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Dans tout ce chapitre, on notera n un entier naturel et K 'un des ensembles R ou C.

1 Généralités sur les polynémes

1.1 Définitions

Définition 1.1 (Polynéme, coefficients)

Un polyndme d’indéterminée X, a coefficients dans K est une expression pouvant s’écrire sous la forme

P(X) =) o X" =g+, X+ + 0, X",

(avec la convention X° = 1), ot n € N et Yk € [0,n], o), € K.
Les «, s’appellent les coefficients du polynéme P. On note K[X] I’ensemble des polynémes d’indéterminée
X a coefficients dans K.
Remarque. En particulier :
 Si tous les coefficients de P sont nuls, P est le polyndme nul. On note P(X) = 0.
e Si pour tout k € [1,n], o, = 0, P est un polynéme constant.

e Deux polyndémes sont égaux si tous leurs coefficients sont égaux.

Définition 1.2 (Somme de polynémes)

Soit P(X Zaka et Q(X Zﬁka deux polynomes de K[X], avec n > m. Alors :

(P+Q)(X iak+/8k)Xk+ i a, X",

k=0 k=m+1

Remarque. Si m > n, il suffit d’intervertir les roles.

Définition 1.3 (Produit de polynomes)

Soit P(X Zaka et Q(X Zﬁka deux polynomes de K[X]. Alors :

m+n m+n
(PQ)(X) = Z(aoﬁk Ty Byt ot afy) XT = Z (Za B 1)

k=0 k=0

Remarque. Ce résultat permet aussi de multiplier un polynéme par un scalaire (cas particulier du polynéme

constant) : VA € K, (AP)(X) = ZZ:O Aoy, X,

Remarque. Ces regles de calcul permettent de conserver une bonne partie des formules valables sur K, et en
particulier la formule du binéme de Newton.

Exercice 1. On pose P(X) =5X%2 +3X +2, Q(X) = X2 + 1. Calculer (P + Q)(X) et (PQ)(X).
Solution : (P + Q)(X) =6X?+3X +3=302X?+ X +1) et (PQ)(X)=5X*+3X>+7X?+3X + 2.

Exercice 2. Déterminer un réel a tel que (X —2)(X —5) = X% + aX + 10.
Solution : On obtient en développant (X —2)(X —5) = X2 —2X —5X +10 = X? —7X +10. Donc par identification
des coefficients, poser a = —7 convient.



Définition 1.4 (Composition)

Soit P(X) = En:aka et Q(X) deux polynomes de K[X]. Alors : (PoQ)(X) = Zak(Q(X))k.
k=0

Exemple. Si P(X)=5X?+3X + 2, alors P(X?) =5X*+3X? + 2.

1.2 Degré et coefficient dominant

Définition 1.5 (Degré, coefficient dominant, polynéme unitaire)

Soit P(X) = ZZ:O a, X* un polynéome de K[X] tel que «,, # 0. L’entier n est appelé degré du polynéme P,
et o, est appelé coefficient dominant de P.
Un polynoéme de coefficient dominant 1 est dit unitaire.

On note deg(P) = n, et K, [X] désigne I’ensemble des polynémes de degré inférieur ou égal a n.

Remarque. Par convention le degré du polynéme nul est donné par : deg(0) = —oo. Cela signifie notamment que

K,,[X] contient le polynéme nul.

Remarque. En particulier, K [X] = K.

Exercice 3. Soit (a,b,c) € R3, déterminer le degré de P(X) = aX? +bX +c.
Solution :

e Sia#0,deg(P)=2.

Sia=0etb#0, deg(P)=1.

e Sia=b=0et c#0, deg(P)=0.

e Sia=b=c=0, deg(P) = —oc.

Proposition 1.6 (Degré de la somme et du produit)

Soit P et @ deux polynémes de K[X],

deg(P + Q) < max (deg(P), deg(Q)) avec égalité en particulier si deg(P) # deg(Q),

deg(PQ) = deg(P) + deg(Q) et en particulier Vo € K*, deg(aP) = deg(P).

Remarque. La formule de degré de la somme n’est pas une égalité dans le cas général. En effet, si P(X) = 2X?
et Q(X) = —2X2+ 3X, les termes en X? se simplifient et deg(P + Q) =1 < 2.

Démonstration. Si P(X) =0 ou Q(X) = 0, les résultats sont immeédiats. Sinon, il existe des coefficients (o;) € K1

et (3;) € K™ avec o, # 0 et 3,, # 0, tels que P(X Zaka et Q(X ZBka

o Cas de la somme : on peut supposer que n > m (l'autre cas se traite en intervertissant les polynomes). Alors
m n
(P+Q)(X) = Z(ak + Br) X + Z o, X*. La plus grande puissance intervenant dans cette expression
est n, donc deg(P +Q)<n= max(deg( ), deg(Q)).

