'un extremum local
	Théorème de Rolle et égalité des accroissements finis
	Inégalité des accroissements finis
	Caractérisation des fonctions constantes et monotones
	Théorème de la limite de la dérivée

	Dérivées successives
	Définitions et rappels
	Formulaire
	Opérations sur les dérivées

	Fonctions convexes
	Définition
	Convexité et dérivabilité

	Fonctions à valeurs complexes

