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Dans tout ce chapitre, on notera 𝑛 un entier naturel et 𝕂 l’un des ensembles ℝ ou ℂ.

1 Généralités sur les polynômes

1.1 Définitions

Définition 1.1 (Polynôme, coefficients)

Un polynôme d’indéterminée 𝑋, à coefficients dans 𝕂 est une expression pouvant s’écrire sous la forme

𝑃(𝑋) =
𝑛

∑
𝑘=0

𝛼𝑘𝑋𝑘 = 𝛼0 + 𝛼1𝑋 + ⋯ + 𝛼𝑛𝑋𝑛,

(avec la convention 𝑋0 = 1), où 𝑛 ∈ ℕ et ∀𝑘 ∈ [[0, 𝑛]], 𝛼𝑘 ∈ 𝕂.
Les 𝛼𝑘 s’appellent les coefficients du polynôme 𝑃. On note 𝕂[𝑋] l’ensemble des polynômes d’indéterminée 
𝑋 à coefficients dans 𝕂.

Remarque. En particulier :

• Si tous les coefficients de 𝑃 sont nuls, 𝑃 est le polynôme nul. On note 𝑃(𝑋) = 0.

• Si pour tout 𝑘 ∈ [[1, 𝑛]], 𝛼𝑘 = 0, 𝑃 est un polynôme constant.

• Deux polynômes sont égaux si tous leurs coefficients sont égaux.

Définition 1.2 (Somme de polynômes)

Soit 𝑃(𝑋) =
𝑛

∑
𝑘=0

𝛼𝑘𝑋𝑘 et 𝑄(𝑋) =
𝑚

∑
𝑘=0

𝛽𝑘𝑋𝑘 deux polynômes de 𝕂[𝑋], avec 𝑛 ⩾ 𝑚. Alors :

(𝑃 + 𝑄)(𝑋) =
𝑚

∑
𝑘=0

(𝛼𝑘 + 𝛽𝑘)𝑋𝑘 +
𝑛

∑
𝑘=𝑚+1

𝛼𝑘𝑋𝑘.

Remarque. Si 𝑚 ⩾ 𝑛, il suffit d’intervertir les rôles.

Définition 1.3 (Produit de polynômes)

Soit 𝑃(𝑋) =
𝑛

∑
𝑘=0

𝛼𝑘𝑋𝑘 et 𝑄(𝑋) =
𝑚

∑
𝑘=0

𝛽𝑘𝑋𝑘 deux polynômes de 𝕂[𝑋]. Alors :

(𝑃𝑄)(𝑋) =
𝑚+𝑛

∑
𝑘=0

(𝛼0𝛽𝑘 + 𝛼1𝛽𝑘−1 + … + 𝛼𝑘𝛽0)𝑋𝑘 =
𝑚+𝑛

∑
𝑘=0

(
𝑘

∑
𝑖=0

𝛼𝑖𝛽𝑘−𝑖) 𝑋𝑘.

Remarque. Ce résultat permet aussi de multiplier un polynôme par un scalaire (cas particulier du polynôme 
constant) : ∀𝜆 ∈ 𝕂, (𝜆𝑃)(𝑋) = ∑𝑛

𝑘=0 𝜆𝛼𝑘𝑋𝑘.

Remarque. Ces règles de calcul permettent de conserver une bonne partie des formules valables sur 𝕂, et en 
particulier la formule du binôme de Newton.

Exercice 1. On pose 𝑃(𝑋) = 5𝑋2 + 3𝑋 + 2, 𝑄(𝑋) = 𝑋2 + 1. Calculer (𝑃 + 𝑄)(𝑋) et (𝑃𝑄)(𝑋).
Solution : (𝑃 + 𝑄)(𝑋) = 6𝑋2 + 3𝑋 + 3 = 3(2𝑋2 + 𝑋 + 1) et (𝑃𝑄)(𝑋) = 5𝑋4 + 3𝑋3 + 7𝑋2 + 3𝑋 + 2.

Exercice 2. Déterminer un réel 𝑎 tel que (𝑋 − 2)(𝑋 − 5) = 𝑋2 + 𝑎𝑋 + 10.
Solution : On obtient en développant (𝑋 −2)(𝑋 −5) = 𝑋2 −2𝑋 −5𝑋 +10 = 𝑋2 −7𝑋 +10. Donc par identification 
des coefficients, poser 𝑎 = −7 convient.
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Définition 1.4 (Composition)

Soit 𝑃(𝑋) =
𝑛

∑
𝑘=0

𝛼𝑘𝑋𝑘 et 𝑄(𝑋) deux polynômes de 𝕂[𝑋]. Alors : (𝑃 ∘ 𝑄)(𝑋) =
𝑛

∑
𝑘=0

𝛼𝑘(𝑄(𝑋))𝑘.

Exemple. Si 𝑃(𝑋) = 5𝑋2 + 3𝑋 + 2, alors 𝑃(𝑋2) = 5𝑋4 + 3𝑋2 + 2.

1.2 Degré et coefficient dominant

Définition 1.5 (Degré, coefficient dominant, polynôme unitaire)

Soit 𝑃(𝑋) = ∑𝑛
𝑘=0 𝛼𝑘𝑋𝑘 un polynôme de 𝕂[𝑋] tel que 𝛼𝑛 ≠ 0. L’entier 𝑛 est appelé degré du polynôme 𝑃, 

et 𝛼𝑛 est appelé coefficient dominant de 𝑃.
Un polynôme de coefficient dominant 1 est dit unitaire.
On note deg(𝑃 ) = 𝑛, et 𝕂𝑛[𝑋] désigne l’ensemble des polynômes de degré inférieur ou égal à 𝑛.

Remarque. Par convention le degré du polynôme nul est donné par : deg(0) = −∞. Cela signifie notamment que 
𝕂𝑛[𝑋] contient le polynôme nul.

Remarque. En particulier, 𝕂0[𝑋] = 𝕂.

Exercice 3. Soit (𝑎, 𝑏, 𝑐) ∈ ℝ3, déterminer le degré de 𝑃(𝑋) = 𝑎𝑋2 + 𝑏𝑋 + 𝑐.
Solution :

• Si 𝑎 ≠ 0, deg(𝑃 ) = 2.

• Si 𝑎 = 0 et 𝑏 ≠ 0, deg(𝑃 ) = 1.

• Si 𝑎 = 𝑏 = 0 et 𝑐 ≠ 0, deg(𝑃 ) = 0.

• Si 𝑎 = 𝑏 = 𝑐 = 0, deg(𝑃 ) = −∞.

Proposition 1.6 (Degré de la somme et du produit)

Soit 𝑃 et 𝑄 deux polynômes de 𝕂[𝑋],

deg(𝑃 + 𝑄) ⩽ max (deg(𝑃 ), deg(𝑄))  avec égalité en particulier si deg(𝑃 ) ≠ deg(𝑄),

deg(𝑃𝑄) = deg(𝑃 ) + deg(𝑄) et en particulier ∀𝛼 ∈ 𝕂∗, deg(𝛼𝑃) = deg(𝑃 ).

Remarque. La formule de degré de la somme n’est pas une égalité dans le cas général. En effet, si 𝑃(𝑋) = 2𝑋2

et 𝑄(𝑋) = −2𝑋2 + 3𝑋, les termes en 𝑋2 se simplifient et deg(𝑃 + 𝑄) = 1 < 2.