Pour le cas d’égalité, il faut de plus que le coefficient du terme en X" soit non nul. Dans le cas ou n # m, ce
coefficient vaut «,, # 0, donc il y a bien égalité.



« Cas du produit : (Z aka> (Z B, X% |. Le terme de plus haut degré est o, 3,, X" ™. Or
a,,fB,, # 0 par produit de réels non nuls, donc deg(PQ) = n + m = deg(P) + deg(Q).

O

Remarque. Le degré est tres pratique pour manipuler les polynémes dont il n’est pas simple de déterminer les
coefficients (par exemple quand ils sont sous forme factorisée parce que ga demanderait beaucoup de calculs).

Proposition 1.7 (Cas d’un produit nul)

Soit (P, Q) € (K[X])2, (PQ)(X) =0 <= P(X) =0 ou Q(X) =

Démonstration. La réciproque est évidente, il suffit donc de vérifier le sens direct.

On suppose que que (PQ)(X) = 0. Par passage au degré, on obtient deg(P) + deg(Q) = —oo. Si P(X) # 0
et Q(X) # 0, on aurait deg(P) + deg(Q) € N, ce qui est donc impossible. On en déduit que P(X) = 0 ou
Q(X)=0. O

Exercice 4. Pour quels (o, 3) € R? a-t-on (aX + 8)(3X%2+6) =07
Solution : Soit (a, 3) € R?, on trouve par propriétés du produit puis identification des coefficients :

(X +B)(B3X24+6)=0<=aX+=0<=a=8=0.

Donc les seuls (a, #) qui conviennent sont (0, 0).

2 Division de polynémes
Définition 2.1 (Multiple, diviseur)

Soit A et B deux polynémes de K[X], avec B non nul. On dit que le polynéme B est un diviseur du
polynéme A, ou que le polynéme A est un multiple du polynéme B, lorsqu’il existe un polynéme @ de
K[X] tel que A(X) = B(X)Q(X).

Exemple. X + 1 et X — 1 sont des diviseurs de X? — 1.
Proposition 2.2 (Division euclidienne)
Soit A et B deux polynémes de K[X], avec B non nul. Alors il existe un unique couple de polynémes (@, R)

de K[X] qui vérifient A(X) = B(X)Q(X) + R(X) avec deg(R) < deg(B).
On appelle @ le quotient et R le reste de la division euclidienne de A par B.

Remarque. Autrement dit, B est un diviseur de A lorsque le reste de la division de A par B est le polynéme nul.

Exemple. La division euclidienne de X2 + X + 1 par X s’écrit X? + X + 1 = X (X + 1) + 1, le quotient est donc
X + 1 et le reste 1 est de degré 0 < 1.

Démonstration. On fait la preuve en deux temps :

n
o Preuve de 'existence. On pose B(X Zbk ,et A (X) = Zaka. (On introduit l'indice n pour

k=0
marquer la connaissance du degré, et on defimt A__, comme le polynéme nul). On va montrer par récurrence
forte sur n € NU {—o0} la propriété suivante :

P(n): «3(Q,,, R,) € K[X]? tels que A4, = Q,,B+ R,, et deg(R,)) < deg(B)».



Initialisation : pour tout n < deg(B), (il existe au moins un tel n car B est non nul), A, = 0B + A, et
Q, =0et R, = A, satisfont les conditions du théoréeme. Donc P(n) est vraie.

Soit n > deg(B) — 1 un entier naturel fixé, on suppose que P(k) est vraie pour tout k£ < n. Soit A, ; un
polynoéme de degré n + 1. On considere le polyndéme

S(X) = Ay (X) — LB X,
P

Ce polynoéme est de degré inférieur ou égal & n par construction (le coefficient ”* L a été choisi pour que
P

les termes en X"*! s’annulent). Il existe donc, par hypothése de récurrence, des polynémes Q et R tels que
S, (X) =Q(X)B(X)+ R(X) et deg(R) < deg(B). On a alors :

Ay (X) = SELB(X) X7 4+ Q(X)B(X) + R(X)

p

- (“ZHX”“—p + Q(X)) B(X) + R(X).

p

Choisir Q,,1(X) = =L X"1P + Q(X) et R, (X) = R(X) montre alors P(n + 1).

Cela termine la preuve de I'existence.

o Preuve de 'unicité. Supposons que (@, R;) et (Q4, Ry) soient deux couples convenant : A = BQ, + R, et
A = BQ, + R,, avec deg(R;) < deg(B) et deg(R5) < deg(B). Donc B(Q; —Q,) = R, — R, par soustraction.
Les propriétés du degré donnent alors :

deg(B) 4 deg(Q; — Qy) = deg(B(Q, — Qy)) = deg(Ry — Ry) < max(deg(R,), deg(Ry)) < deg(B).

Donc deg(Q; — @Q3) < 0. Or le degré est a valeurs dans N U {—oo}. Donc deg(Q; — Q) = —00 et Q1 = Q.
Donc R; = R,, ce qui termine la preuve de l'unicité.

O

Exercice 5. Effectuer la division euclidienne de X* + 3X3 4+ 3X + 2 par X2 + 1.

Solution :
X+ 43x3 +3X +2| X?2+1
— X4 —X? X2 +3X -1
3X3 —X? 13X 2
—3X3 —3X
—X? +2
X? +1
3

Le quotient est donc X2 + 3X — 1, et le reste 3 vérifie deg(3) = 0 < 2 = deg(X? + 1).
Proposition 2.3 (Degré du quotient)

Soit (A, B) € K[X]? avec B # 0, et Q le quotient de la division euclidienne de A par B. Si deg(A) > deg(B),
alors deg( ) = deg(A) — deg(B).

Démonstration. Par théoreme de division euclidienne, il existe un unique couple de polynémes (Q, R) tels que
A = BQ + R et deg(B) > deg(R).

Donc BQ = A — R et par propriétés du degré deg(B) + deg(Q) = deg(BQ) = deg(A — R) = deg(A), ou la
derniére égalité découle de la condition deg(A) > deg(R) (puisque deg(A) > deg(B) > deg(R)). Ce qui termine la
preuve. O



3 Fonctions polynomiales et racines

3.1 Fonction polynomiale

Définition 3.1 (Fonction polynomiale)

Soit P(X) = Z a, X* € K[X]. On appelle fonction polynomiale associée & P la fonction p, définie de K
k=0

n
dans K par : Vx € K, p(x) = Zakxk.
k=0

Remarque. = est un nombre réel ou complexe, mais X n’en est pas un, c’est une indéterminée. On dit qu’on
évalue le polynéome P(X) en z.

Remarque. Les formules de combinaison linéaire et produit de fonctions polynomiales sont compatibles avec
celles sur les polynomes.

n

Remarque. Pour calculer la valeur en ¢ € K de P(X) = >, | , X* = oy + ;X + ... + a, X", on utilise
habituellement I’algorithme de Horner, consistant a calculer :

P(q) = ag +qag +qlay + ... + (a5 + ey, 1 +qa,,)))).
Cet algorithme nécessite beaucoup moins d’opérations que l’algorithme naif qui calcule les puissances.

Exemple. Si P(X) =3X? +5X + 3, I'algorithme de Horner donne P(q) = 3 + q(5 + 3q).

3.2 Racines
Définition 3.2 (Racine d’un polynéme)

Soit P € K[X] et r € K. On dit que 7 est une racine (ou un zéro) du polynéme Psi P(r) = 0.

Remarque. Le polyndéme nul a donc une infinité de racines.
Proposition 3.3 (Racines et divisibilité)

Soit P € K[X] et r € K. Le scalaire r est racine du polynéme P(X) si et seulement si X — r divise P(X).

Exemple. 1 est racine de X? — 1, et donc X — 1 divise X2 — 1.

Démonstration. Soit r € K fixé, on effectue la division euclidienne de P(X) par X — r : il existe deux uniques
polynomes (Q, R) € K[X]? tels que P(X) = (X —7)Q(X) + R(X) et deg(R) < 1. R est un polyndme constant, il
existe donc A € K tel que R(X) = A. En évaluant Pen r, on trouve P(r) = 0 + A. Donc :

P(X)=(X—r)Q(X)+ P(r).
On peut alors raisonner par équivalences :

7 est racine de P<= P(r) =0

< le reste de la division euclidienne de P(X) par X — r est nul
< X — r divise P(X)

O

Remarque. Ce résultat se généralise aux fonctions polynomiales. On 'avait d’ailleurs déja rencontré dans le
chapitre sur les nombres complexes : si P est une fonction polynomiale & coefficients complexes admettant a € C
comme racine, alors on peut factoriser P(z) par z — a.



Proposition 3.4 (Racines distinctes et divisibilité)

Soit P(X) un polynéme de K[X] et ry, 7y, ..., 1, des éléments deux a deux distincts de K. Le polynéme
(X —r)(X —ry) ... (X —r,,) divise P(X) si et seulement si 7y, 7y, ..., 1, sont des racines de P(X).