Démonstration. Si 𝑃(𝑋) = 0 ou 𝑄(𝑋) = 0, les résultats sont immédiats. Sinon, il existe des coefficients (𝛼𝑖) ∈ 𝕂𝑛+1

et (𝛽𝑖) ∈ 𝕂𝑚+1, avec 𝛼𝑛 ≠ 0 et 𝛽𝑚 ≠ 0, tels que 𝑃(𝑋) =
𝑛

∑
𝑘=0

𝛼𝑘𝑋𝑘 et 𝑄(𝑋) =
𝑚

∑
𝑘=0

𝛽𝑘𝑋𝑘.

• Cas de la somme : on peut supposer que 𝑛 ⩾ 𝑚 (l’autre cas se traite en intervertissant les polynômes). Alors 

(𝑃 + 𝑄)(𝑋) =
𝑚

∑
𝑘=0

(𝛼𝑘 + 𝛽𝑘)𝑋𝑘 +
𝑛

∑
𝑘=𝑚+1

𝛼𝑘𝑋𝑘. La plus grande puissance intervenant dans cette expression 

est 𝑛, donc deg(𝑃 + 𝑄) ⩽ 𝑛 = max(deg(𝑃 ), deg(𝑄)).
Pour le cas d’égalité, il faut de plus que le coefficient du terme en 𝑋𝑛 soit non nul. Dans le cas où 𝑛 ≠ 𝑚, ce 
coefficient vaut 𝛼𝑛 ≠ 0, donc il y a bien égalité.
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• Cas du produit : (𝑃𝑄)(𝑋) = (
𝑛

∑
𝑘=0

𝛼𝑘𝑋𝑘) (
𝑚

∑
𝑘=0

𝛽𝑘𝑋𝑘). Le terme de plus haut degré est 𝛼𝑛𝛽𝑚𝑋𝑛+𝑚. Or 

𝛼𝑛𝛽𝑚 ≠ 0 par produit de réels non nuls, donc deg(𝑃𝑄) = 𝑛 + 𝑚 = deg(𝑃 ) + deg(𝑄).

∎

Remarque. Le degré est très pratique pour manipuler les polynômes dont il n’est pas simple de déterminer les 
coefficients (par exemple quand ils sont sous forme factorisée parce que ça demanderait beaucoup de calculs).

Proposition 1.7 (Cas d’un produit nul)

Soit (𝑃 , 𝑄) ∈ (𝕂[𝑋])2, (𝑃𝑄)(𝑋) = 0 ⟺ 𝑃(𝑋) = 0 ou 𝑄(𝑋) = 0.

Démonstration. La réciproque est évidente, il suffit donc de vérifier le sens direct.
On suppose que que (𝑃𝑄)(𝑋) = 0. Par passage au degré, on obtient deg(𝑃 ) + deg(𝑄) = −∞. Si 𝑃(𝑋) ≠ 0
et 𝑄(𝑋) ≠ 0, on aurait deg(𝑃 ) + deg(𝑄) ∈ ℕ, ce qui est donc impossible. On en déduit que 𝑃(𝑋) = 0 ou 
𝑄(𝑋) = 0. ∎

Exercice 4. Pour quels (𝛼, 𝛽) ∈ ℝ2 a-t-on (𝛼𝑋 + 𝛽)(3𝑋2 + 6) = 0 ?
Solution : Soit (𝛼, 𝛽) ∈ ℝ2, on trouve par propriétés du produit puis identification des coefficients :

(𝛼𝑋 + 𝛽)(3𝑋2 + 6) = 0 ⟺ 𝛼𝑋 + 𝛽 = 0 ⟺ 𝛼 = 𝛽 = 0.

Donc les seuls (𝛼, 𝛽) qui conviennent sont (0, 0).

2 Division de polynômes

Définition 2.1 (Multiple, diviseur)

Soit 𝐴 et 𝐵 deux polynômes de 𝕂[𝑋], avec 𝐵 non nul. On dit que le polynôme 𝐵 est un diviseur du 
polynôme 𝐴, ou que le polynôme 𝐴 est un multiple du polynôme 𝐵, lorsqu’il existe un polynôme 𝑄 de 
𝕂[𝑋] tel que 𝐴(𝑋) = 𝐵(𝑋)𝑄(𝑋).

Exemple. 𝑋 + 1 et 𝑋 − 1 sont des diviseurs de 𝑋2 − 1.

Proposition 2.2 (Division euclidienne)

Soit 𝐴 et 𝐵 deux polynômes de 𝕂[𝑋], avec 𝐵 non nul. Alors il existe un unique couple de polynômes (𝑄, 𝑅)
de 𝕂[𝑋] qui vérifient 𝐴(𝑋) = 𝐵(𝑋)𝑄(𝑋) + 𝑅(𝑋) avec deg(𝑅) < deg(𝐵).
On appelle 𝑄 le quotient et 𝑅 le reste de la division euclidienne de 𝐴 par 𝐵.

Remarque. Autrement dit, 𝐵 est un diviseur de 𝐴 lorsque le reste de la division de 𝐴 par 𝐵 est le polynôme nul.

Exemple. La division euclidienne de 𝑋2 + 𝑋 + 1 par 𝑋 s’écrit 𝑋2 + 𝑋 + 1 = 𝑋(𝑋 + 1) + 1, le quotient est donc 
𝑋 + 1 et le reste 1 est de degré 0 < 1.

Démonstration. On fait la preuve en deux temps :

• Preuve de l’existence. On pose 𝐵(𝑋) =
𝑝

∑
𝑘=0

𝑏𝑘𝑋𝑘, et 𝐴𝑛(𝑋) =
𝑛

∑
𝑘=0

𝑎𝑘𝑋𝑘. (On introduit l’indice 𝑛 pour 

marquer la connaissance du degré, et on définit 𝐴−∞ comme le polynôme nul). On va montrer par récurrence 
forte sur 𝑛 ∈ ℕ ∪ {−∞} la propriété suivante :

𝑃(𝑛) ∶ «∃(𝑄𝑛, 𝑅𝑛) ∈ 𝕂[𝑋]2 tels que 𝐴𝑛 = 𝑄𝑛𝐵 + 𝑅𝑛 et deg(𝑅𝑛) < deg(𝐵)».
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Initialisation : pour tout 𝑛 < deg(𝐵), (il existe au moins un tel 𝑛 car 𝐵 est non nul), 𝐴𝑛 = 0𝐵 + 𝐴𝑛 et 
𝑄𝑛 = 0 et 𝑅𝑛 = 𝐴𝑛 satisfont les conditions du théorème. Donc 𝑃(𝑛) est vraie.
Soit 𝑛 ⩾ deg(𝐵) − 1 un entier naturel fixé, on suppose que 𝑃(𝑘) est vraie pour tout 𝑘 ⩽ 𝑛. Soit 𝐴𝑛+1 un 
polynôme de degré 𝑛 + 1. On considère le polynôme

𝑆𝑛(𝑋) = 𝐴𝑛+1(𝑋) −
𝑎𝑛+1
𝑏𝑝

𝐵(𝑋)𝑋𝑛+1−𝑝.