Démonstration. On suppose que (X —ry)(X —ry) ... (X —r,,) divise P(X). Alors 3Q(X) € K[X] tel que P(X) =
(X —r)(X —ry)...(X —r,)Q(X). Donc Vk € [1,m], P(r;) =0, donc rq, ry, .., 1, sont des racines de P(X).
Réciproquement, on suppose que 7y, 7y, .., 7, sont des racines deux & deux distinctes de P, et on pose Vk € [1,m],
H): « (X —=r)(X —715) ... (X —r) divise P(X) ».

L’initialisation est directe par la propriété précédente : H(1) est vraie.

Soit k € [1,m — 1] un entier naturel fixé, on suppose que H (k) est vraie : il existe A € K[X] tel que

PX)=(X—r)(X —ry) ... (X —rpAX).

Comme k + 1 < m, alors r;,,; est racine de Pet P(r,, ;) = 0. Mais comme les r; sont supposés distincts deux a
deux (14,1 —71)(Tper — 72) - (Th1 — ) # 0. Donc nécessairement A(ry,;) = 0 et 7, est racine de A. Par la
proposition précédente, il existe alors C' € K[X] tel que A(X) = (X —r,,;)C(X). Donc

P(X) = (X —r)(X —ry) o (X =1 )(X =7y 11)O(X).

Ce qui montre H(k + 1).
Donc Vk € [1,m], H(k) est vraie. En particulier H(m) est vraie, ce qui termine la preuve. O

Proposition 3.5 (Degré et nombre de racines distinctes)
Un polynome de K, [X] qui possede n + 1 racines distinctes est le polynéme nul.
Démonstration. Soit P € K, [X]. Si P admet r, 75, ..., r,,,; comme racines distinctes, le résultat précédent donne
I’existence d’un polynéme @ tel que :
PX) = (X =r)(X —7rg) o (X = 7,11)Q(X).

Par propriétés du degré, cela donne deg(P) = n + 1 + deg(Q). Comme par hypothese, deg(P) < n, cela implique
que deg(Q) < —1, donc @ = 0, et donc P = 0. O]

Remarque. Par contraposée, tout polynéme non nul de degré inférieur ou égal a n admet au plus n racines
distinctes.

Remarque. En particulier, tout polyndéme qui admet une infinité de racines distinctes est le polynéme nul, résultat
qui nous sera tres utile dans les exercices.

Remarque. On a vu plus tét dans le chapitre qu’il était possible d’évaluer une égalité de polynémes en un point
x € K pour obtenir une égalité dans K. Ce résultat permet au contraire de « désévaluer » des relations dans K pour
se ramener a des relations en X.

Exercice 6. Soit (a,b,c) € R3. On suppose que Vz € [—1,1], ax? + bz + ¢ = 0. Montrer qu’alors a = b = c = 0.
Solution : On pose P(X) = aX? + bX + c. Alors Vz € [—1,1], P(z) = 0. Tous les réels de [—1,1] sont donc
racines du polynéme P, ce polynéme possede donc une infinité de racines distinctes. Donc P(X) = 0. Donc par
identification des coefficients, a = b = c¢ = 0.

Proposition 3.6 (Fonction polynomiale et retour au polynome)

Soit P € K[X]. Si Vz € K, P(x) = Zakxk, alors P(X) = Zaka.
k=0 k=0
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Démonstration. On pose Q(X) = P(X) —Z o, X*. Alors Yz € K, évaluer en x donne Q(z) = P(x)—
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Remarque. Autrement dit, si on connait une fonction polynomiale, on peut retrouver le polynéme associé.

3.3 Multiplicité d’une racine
Définition 3.7 (Ordre de multiplicité)
Soit P € K[X], p € N* et r € K. On dit que r est une racine d’ordre de multiplicité p du polynéme P
lorsque (X — )P divise P(X) et (X —7)P*! ne divise pas P(X).

Remarque. Autrement dit, r est une racine d’ordre de multiplicité p du polynéme P lorsqu’il existe un polynoéme

Q de K[X] tel que P(X) = (X —r)PQ(X) et Q(r) # 0.

Remarque. Attention! Pour montrer que r est une racine d’ordre p de P, il faut penser a vérifier la deuxiéme
condition : que (X — r)P™! ne divise pas P.

Exemple. 1 est une racine double du polynéme (X — 1)%(X — 2).

Proposition 3.8 (Ordres de multiplicité et divisibilité)

Soit P(X) € K[X], (nq,...,n,,) € (N*)™ et ry, .., r,,, des éléments deux a deux distincts de K. Le polynéme
(X —r)" (X —ry)" ... (X —r,,)" divise P(X) si et seulement si ry, .., r,,, sont des racines de P de
multiplicités respectives au moins ny, ..., n,,.