Ce polynôme est de degré inférieur ou égal à 𝑛 par construction (le coefficient 𝑎𝑛+1
𝑏𝑝

 a été choisi pour que 
les termes en 𝑋𝑛+1 s’annulent). Il existe donc, par hypothèse de récurrence, des polynômes 𝑄 et 𝑅 tels que 
𝑆𝑛(𝑋) = 𝑄(𝑋)𝐵(𝑋) + 𝑅(𝑋) et deg(𝑅) < deg(𝐵). On a alors :

𝐴𝑛+1(𝑋) =
𝑎𝑛+1
𝑏𝑝

𝐵(𝑋)𝑋𝑛+1−𝑝 + 𝑄(𝑋)𝐵(𝑋) + 𝑅(𝑋)

= (
𝑎𝑛+1
𝑏𝑝

𝑋𝑛+1−𝑝 + 𝑄(𝑋)) 𝐵(𝑋) + 𝑅(𝑋).

Choisir 𝑄𝑛+1(𝑋) = 𝑎𝑛+1
𝑏𝑝

𝑋𝑛+1−𝑝 + 𝑄(𝑋) et 𝑅𝑛+1(𝑋) = 𝑅(𝑋) montre alors 𝑃(𝑛 + 1).
Cela termine la preuve de l’existence.

• Preuve de l’unicité. Supposons que (𝑄1, 𝑅1) et (𝑄2, 𝑅2) soient deux couples convenant : 𝐴 = 𝐵𝑄1 + 𝑅1 et 
𝐴 = 𝐵𝑄2 + 𝑅2, avec deg(𝑅1) < deg(𝐵) et deg(𝑅2) < deg(𝐵). Donc 𝐵(𝑄1 − 𝑄2) = 𝑅2 − 𝑅1 par soustraction. 
Les propriétés du degré donnent alors :

deg(𝐵) + deg(𝑄1 − 𝑄2) = deg(𝐵(𝑄1 − 𝑄2)) = deg(𝑅2 − 𝑅1) ⩽ max(deg(𝑅1), deg(𝑅2)) < deg(𝐵).

Donc deg(𝑄1 − 𝑄2) < 0. Or le degré est à valeurs dans ℕ ∪ {−∞}. Donc deg(𝑄1 − 𝑄2) = −∞ et 𝑄1 = 𝑄2. 
Donc 𝑅1 = 𝑅2, ce qui termine la preuve de l’unicité.

∎

Exercice 5. Effectuer la division euclidienne de 𝑋4 + 3𝑋3 + 3𝑋 + 2 par 𝑋2 + 1.
Solution :

𝑋4 +3𝑋3 +3𝑋 +2 𝑋2 + 1
−𝑋4 −𝑋2 𝑋2 + 3𝑋 − 1

3𝑋3 −𝑋2 +3𝑋 +2
−3𝑋3 −3𝑋

−𝑋2 +2
𝑋2 +1

3

Le quotient est donc 𝑋2 + 3𝑋 − 1, et le reste 3 vérifie deg(3) = 0 < 2 = deg(𝑋2 + 1).

Proposition 2.3 (Degré du quotient)

Soit (𝐴, 𝐵) ∈ 𝕂[𝑋]2 avec 𝐵 ≠ 0, et 𝑄 le quotient de la division euclidienne de 𝐴 par 𝐵. Si deg(𝐴) ⩾ deg(𝐵), 
alors deg(𝑄) = deg(𝐴) − deg(𝐵).

Démonstration. Par théorème de division euclidienne, il existe un unique couple de polynômes (𝑄, 𝑅) tels que 
𝐴 = 𝐵𝑄 + 𝑅 et deg(𝐵) > deg(𝑅).
Donc 𝐵𝑄 = 𝐴 − 𝑅 et par propriétés du degré deg(𝐵) + deg(𝑄) = deg(𝐵𝑄) = deg(𝐴 − 𝑅) = deg(𝐴), où la 
dernière égalité découle de la condition deg(𝐴) > deg(𝑅) (puisque deg(𝐴) ⩾ deg(𝐵) > deg(𝑅)). Ce qui termine la 
preuve. ∎
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3 Fonctions polynomiales et racines

3.1 Fonction polynomiale

Définition 3.1 (Fonction polynomiale)

Soit 𝑃(𝑋) =
𝑛

∑
𝑘=0

𝛼𝑘𝑋𝑘 ∈ 𝕂[𝑋]. On appelle fonction polynomiale associée à 𝑃 la fonction 𝑝, définie de 𝕂

dans 𝕂 par : ∀𝑥 ∈ 𝕂, 𝑝(𝑥) =
𝑛

∑
𝑘=0

𝛼𝑘𝑥𝑘.

Remarque. 𝑥 est un nombre réel ou complexe, mais 𝑋 n’en est pas un, c’est une indéterminée. On dit qu’on
évalue le polynôme 𝑃(𝑋) en 𝑥.

Remarque. Les formules de combinaison linéaire et produit de fonctions polynomiales sont compatibles avec 
celles sur les polynômes.

Remarque. Pour calculer la valeur en 𝑞 ∈ 𝕂 de 𝑃(𝑋) = ∑𝑛
𝑘=0 𝛼𝑘𝑋𝑘 = 𝛼0 + 𝛼1𝑋 + … + 𝛼𝑛𝑋𝑛, on utilise 

habituellement l’algorithme de Horner, consistant à calculer :

𝑃(𝑞) = 𝛼0 + 𝑞(𝛼1 + 𝑞(𝛼2 + … + (𝛼𝑛−2 + 𝑞(𝛼𝑛−1 + 𝑞𝛼𝑛)))).

Cet algorithme nécessite beaucoup moins d’opérations que l’algorithme naïf qui calcule les puissances.

Exemple. Si 𝑃(𝑋) = 3𝑋2 + 5𝑋 + 3, l’algorithme de Horner donne 𝑃(𝑞) = 3 + 𝑞(5 + 3𝑞).

3.2 Racines

Définition 3.2 (Racine d’un polynôme)

Soit 𝑃 ∈ 𝕂[𝑋] et 𝑟 ∈ 𝕂. On dit que 𝑟 est une racine (ou un zéro) du polynôme 𝑃 si 𝑃(𝑟) = 0.

Remarque. Le polynôme nul a donc une infinité de racines.

Proposition 3.3 (Racines et divisibilité)

Soit 𝑃 ∈ 𝕂[𝑋] et 𝑟 ∈ 𝕂. Le scalaire 𝑟 est racine du polynôme 𝑃(𝑋) si et seulement si 𝑋 − 𝑟 divise 𝑃(𝑋).

Exemple. 1 est racine de 𝑋2 − 1, et donc 𝑋 − 1 divise 𝑋2 − 1.

Démonstration. Soit 𝑟 ∈ 𝕂 fixé, on effectue la division euclidienne de 𝑃(𝑋) par 𝑋 − 𝑟 : il existe deux uniques 
polynômes (𝑄, 𝑅) ∈ 𝕂[𝑋]2 tels que 𝑃(𝑋) = (𝑋 − 𝑟)𝑄(𝑋) + 𝑅(𝑋) et deg(𝑅) < 1. 𝑅 est un polynôme constant, il 
existe donc 𝜆 ∈ 𝕂 tel que 𝑅(𝑋) = 𝜆. En évaluant 𝑃 en 𝑟, on trouve 𝑃(𝑟) = 0 + 𝜆. Donc :

𝑃(𝑋) = (𝑋 − 𝑟)𝑄(𝑋) + 𝑃(𝑟).

On peut alors raisonner par équivalences :

𝑟 est racine de 𝑃 ⟺ 𝑃(𝑟) = 0
⟺ le reste de la division euclidienne de 𝑃(𝑋) par 𝑋 − 𝑟 est nul 
⟺ 𝑋 − 𝑟 divise 𝑃(𝑋)

∎

Remarque. Ce résultat se généralise aux fonctions polynomiales. On l’avait d’ailleurs déjà rencontré dans le 
chapitre sur les nombres complexes : si 𝑃 est une fonction polynomiale à coefficients complexes admettant 𝑎 ∈ ℂ
comme racine, alors on peut factoriser 𝑃(𝑧) par 𝑧 − 𝑎.
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Proposition 3.4 (Racines distinctes et divisibilité)

Soit 𝑃(𝑋) un polynôme de 𝕂[𝑋] et 𝑟1, 𝑟2, …, 𝑟𝑚 des éléments deux à deux distincts de 𝕂. Le polynôme 
(𝑋 − 𝑟1)(𝑋 − 𝑟2) … (𝑋 − 𝑟𝑚) divise 𝑃(𝑋) si et seulement si 𝑟1, 𝑟2, …, 𝑟𝑚 sont des racines de 𝑃(𝑋).

Démonstration. On suppose que (𝑋 − 𝑟1)(𝑋 − 𝑟2) … (𝑋 − 𝑟𝑚) divise 𝑃(𝑋). Alors ∃𝑄(𝑋) ∈ 𝕂[𝑋] tel que 𝑃(𝑋) =
(𝑋 − 𝑟1)(𝑋 − 𝑟2) … (𝑋 − 𝑟𝑚)𝑄(𝑋). Donc ∀𝑘 ∈ [[1, 𝑚]], 𝑃(𝑟𝑘) = 0, donc 𝑟1, 𝑟2, …, 𝑟𝑚 sont des racines de 𝑃(𝑋).
Réciproquement, on suppose que 𝑟1, 𝑟2, …, 𝑟𝑚 sont des racines deux à deux distinctes de 𝑃, et on pose ∀𝑘 ∈ [[1, 𝑚]], 
𝐻(𝑘) ∶ « (𝑋 − 𝑟1)(𝑋 − 𝑟2) … (𝑋 − 𝑟𝑘) divise 𝑃(𝑋) ».
L’initialisation est directe par la propriété précédente : 𝐻(1) est vraie.
Soit 𝑘 ∈ [[1, 𝑚 − 1]] un entier naturel fixé, on suppose que 𝐻(𝑘) est vraie : il existe 𝐴 ∈ 𝕂[𝑋] tel que

𝑃(𝑋) = (𝑋 − 𝑟1)(𝑋 − 𝑟2) … (𝑋 − 𝑟𝑘)𝐴(𝑋).

Comme 𝑘 + 1 ⩽ 𝑚, alors 𝑟𝑘+1 est racine de 𝑃 et 𝑃(𝑟𝑘+1) = 0. Mais comme les 𝑟𝑖 sont supposés distincts deux à 
deux (𝑟𝑘+1 − 𝑟1)(𝑟𝑘+1 − 𝑟2) … (𝑟𝑘+1 − 𝑟𝑘) ≠ 0. Donc nécessairement 𝐴(𝑟𝑘+1) = 0 et 𝑟𝑘+1 est racine de 𝐴. Par la 
proposition précédente, il existe alors 𝐶 ∈ 𝕂[𝑋] tel que 𝐴(𝑋) = (𝑋 − 𝑟𝑘+1)𝐶(𝑋). Donc

𝑃(𝑋) = (𝑋 − 𝑟1)(𝑋 − 𝑟2) … (𝑋 − 𝑟𝑘)(𝑋 − 𝑟𝑘+1)𝐶(𝑋).

Ce qui montre 𝐻(𝑘 + 1).
Donc ∀𝑘 ∈ [[1, 𝑚]], 𝐻(𝑘) est vraie. En particulier 𝐻(𝑚) est vraie, ce qui termine la preuve. ∎

Proposition 3.5 (Degré et nombre de racines distinctes)

Un polynôme de 𝕂𝑛[𝑋] qui possède 𝑛 + 1 racines distinctes est le polynôme nul.

Démonstration. Soit 𝑃 ∈ 𝕂𝑛[𝑋]. Si 𝑃 admet 𝑟1, 𝑟2, …, 𝑟𝑛+1 comme racines distinctes, le résultat précédent donne 
l’existence d’un polynôme 𝑄 tel que :

𝑃(𝑋) = (𝑋 − 𝑟1)(𝑋 − 𝑟2) … (𝑋 − 𝑟𝑛+1)𝑄(𝑋).

Par propriétés du degré, cela donne deg(𝑃 ) = 𝑛 + 1 + deg(𝑄). Comme par hypothèse, deg(𝑃 ) ⩽ 𝑛, cela implique 
que deg(𝑄) ⩽ −1, donc 𝑄 = 0, et donc 𝑃 = 0. ∎

Remarque. Par contraposée, tout polynôme non nul de degré inférieur ou égal à 𝑛 admet au plus 𝑛 racines 
distinctes.

Remarque. En particulier, tout polynôme qui admet une infinité de racines distinctes est le polynôme nul, résultat 
qui nous sera très utile dans les exercices.

Remarque. On a vu plus tôt dans le chapitre qu’il était possible d’évaluer une égalité de polynômes en un point 
𝑥 ∈ 𝕂 pour obtenir une égalité dans 𝕂. Ce résultat permet au contraire de « désévaluer » des relations dans 𝕂 pour 
se ramener à des relations en 𝑋.

Exercice 6. Soit (𝑎, 𝑏, 𝑐) ∈ ℝ3. On suppose que ∀𝑥 ∈ [−1, 1], 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. Montrer qu’alors 𝑎 = 𝑏 = 𝑐 = 0.
Solution : On pose 𝑃(𝑋) = 𝑎𝑋2 + 𝑏𝑋 + 𝑐. Alors ∀𝑥 ∈ [−1, 1], 𝑃(𝑥) =  0. Tous les réels de [−1, 1] sont donc 
racines du polynôme 𝑃, ce polynôme possède donc une infinité de racines distinctes. Donc 𝑃(𝑋) = 0. Donc par 
identification des coefficients, 𝑎 = 𝑏 = 𝑐 = 0.

Proposition 3.6 (Fonction polynomiale et retour au polynôme)

Soit 𝑃 ∈ 𝕂[𝑋]. Si ∀𝑥 ∈ 𝕂, 𝑃(𝑥) =
𝑛

∑
𝑘=0

𝛼𝑘𝑥𝑘, alors 𝑃(𝑋) =
𝑛

∑
𝑘=0

𝛼𝑘𝑋𝑘.
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Démonstration. On pose 𝑄(𝑋) = 𝑃(𝑋)−
𝑛

∑
𝑘=0

𝛼𝑘𝑋𝑘. Alors ∀𝑥 ∈ 𝕂, évaluer en 𝑥 donne 𝑄(𝑥) = 𝑃(𝑥)−
𝑛

∑
𝑘=0

𝛼𝑘𝑥𝑘 = 0.