Proposition 3.9 (Nombre maximum de racines avec multiplicité)

Un polynoéme P € K,,[X] non nul admet au plus n racines, comptées avec leurs ordres de multiplicité.

Démonstration. Ces deux résultats se démontrent en adaptant directement les démonstrations effectuées dans le
cas des racines simples. O

3.4 Polynémes scindés
Définition 3.10 (Polynéme scindé)
On dit qu’un polynéme P € K[X] est scindé sur K s'il n’est pas constant et peut s’écrire comme un produit

de polynémes de degré 1, c’est-a-dire s’il existe A € K et (ay,...,q,,) € K" tels que P(X) = A H?:1<X — ;).

Proposition 3.11 (Somme et produit des racines d’un polynéme scindé)

Soit n € N* et soit P(X) = H?:l(X — ;) un polynéme de degré n, scindé et unitaire. Alors :
o le coefficient en X" ! de P(X) vaut —s, olt s = ay + ... + q,,
o le coefficient constant de P(X) vaut (—1)"p, ou p = a...qu,.

Autrement dit,
P(X)=X"—sX"1+ .+ (=1)"p.

Démonstration. 11 suffit de développer I'expression factorisée et d’identifier les coefficients pour s’en convaincre. [l



Remarque. s correspond a la somme des racines de P (comptées avec multiplicité), p a leur produit.

Remarque. Dans le cas d'un polynéme non-unitaire, il suffit d’écrire P(X) = HZ": (X —a;), ot A # 0 désigne
son coefficient dominant, et on trouve P(X) = X\ (X" — sX" ! + ... 4+ (—1)"p).

Exemple. Dans le cas particulier d'un polynoémes unitaire de degré 2, de racines a; et a5, on a donc :

P(X)=X?—(ay + @)X + aja,.

4 Dérivation de polynémes

4.1 Définition et calculs

Définition 4.1 (Polynéme dérivé)

n
Soit P(X Z o, X* € K[X]. On appelle polyndme dérivé de P le polynome P’ (X) = Z koy, XF1L,

Exemple. Si P(X)=4X?+3X + 1, alors P'(X) = 8X + 3.

n—1
Remarque. Le changement d’indice j = k — 1 donne aussi P’( Z J+ 1o P
=0

<.

Remarque. Cette définition coincide avec la fonction dérivée d’une fonction polynomiale définie et a valeurs dans
R. Attention, on n’a par contre pas de notion de dérivation pour une fonction polynomiale définie sur C.

Remarque. Il n’y a pas de condition d’existence du polynéme dérivé, au contraire d’une fonction dérivée.

Remarque. Comme dans le cas des fonctions, on peut définir par récurrence des polyndmes dérivés successifs :
pour tout j € N*, si PY) est un polynome de K[X], alors PUY est le polynéme dérivé de PY), avec la convention
PO —p

Proposition 4.2 (Opérations sur les polyndémes dérivés)

Soit (P,Q) € K[X]2 et A€ K, AP+ Q) = AP’ +Q et (PQ) =P'Q+Q'P.

Démonstration. On pose P(X) = ZZ:O X et Q(X) = ZZL:O B X"

e On suppose que n = m. Alors (AP + Q)(X) = ZZLO()\O% + Br) X + ZZZmH Ao, X*, donc :

(AP+Q)'(X) = > k(Aay+B) X* 1+ Z Fay XF1 = )\Zka Xk 1+Zk5 XF = AP/(X)+Q' (X),

m
k=1 k=m+1

m+n k m+n—1 Jj+1
o Pour le produit, (PQ)(X) = Z (Z alﬂk_i) Xk donc (PQ)'(X) = Z ((j—i— 1)Zaiﬁj+1_i> X
=0

k=0 \i=0 =0
m+n—1 J J ’
Pas il P/(0Q08) + Q020 = 3o (326 Vot 3 euli 4 D) 0
3=0 i=0 i=0
Pour montrer I'égalité des polynomes, il suffit de montrer ’égalité de leurs coefficients. Soit j € [0, m +n —1],

J J+1
Z (i + D)1 8- l+Za (J—i+1)B,_ ZH—Zkakﬁj k+1+2a (j—i+1)B;_;;1 en posant k =i+ 1
=0 k=1 =0

J+1 J+1

= Z kakﬂj_k_H + Z a@(] —1 + 1>/6j—’i+1
k=0 =0



j+1
= Z B (+ (G —k+1))
k=0
1

=(+1) Z B i1
k=0

O

k
k=0
sera détaillée dans le prochain chapitre, pour dans le cas des dérivées de fonctions.

Remarque. Ces formules permettent de montrer la formule de Leibniz : (PQ)™ = (n) PR Q(=k) Sa preuve

Proposition 4.3 (Degré du polynoéme dérivé)

Soit P(X) € K[X]. Si deg(P) > 1, alors deg(P’) = deg(P) — 1. Sinon, P’(X) = 0 donc deg(P’) = —oc.

Démonstration. On pose n = deg( ). Si n <0, Pest un polynéme constant, donc P’ (X) = 0 et deg(P’) = —oc.

T
L

Sinon, on peut écrire P(X) = Zaka € K[X] avec a,, # 0. En dérivant, P'(X) = » (j+ 1)ay, 1 X7, et le

o

.

coefficient du terme en X" vaut na,, # 0. Donc deg(P’) =n — 1. O

Proposition 4.4 (Expression des polynémes dérivés successifs)

Soit P(X Zaka € K[X] de degré n. Alors,
Vk € [0,n], deg(P*) =n —k, et PF(X) =" G Z'k),ainf’f et Vi >n+1, PR (X) =0.
— (1 — k)!
i=k
Remarque. (if'k) =(—k+1)x..x(i—1) x4, et ce produit contient i — (i —k + 1) + 1 = k termes.

Démonstration. On montre la premiére partie par récurrence : soit k € [0, n], on pose

n .' ‘
H(k): « deg(P("?)) =n—=~Fket P<k)(X) = Zﬁai*}(l_k ,.
imke \LTR)

P = P il est donc de degré n =n —

a, X0 = Za Xt = . Donc H(0) est vraie.

Soit k € [0,n — 1], on suppose que H (k) est vraie. jAlors, deg( P®)) =n— k > 1 donc deg(P(k“>) =n—k—1=

n— (k+1). De plus, P (X) = Z #aiX“k, relation qu’on peut dériver (le terme constant se dérive en 0) :
i

i=k (i —Fk)!
S ! , & il ‘
PRD(X) =0+ 27(1 — K)o, X1 = X (kD)
i—zk;-l (i —k)! i_zk;_l (i —(k+ 1)

Donc H(k + 1) est vraie. On a donc montré que Vk € [0,n], H(k) est vraie.
On en déduit en particulier que P™(X) = nla,, est un polynéme constant. Donc Vk >n + 1, P®(X)=0. O

4.2 Formule de Taylor et conséquences

Proposition 4.5 (Formule de Taylor)

n. pk)
Si P est un polynéme de degré n, alors Va € K, P(X) = Z (a) (X —a)k.
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Démonstration. On commence par le cas a = 0, pour lequel on déduit de la formule de dérivation que : Vk € [0, n],

n, pk)
PH(0) = (lgf;!ak()k_k = klay,. On a donc bien P(X) = Z k:'(0>Xk'
k=0 :

Pour le cas général d’'un a quelconque, on applique ce résultat au polynéme Q(Y) = P(Y + a), d’indéterminée
Y=X—a: ®)
~QMW(0)
Y)= —YF".
QY) ; o

Dériver k fois la relation Q(Y') = P(Y +a) donne ensuite Q¥ (Y) = P*)(Y 4 a) et en particulier Q¥ (0) = P*)(a).

On obtient donc : .
QWI(0) ., _ = PP(a)
k! k!

PX) = Q) =Y
k=0

Exemple. Soit P(X) = X2+ 3X +5. Alors P’(X) = 2X + 3, P”(X) = 2 et pour a = 1, on obtient :
) 2
P(X):9+I(X—1)+§(X—1)2:9+5(X—1)+(X—1)2.

Proposition 4.6 (Multiplicité et dérivées successives)

Soit P un polynéme de K[X] non nul, » € K et p un entier naturel non nul. Le scalaire r est une racine
d’ordre p du polynéme P si et seulement si Yk € [0,p — 1], P¥)(r) = 0 et PP)(r) # 0.

Démonstration. Soit n = deg(P). On applique la formule de Taylor en r :

" (1) (1 ®) (1 (n)
P(X)=P(r)+ P (r)(X—r)+ PQE >(X—7")2+--~+P(pl()!)(X—r)p1—|—Pp!<)(X—r)p+---+Pn!<)(X—r)”.
« On suppose que Vk € [0,p — 1], P®(r) = 0 et PP)(r) # 0. Alors
B o P(p)(r) P(p+1)(r) . Pn) (r) _ pyn—p
Px) = (X = (T4 T e T ),

QX)

donc (X —r)P divise P(X). De plus, Q(r) = % # 0, donc X —r ne divise pas Q(X). Donc (X —r)P*! ne
divise pas P(X). Donc r est une racine d’ordre p de P(X).

o On suppose maintenant que r est une racine d’ordre p de P(X). Alors (X — r)P divise P(X). Donc le reste
R(X) de la division euclidienne de P(X) par (X —7)P est nul. Il faut donc déterminer ce reste. Par la formule
de Taylor et 'unicité de la division euclidienne,

P’ (r)
2!