𝑄 admet donc une infinité de racines distinctes (tous les éléments de 𝕂), donc 𝑄(𝑋) = 0, donc 𝑃(𝑋) =
𝑛

∑
𝑘=0

𝛼𝑘𝑋𝑘. ∎

Remarque. Autrement dit, si on connaît une fonction polynomiale, on peut retrouver le polynôme associé.

3.3 Multiplicité d’une racine

Définition 3.7 (Ordre de multiplicité)

Soit 𝑃 ∈ 𝕂[𝑋], 𝑝 ∈ ℕ∗ et 𝑟 ∈ 𝕂. On dit que 𝑟 est une racine d’ordre de multiplicité 𝑝 du polynôme 𝑃
lorsque (𝑋 − 𝑟)𝑝 divise 𝑃(𝑋) et (𝑋 − 𝑟)𝑝+1 ne divise pas 𝑃(𝑋).

Remarque. Autrement dit, 𝑟 est une racine d’ordre de multiplicité 𝑝 du polynôme 𝑃 lorsqu’il existe un polynôme 
𝑄 de 𝕂[𝑋] tel que 𝑃(𝑋) = (𝑋 − 𝑟)𝑝𝑄(𝑋) et 𝑄(𝑟) ≠ 0.

Remarque. Attention ! Pour montrer que 𝑟 est une racine d’ordre 𝑝 de 𝑃, il faut penser à vérifier la deuxième 
condition : que (𝑋 − 𝑟)𝑝+1 ne divise pas 𝑃.

Exemple. 1 est une racine double du polynôme (𝑋 − 1)2(𝑋 − 2).

Proposition 3.8 (Ordres de multiplicité et divisibilité)

Soit 𝑃(𝑋) ∈ 𝕂[𝑋], (𝑛1, …, 𝑛𝑚) ∈ (ℕ∗)𝑚 et 𝑟1, …, 𝑟𝑚 des éléments deux à deux distincts de 𝕂. Le polynôme 
(𝑋 − 𝑟1)𝑛1(𝑋 − 𝑟2)𝑛2 … (𝑋 − 𝑟𝑚)𝑛𝑚 divise 𝑃(𝑋) si et seulement si 𝑟1, …, 𝑟𝑚 sont des racines de 𝑃 de 
multiplicités respectives au moins 𝑛1, …, 𝑛𝑚.

Proposition 3.9 (Nombre maximum de racines avec multiplicité)

Un polynôme 𝑃 ∈ 𝕂𝑛[𝑋] non nul admet au plus 𝑛 racines, comptées avec leurs ordres de multiplicité.

Démonstration. Ces deux résultats se démontrent en adaptant directement les démonstrations effectuées dans le 
cas des racines simples. ∎

3.4 Polynômes scindés

Définition 3.10 (Polynôme scindé)

On dit qu’un polynôme 𝑃 ∈ 𝕂[𝑋] est scindé sur 𝕂 s’il n’est pas constant et peut s’écrire comme un produit 
de polynômes de degré 1, c’est-à-dire s’il existe 𝜆 ∈ 𝕂 et (𝛼1, …, 𝛼𝑛) ∈ 𝕂𝑛 tels que 𝑃(𝑋) = 𝜆 ∏𝑛

𝑖=1(𝑋 − 𝛼𝑖).

Proposition 3.11 (Somme et produit des racines d’un polynôme scindé)

Soit 𝑛 ∈ ℕ∗ et soit 𝑃(𝑋) = ∏𝑛
𝑖=1(𝑋 − 𝛼𝑖) un polynôme de degré 𝑛, scindé et unitaire. Alors :

• le coefficient en 𝑋𝑛−1 de 𝑃(𝑋) vaut −𝑠, où 𝑠 = 𝛼1 + … + 𝛼𝑛,

• le coefficient constant de 𝑃(𝑋) vaut (−1)𝑛𝑝, où 𝑝 = 𝛼1…𝛼𝑛.

Autrement dit,
𝑃(𝑋) = 𝑋𝑛 − 𝑠𝑋𝑛−1 + … + (−1)𝑛𝑝.

Démonstration. Il suffit de développer l’expression factorisée et d’identifier les coefficients pour s’en convaincre. ∎
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Remarque. 𝑠 correspond à la somme des racines de 𝑃 (comptées avec multiplicité), 𝑝 à leur produit.

Remarque. Dans le cas d’un polynôme non-unitaire, il suffit d’écrire 𝑃(𝑋) = 𝜆 ∏𝑛
𝑖=1(𝑋 − 𝛼𝑖), où 𝜆 ≠ 0 désigne 

son coefficient dominant, et on trouve 𝑃(𝑋) = 𝜆 (𝑋𝑛 − 𝑠𝑋𝑛−1 + … + (−1)𝑛𝑝).

Exemple. Dans le cas particulier d’un polynômes unitaire de degré 2, de racines 𝛼1 et 𝛼2, on a donc :

𝑃(𝑋) = 𝑋2 − (𝛼1 + 𝛼2)𝑋 + 𝛼1𝛼2.

4 Dérivation de polynômes

4.1 Définition et calculs

Définition 4.1 (Polynôme dérivé)

Soit 𝑃(𝑋) =
𝑛

∑
𝑘=0

𝛼𝑘𝑋𝑘 ∈ 𝕂[𝑋]. On appelle polynôme dérivé de 𝑃 le polynôme 𝑃 ′(𝑋) =
𝑛

∑
𝑘=1

𝑘𝛼𝑘𝑋𝑘−1.

Exemple. Si 𝑃(𝑋) = 4𝑋2 + 3𝑋 + 1, alors 𝑃 ′(𝑋) = 8𝑋 + 3.

Remarque. Le changement d’indice 𝑗 = 𝑘 − 1 donne aussi 𝑃 ′(𝑋) =
𝑛−1
∑
𝑗=0

(𝑗 + 1)𝛼𝑗+1𝑋𝑗.

Remarque. Cette définition coïncide avec la fonction dérivée d’une fonction polynomiale définie et à valeurs dans 
ℝ. Attention, on n’a par contre pas de notion de dérivation pour une fonction polynomiale définie sur ℂ.

Remarque. Il n’y a pas de condition d’existence du polynôme dérivé, au contraire d’une fonction dérivée.

Remarque. Comme dans le cas des fonctions, on peut définir par récurrence des polynômes dérivés successifs : 
pour tout 𝑗 ∈ ℕ∗, si 𝑃 (𝑗) est un polynôme de 𝕂[𝑋], alors 𝑃 (𝑗+1) est le polynôme dérivé de 𝑃 (𝑗), avec la convention 
𝑃 (0) = 𝑃.

Proposition 4.2 (Opérations sur les polynômes dérivés)

Soit (𝑃 , 𝑄) ∈ 𝕂[𝑋]2 et 𝜆 ∈ 𝕂, (𝜆𝑃 + 𝑄)′ = 𝜆𝑃 ′ + 𝑄′ et (𝑃𝑄)′ = 𝑃 ′𝑄 + 𝑄′𝑃.

Démonstration. On pose 𝑃(𝑋) = ∑𝑛
𝑘=0 𝛼𝑘𝑋𝑘 et 𝑄(𝑋) = ∑𝑚

𝑘=0 𝛽𝑘𝑋𝑘.