R(X) = P(r)+ P'(r)(X — 1) + (X — )2 gog )

(qui est bien de degré strictement inférieur & p = deg((X — r)P)). Donc

P// <r>
2!

2 P<p_1)<7"> p—1
(X —7)2 4+ =1 (X =) =0,

P(r)+ P (r)(X—r)+

ce qui donne en composant a droite par X +r, P(r) + P’ (r)X + #XQ + -+ P((;j)(r) XP~1 =0, et donc

i
par identification des coefficients, Vk € [0,p — 1], P®)(r) = 0.
Il ne reste plus qu’a montrer que PP (1) # 0. On le montre par I'absurde : supposons P)(r) = 0. Les calculs

précédents nous donnent qu’alors (X — r)P*! divise P, et donc 7 est une racine d’ordre au moins p + 1 :
absurde. Donc PP)(r) # 0.
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Exercice 7. Soit P(X) = X% —2X3 + 3X? — 4X + 2. Montrer que 1 est racine et déterminer son ordre de
multiplicité.

Solution : P(1) =1—2+3—4+2 =0, donc 1 est racine.

P/(X)=4X3—-6X%2+6X —4,donc P'(1)=4—6+6—4=0, donc 1 est racine d’ordre au moins 2.
P”(X)=12X% — 12X + 6, donc P”(1) = 12— 12+ 6 = 6 # 0, donc 1 est racine d’ordre 2 de P.

Rmgq : si on avait continué le calcul, P®(X) = 24X — 12 et P (X) = 24 donc P®® (X) = 0. Mais ce n’est pas
pour autant que 1 est d’ordre de multiplicité 5.

Proposition 4.7 (Ordre de multiplicité et racines des dérivées)
Soit r est une racine d’ordre p > 1 du polynéme P, alors :
e 7 est une racine d’ordre p — 1 de P’,

« pour tout j € [0,p — 1], r est une racine d’ordre p — j de P/

Démonstration. C’est une conséquence directe du résultat précédent. O

5 Polynomes irréductibles et factorisation
5.1 Factorisations dans C[X]
Proposition 5.1 (Théoreme de d’Alembert-Gauss)

Tout polynéme de C[X] non constant (donc de degré supérieur ou égal & un) admet au moins une racine

dans C.

Démonstration. Admis. O

Remarque. Les seuls polynomes irréductibles (polynomes P non constants et dont les seuls diviseurs sont les \ et
les AP pour A\ € K*) de C[X] sont donc les polynémes de degré 1.

Proposition 5.2 (Décomposition en facteurs irréductibles dans C)

m

Tout polynéme P € C[X]| de degré n et de coefficient dominant «,, peut s’écrire P(X) = «,, H —7p,)P
k=1

avec 1, € C des racines distinctes de P, p, € N* leurs ordres de multiplicité, et Zk: P =1

m
Démonstration. Soit n € N, on pose H(n) : « Si deg(P) = n, H —r,)PE avec Zpk =n
k=1 k=1

o Soit P(X) un polynéme de degré 0. Alors Ja € C tel que P(X) = a. Donc H(0) est vraie.

o Soit n € N fixé, on suppose que H(n) est vrai. Soit P un polynéme de C[X] de degré n+ 1. Par le théoréme de
d’Alembert-Gauss, Padmet une racine r, et est donc divisible par (X —7) : on peut écrire P(X) = (X—7)Q(X),
avec deg(Q) = n. Il suffit d’appliquer H(n) a @Q et d’observer que P et @ ont le méme coefficient dominant
pour conclure que H(n + 1) est vrai.

Cela termine la preuve. O
Remarque. Autrement dit, tout polynéme non constant de C[X] est scindé.

Exercice 8. Factoriser dans C[X] le polynome P(X) = X3 + X.
Solution : Une factorisation directe donne P(X) = X(X? +1) = X (X —4)(X +1).

12



Exercice 9. Soit n € N*. Factoriser 2X™ — 2 dans C[X].
n—1
Solution : Les racines de ce polynéme sont les racines n-iemes de 'unité, donc 2X" —2 = 2 H(X — e ).

k=0

5.2 Factorisations dans R[X]
Proposition 5.3 (Racines conjuguées)
Soit z un nombre complexe, et P un polyndéme de R[X]. Si z est racine du polynéme P, alors Z est également

racine de P, avec le méme ordre de multiplicité.

Démonstration. Soit P(X) = ZZ:O o, X* avec Vk € [0,n], oy, € R. Comme z est racine de P, 0 = ZZ:O a,2F. Par
passage au conjugué, comme oy, = &, (puisque P est a coefficients réels) on obtient :

0= iﬁk-zk = iakék = P(2).
k=0

k=0

Donc z est également racine de P. Pour conclure en ce qui concerne l'ordre de multiplicité, il suffit de refaire la
méme opération sur les dérivées de P, qui sont également des polynoémes & coefficients réels. O

Proposition 5.4 (Décomposition en facteurs irréductibles dans R)

Tout polynéme de R[X] peut s’écrire comme produit d’un réel, de polynémes & coefficients réels de degré 1
et de polynomes a coefficients réels de degré 2 n’ayant pas de racine réelle.

Démonstration. On utilise la décomposition de P dans C[X] : P(X) = a,, [[}"_, (X —7}), ott les 7, sont des racines
réelles ou complexes de P. Comme P € R[X], on a «,, € R. Si les 7, sont tous réels, la décomposition est encore
valable dans R[X]. Il reste donc & traiter le cas ou ’on rencontre Tk, € C \ R. Dans ce cas, par la proposition
précédente, T, est également racine de P, avec le méme ordre de multiplicité j. On simplifie alors tous les termes
contenant ces deux racines :

(X — Tk())j(X B m)] - ((X B rko)(X B K))] - (X2 o X(Tko + W) + Tkom)j - <X2 N 2Re(rko)X + |Tko|2>j ’

qui est bien dans R[X] et sans racine réelle. On procede de méme pour toutes les racines complexes, ce qui permet
de conclure. ]

Remarque. Les polynémes irréductibles de R[X] sont donc :
e les polynomes de degré 1;

¢ les polynoémes de degré 2 et de discriminant strictement négatif.
Exercice 10. Factoriser dans R[X] le polynéme P(X) = X3 + X.

Solution : On a P(X) = X(X2 +1). Or X2 + 1 a pour discriminant A = —4 < 0, donc X2 + 1 n’a donc pas de
racine réelle et la factorisation est terminée.

6 Fractions rationnelles
Définition 6.1 (Fraction rationnelle)

On appelle fraction rationnelle tout quotient de type @P ot (P, Q) € K[X]? avec Q # 0.
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Proposition 6.2 (Décomposition en éléments simples)

Soit R = @P une fraction rationnelle sur K. Si ) est scindé de racines simples distinctes A, .., A, alors il
existe une unique décomposition de la forme :

7 a.
X)=E(X i
ROX) = BX) + 3
avec E(X) € K[X] et Vi € [1,7], a; € K.

Démonstration. Admis O

Remarque. Dans le cas ou le polynéme au dénominateur aurait des racines multiples ou ne serait pas scindé, la
forme cherchée pour la décomposition est plus complexe et sera fournie par 1’exercice.

CXP 43X +1

X2 -1

Solution : Comme X2 —1 = (X — 1)(X + 1), on est bien dans le cas d’un dénominateur scindé a racines simples.
Comme deg(X?3 + 3X + 1) > deg(X? — 1), on commence par poser la division euclidienne associée :

Exercice 11. Décomposer en éléments simples la fraction R(X)

X3+3X +1=X(X?2—-1)+4X +1, avec deg(4X +1) =1 < 2 =deg(X?—1).

Donc R(X) = X + (Xfﬁﬁ. Par décomposition des fractions rationnelles, il existe a et b deux réels tels que :
41X +1 _a i b
(X-1D)(X+1) X—-1 X+1
Tout multiplier par X — 1 donne 4;((le1 =a+ b())é:ll), ce qui évalué en 1 donne a son tour % =a+0, donc a = g
De méme, tout multiplier par X + 1 donne 4))((%11 = a(;{jll) + b, ce qui évalué en —1 donne :—g =0-+bdonc b= %

La décomposition cherchée est donc :

5 3
R(X):X+2(X—1) Tox )

Remarque. Dans le cas de décompositions plus complexes, on peut aussi utiliser des limites en 400 ou ’évaluation
en d’autres valeurs particulieres pour déterminer les valeurs des constantes.

S4+3r+1
Exercice 12. Déterminer une primitive de f : z — % sur |1, +o0].
x J—
3 5 1 3 1
Solution : On a montré que VY €1, +oo[, f(z) =z + 1) + 211 =x+ 271 + 9o ine primitive

2

5 3
sur 1, 4+o00[ est donc F': z % + §ln(|a: —1]) + §1n(|x +1]).
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