• On suppose que 𝑛 ⩾ 𝑚. Alors (𝜆𝑃 + 𝑄)(𝑋) = ∑𝑚
𝑘=0(𝜆𝛼𝑘 + 𝛽𝑘)𝑋𝑘 + ∑𝑛

𝑘=𝑚+1 𝜆𝛼𝑘𝑋𝑘, donc :

(𝜆𝑃 +𝑄)′(𝑋) =
𝑚

∑
𝑘=1

𝑘(𝜆𝛼𝑘+𝛽𝑘)𝑋𝑘−1+
𝑛

∑
𝑘=𝑚+1

𝑘𝜆𝛼𝑘𝑋𝑘−1 = 𝜆
𝑛

∑
𝑘=1

𝑘𝛼𝑘𝑋𝑘−1+
𝑚

∑
𝑘=1

𝑘𝛽𝑘𝑋𝑘−1 = 𝜆𝑃 ′(𝑋)+𝑄′(𝑋).

• Pour le produit, (𝑃𝑄)(𝑋) =
𝑚+𝑛

∑
𝑘=0

(
𝑘

∑
𝑖=0

𝛼𝑖𝛽𝑘−𝑖) 𝑋𝑘, donc (𝑃𝑄)′(𝑋) =
𝑚+𝑛−1

∑
𝑗=0

((𝑗 + 1)
𝑗+1

∑
𝑖=0

𝛼𝑖𝛽𝑗+1−𝑖) 𝑋𝑗. 

Par ailleurs, 𝑃 ′(𝑋)𝑄(𝑋) + 𝑄′(𝑋)𝑃(𝑋) =
𝑚+𝑛−1

∑
𝑗=0

(
𝑗

∑
𝑖=0

(𝑖 + 1)𝛼𝑖+1𝛽𝑗−𝑖 +
𝑗

∑
𝑖=0

𝛼𝑖(𝑗 − 𝑖 + 1)𝛽𝑗−𝑖+1) 𝑋𝑗.

Pour montrer l’égalité des polynômes, il suffit de montrer l’égalité de leurs coefficients. Soit 𝑗 ∈ [[0, 𝑚+𝑛−1]],
𝑗

∑
𝑖=0

(𝑖 + 1)𝛼𝑖+1𝛽𝑗−𝑖 +
𝑗

∑
𝑖=0

𝛼𝑖(𝑗 − 𝑖 + 1)𝛽𝑗−𝑖+1 =
𝑗+1

∑
𝑘=1

𝑘𝛼𝑘𝛽𝑗−𝑘+1 +
𝑗

∑
𝑖=0

𝛼𝑖(𝑗 − 𝑖 + 1)𝛽𝑗−𝑖+1 en posant 𝑘 = 𝑖 + 1

=
𝑗+1

∑
𝑘=0

𝑘𝛼𝑘𝛽𝑗−𝑘+1 +
𝑗+1

∑
𝑖=0

𝛼𝑖(𝑗 − 𝑖 + 1)𝛽𝑗−𝑖+1
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=
𝑗+1

∑
𝑘=0

𝛼𝑘𝛽𝑗−𝑘+1 (𝑘 + (𝑗 − 𝑘 + 1))

= (𝑗 + 1)
𝑗+1

∑
𝑘=0

𝛼𝑘𝛽𝑗−𝑘+1

∎

Remarque. Ces formules permettent de montrer la formule de Leibniz : (𝑃𝑄)(𝑛) =
𝑛

∑
𝑘=0

(𝑛
𝑘
)𝑃 (𝑘)𝑄(𝑛−𝑘). Sa preuve 

sera détaillée dans le prochain chapitre, pour dans le cas des dérivées de fonctions.

Proposition 4.3 (Degré du polynôme dérivé)

Soit 𝑃(𝑋) ∈ 𝕂[𝑋]. Si deg(𝑃 ) ⩾ 1, alors deg(𝑃 ′) = deg(𝑃 ) − 1. Sinon, 𝑃 ′(𝑋) = 0 donc deg(𝑃 ′) = −∞.

Démonstration. On pose 𝑛 = deg(𝑃 ). Si 𝑛 ⩽ 0, 𝑃 est un polynôme constant, donc 𝑃 ′(𝑋) = 0 et deg(𝑃 ′) = −∞.

Sinon, on peut écrire 𝑃(𝑋) =
𝑛

∑
𝑘=0

𝛼𝑘𝑋𝑘 ∈ 𝕂[𝑋] avec 𝛼𝑛 ≠ 0. En dérivant, 𝑃 ′(𝑋) =
𝑛−1
∑
𝑗=0

(𝑗 + 1)𝛼𝑗+1𝑋𝑗, et le 

coefficient du terme en 𝑋𝑛−1 vaut 𝑛𝛼𝑛 ≠ 0. Donc deg(𝑃 ′) = 𝑛 − 1. ∎

Proposition 4.4 (Expression des polynômes dérivés successifs)

Soit 𝑃(𝑋) =
𝑛

∑
𝑘=0

𝛼𝑘𝑋𝑘 ∈ 𝕂[𝑋] de degré 𝑛. Alors,

∀𝑘 ∈ [[0, 𝑛]], deg(𝑃 (𝑘)) = 𝑛 − 𝑘, et 𝑃 (𝑘)(𝑋) =
𝑛

∑
𝑖=𝑘

𝑖!
(𝑖 − 𝑘)!

𝛼𝑖𝑋𝑖−𝑘 et ∀𝑘 ⩾ 𝑛 + 1, 𝑃 (𝑘)(𝑋) = 0.

Remarque. 𝑖!
(𝑖−𝑘)! = (𝑖 − 𝑘 + 1) × … × (𝑖 − 1) × 𝑖, et ce produit contient 𝑖 − (𝑖 − 𝑘 + 1) + 1 = 𝑘 termes.

Démonstration. On montre la première partie par récurrence : soit 𝑘 ∈ [[0, 𝑛]], on pose

𝐻(𝑘) ∶  « deg(𝑃 (𝑘)) = 𝑛 − 𝑘 et 𝑃 (𝑘)(𝑋) =
𝑛

∑
𝑖=𝑘

𝑖!
(𝑖 − 𝑘)!

𝛼𝑖𝑋𝑖−𝑘 ».

𝑃 (0) = 𝑃, il est donc de degré 𝑛 = 𝑛 − 0. De plus, 
𝑛

∑
𝑖=0

𝑖!
(𝑖 − 0)!

𝛼𝑖𝑋𝑖−0 =
𝑛

∑
𝑖=0

𝛼𝑖𝑋𝑖 = 𝑃(𝑋). Donc 𝐻(0) est vraie.

Soit 𝑘 ∈ [[0, 𝑛 − 1]], on suppose que 𝐻(𝑘) est vraie. Alors, deg(𝑃 (𝑘)) = 𝑛 − 𝑘 ⩾ 1 donc deg(𝑃 (𝑘+1)) = 𝑛 − 𝑘 − 1 =

𝑛 − (𝑘 + 1). De plus, 𝑃 (𝑘)(𝑋) =
𝑛

∑
𝑖=𝑘

𝑖!
(𝑖 − 𝑘)!

𝛼𝑖𝑋𝑖−𝑘, relation qu’on peut dériver (le terme constant se dérive en 0) :

𝑃 (𝑘+1)(𝑋) = 0 +
𝑛

∑
𝑖=𝑘+1

𝑖!
(𝑖 − 𝑘)!

(𝑖 − 𝑘)𝛼𝑖𝑋𝑖−𝑘−1 =
𝑛

∑
𝑖=𝑘+1

𝑖!
(𝑖 − (𝑘 + 1))!

𝛼𝑖𝑋𝑖−(𝑘+1).

Donc 𝐻(𝑘 + 1) est vraie. On a donc montré que ∀𝑘 ∈ [[0, 𝑛]], 𝐻(𝑘) est vraie.
On en déduit en particulier que 𝑃 (𝑛)(𝑋) = 𝑛!𝛼𝑛 est un polynôme constant. Donc ∀𝑘 ⩾ 𝑛 + 1, 𝑃 (𝑘)(𝑋) = 0. ∎

4.2 Formule de Taylor et conséquences

Proposition 4.5 (Formule de Taylor)

Si 𝑃 est un polynôme de degré 𝑛, alors ∀𝑎 ∈ 𝕂, 𝑃(𝑋) =
𝑛

∑
𝑘=0

𝑃 (𝑘)(𝑎)
𝑘!

(𝑋 − 𝑎)𝑘.
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Démonstration. On commence par le cas 𝑎 = 0, pour lequel on déduit de la formule de dérivation que : ∀𝑘 ∈ [[0, 𝑛]], 

𝑃 (𝑘)(0) = 𝑘!
(0)!𝛼𝑘0𝑘−𝑘 = 𝑘!𝛼𝑘. On a donc bien 𝑃(𝑋) =

𝑛
∑
𝑘=0

𝑃 (𝑘)(0)
𝑘!

𝑋𝑘.

Pour le cas général d’un 𝑎 quelconque, on applique ce résultat au polynôme 𝑄(𝑌 ) = 𝑃(𝑌 + 𝑎), d’indéterminée 
𝑌 = 𝑋 − 𝑎 :

𝑄(𝑌 ) =
𝑛

∑
𝑘=0

𝑄(𝑘)(0)
𝑘!

𝑌 𝑘.

Dériver 𝑘 fois la relation 𝑄(𝑌 ) = 𝑃(𝑌 +𝑎) donne ensuite 𝑄(𝑘)(𝑌 ) = 𝑃 (𝑘)(𝑌 +𝑎) et en particulier 𝑄(𝑘)(0) = 𝑃 (𝑘)(𝑎). 
On obtient donc :

𝑃(𝑋) = 𝑄(𝑌 ) =
𝑛

∑
𝑘=0

𝑄(𝑘)(0)
𝑘!

𝑌 𝑘 =
𝑛

∑
𝑘=0

𝑃 (𝑘)(𝑎)
𝑘!

(𝑋 − 𝑎)𝑘.

∎

Exemple. Soit 𝑃(𝑋) = 𝑋2 + 3𝑋 + 5. Alors 𝑃 ′(𝑋) = 2𝑋 + 3, 𝑃 ″(𝑋) = 2 et pour 𝑎 = 1, on obtient :

𝑃(𝑋) = 9 + 5
1
(𝑋 − 1) + 2

2
(𝑋 − 1)2 = 9 + 5(𝑋 − 1) + (𝑋 − 1)2.

Proposition 4.6 (Multiplicité et dérivées successives)

Soit 𝑃 un polynôme de 𝕂[𝑋] non nul, 𝑟 ∈ 𝕂 et 𝑝 un entier naturel non nul. Le scalaire 𝑟 est une racine 
d’ordre 𝑝 du polynôme 𝑃 si et seulement si ∀𝑘 ∈ [[0, 𝑝 − 1]], 𝑃 (𝑘)(𝑟) = 0 et 𝑃 (𝑝)(𝑟) ≠ 0.

Démonstration. Soit 𝑛 = deg(𝑃 ). On applique la formule de Taylor en 𝑟 :

𝑃(𝑋) = 𝑃(𝑟)+𝑃 ′(𝑟)(𝑋 −𝑟)+ 𝑃 ″(𝑟)
2!

(𝑋 −𝑟)2 +⋯+ 𝑃 (𝑝−1)(𝑟)
(𝑝 − 1)!

(𝑋 −𝑟)𝑝−1 + 𝑃 (𝑝)(𝑟)
𝑝!

(𝑋 −𝑟)𝑝 +⋯+ 𝑃 (𝑛)(𝑟)
𝑛!

(𝑋 −𝑟)𝑛.

• On suppose que ∀𝑘 ∈ [[0, 𝑝 − 1]], 𝑃 (𝑘)(𝑟) = 0 et 𝑃 (𝑝)(𝑟) ≠ 0. Alors

𝑃(𝑋) = (𝑋 − 𝑟)𝑝 (𝑃 (𝑝)(𝑟)
𝑝!

+ 𝑃 (𝑝+1)(𝑟)
(𝑝 + 1)!

(𝑋 − 𝑟) + ⋯ + 𝑃 (𝑛)(𝑟)
𝑛!

(𝑋 − 𝑟)𝑛−𝑝)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑄(𝑋)

,

donc (𝑋 − 𝑟)𝑝 divise 𝑃(𝑋). De plus, 𝑄(𝑟) = 𝑃 (𝑝)(𝑟)
𝑝! ≠ 0, donc 𝑋 − 𝑟 ne divise pas 𝑄(𝑋). Donc (𝑋 − 𝑟)𝑝+1 ne 

divise pas 𝑃(𝑋). Donc 𝑟 est une racine d’ordre 𝑝 de 𝑃(𝑋).

• On suppose maintenant que 𝑟 est une racine d’ordre 𝑝 de 𝑃(𝑋). Alors (𝑋 − 𝑟)𝑝 divise 𝑃(𝑋). Donc le reste 
𝑅(𝑋) de la division euclidienne de 𝑃(𝑋) par (𝑋 −𝑟)𝑝 est nul. Il faut donc déterminer ce reste. Par la formule 
de Taylor et l’unicité de la division euclidienne,

𝑅(𝑋) = 𝑃(𝑟) + 𝑃 ′(𝑟)(𝑋 − 𝑟) + 𝑃 ″(𝑟)
2!

(𝑋 − 𝑟)2 + ⋯ + 𝑃 (𝑝−1)(𝑟)
(𝑝 − 1)!

(𝑋 − 𝑟)𝑝−1,

(qui est bien de degré strictement inférieur à 𝑝 = deg((𝑋 − 𝑟)𝑝)). Donc

𝑃(𝑟) + 𝑃 ′(𝑟)(𝑋 − 𝑟) + 𝑃 ″(𝑟)
2!

(𝑋 − 𝑟)2 + ⋯ + 𝑃 (𝑝−1)(𝑟)
(𝑝 − 1)!

(𝑋 − 𝑟)𝑝−1 = 0,

ce qui donne en composant à droite par 𝑋 + 𝑟, 𝑃(𝑟) + 𝑃 ′(𝑟)𝑋 + 𝑃 ″(𝑟)
2! 𝑋2 + ⋯ + 𝑃 (𝑝−1)(𝑟)

(𝑝−1)! 𝑋𝑝−1 = 0, et donc 
par identification des coefficients, ∀𝑘 ∈ [[0, 𝑝 − 1]], 𝑃 (𝑘)(𝑟) = 0.
Il ne reste plus qu’à montrer que 𝑃 (𝑝)(𝑟) ≠ 0. On le montre par l’absurde : supposons 𝑃 (𝑝)(𝑟) = 0. Les calculs 
précédents nous donnent qu’alors (𝑋 − 𝑟)𝑝+1 divise 𝑃, et donc 𝑟 est une racine d’ordre au moins 𝑝 + 1 : 
absurde. Donc 𝑃 (𝑝)(𝑟) ≠ 0.
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∎

Exercice 7. Soit 𝑃(𝑋) = 𝑋4 − 2𝑋3 + 3𝑋2 − 4𝑋 + 2. Montrer que 1 est racine et déterminer son ordre de 
multiplicité.
Solution : 𝑃(1) = 1 − 2 + 3 − 4 + 2 = 0, donc 1 est racine.
𝑃 ′(𝑋) = 4𝑋3 − 6𝑋2 + 6𝑋 − 4, donc 𝑃 ′(1) = 4 − 6 + 6 − 4 = 0, donc 1 est racine d’ordre au moins 2.
𝑃 ″(𝑋) = 12𝑋2 − 12𝑋 + 6, donc 𝑃 ″(1) = 12 − 12 + 6 = 6 ≠ 0, donc 1 est racine d’ordre 2 de 𝑃.
Rmq : si on avait continué le calcul, 𝑃 (3)(𝑋) = 24𝑋 − 12 et 𝑃 (4)(𝑋) = 24 donc 𝑃 (5)(𝑋) = 0. Mais ce n’est pas 
pour autant que 1 est d’ordre de multiplicité 5.

Proposition 4.7 (Ordre de multiplicité et racines des dérivées)

Soit 𝑟 est une racine d’ordre 𝑝 ⩾ 1 du polynôme 𝑃, alors :

• 𝑟 est une racine d’ordre 𝑝 − 1 de 𝑃 ′,

• pour tout 𝑗 ∈ [[0, 𝑝 − 1]], 𝑟 est une racine d’ordre 𝑝 − 𝑗 de 𝑃 (𝑗).

Démonstration. C’est une conséquence directe du résultat précédent. ∎

5 Polynômes irréductibles et factorisation

5.1 Factorisations dans ℂ[𝑋]

Proposition 5.1 (Théorème de d’Alembert-Gauss)

Tout polynôme de ℂ[𝑋] non constant (donc de degré supérieur ou égal à un) admet au moins une racine 
dans ℂ.

Démonstration. Admis. ∎

Remarque. Les seuls polynômes irréductibles (polynômes 𝑃 non constants et dont les seuls diviseurs sont les 𝜆 et 
les 𝜆𝑃 pour 𝜆 ∈ 𝕂∗) de ℂ[𝑋] sont donc les polynômes de degré 1.

Proposition 5.2 (Décomposition en facteurs irréductibles dans ℂ)

Tout polynôme 𝑃 ∈ ℂ[𝑋] de degré 𝑛 et de coefficient dominant 𝛼𝑛 peut s’écrire 𝑃(𝑋) = 𝛼𝑛

𝑚
∏
𝑘=1

(𝑋 − 𝑟𝑘)𝑝𝑘 , 

avec 𝑟𝑘 ∈ ℂ des racines distinctes de 𝑃, 𝑝𝑘 ∈ ℕ∗ leurs ordres de multiplicité, et ∑𝑚
𝑘=1 𝑝𝑘 = 𝑛.

Démonstration. Soit 𝑛 ∈ ℕ, on pose 𝐻(𝑛) ∶ « Si deg(𝑃 ) = 𝑛, 𝑃(𝑋) = 𝛼𝑛

𝑚
∏
𝑘=1

(𝑋 − 𝑟𝑘)𝑝𝑘 avec 
𝑚

∑
𝑘=1

𝑝𝑘 = 𝑛 ».

• Soit 𝑃(𝑋) un polynôme de degré 0. Alors ∃𝑎 ∈ ℂ tel que 𝑃(𝑋) = 𝑎. Donc 𝐻(0) est vraie.

• Soit 𝑛 ∈ ℕ fixé, on suppose que 𝐻(𝑛) est vrai. Soit 𝑃 un polynôme de ℂ[𝑋] de degré 𝑛+1. Par le théorème de 
d’Alembert-Gauss, 𝑃 admet une racine 𝑟, et est donc divisible par (𝑋−𝑟) : on peut écrire 𝑃(𝑋) = (𝑋−𝑟)𝑄(𝑋), 
avec deg(𝑄) = 𝑛. Il suffit d’appliquer 𝐻(𝑛) à 𝑄 et d’observer que 𝑃 et 𝑄 ont le même coefficient dominant 
pour conclure que 𝐻(𝑛 + 1) est vrai.

Cela termine la preuve. ∎

Remarque. Autrement dit, tout polynôme non constant de ℂ[𝑋] est scindé.

Exercice 8. Factoriser dans ℂ[𝑋] le polynôme 𝑃(𝑋) = 𝑋3 + 𝑋.
Solution : Une factorisation directe donne 𝑃(𝑋) = 𝑋(𝑋2 + 1) = 𝑋(𝑋 − 𝑖)(𝑋 + 𝑖).
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Exercice 9. Soit 𝑛 ∈ ℕ∗. Factoriser 2𝑋𝑛 − 2 dans ℂ[𝑋].

Solution : Les racines de ce polynôme sont les racines 𝑛-ièmes de l’unité, donc 2𝑋𝑛 − 2 = 2
𝑛−1
∏
𝑘=0

(𝑋 − 𝑒 2𝑖𝑘𝜋
𝑛 ).

5.2 Factorisations dans ℝ[𝑋]

Proposition 5.3 (Racines conjuguées)

Soit 𝑧 un nombre complexe, et 𝑃 un polynôme de ℝ[𝑋]. Si 𝑧 est racine du polynôme 𝑃, alors 𝑧 est également 
racine de 𝑃, avec le même ordre de multiplicité.

Démonstration. Soit 𝑃(𝑋) = ∑𝑛
𝑘=0 𝛼𝑘𝑋𝑘 avec ∀𝑘 ∈ [[0, 𝑛]], 𝛼𝑘 ∈ ℝ. Comme 𝑧 est racine de 𝑃, 0 = ∑𝑛

𝑘=0 𝛼𝑘𝑧𝑘. Par 
passage au conjugué, comme 𝛼𝑘 = 𝛼𝑘 (puisque 𝑃 est à coefficients réels) on obtient :

0 =
𝑛

∑
𝑘=0

𝛼𝑘 ⋅ 𝑧𝑘 =
𝑛

∑
𝑘=0

𝛼𝑘𝑧𝑘 = 𝑃(𝑧).

Donc 𝑧 est également racine de 𝑃. Pour conclure en ce qui concerne l’ordre de multiplicité, il suffit de refaire la 
même opération sur les dérivées de 𝑃, qui sont également des polynômes à coefficients réels. ∎

Proposition 5.4 (Décomposition en facteurs irréductibles dans ℝ)

Tout polynôme de ℝ[𝑋] peut s’écrire comme produit d’un réel, de polynômes à coefficients réels de degré 1
et de polynômes à coefficients réels de degré 2 n’ayant pas de racine réelle.

Démonstration. On utilise la décomposition de 𝑃 dans ℂ[𝑋] : 𝑃(𝑋) = 𝛼𝑛 ∏𝑛
𝑘=1(𝑋 − 𝑟𝑘), où les 𝑟𝑘 sont des racines 

réelles ou complexes de 𝑃. Comme 𝑃 ∈ ℝ[𝑋], on a 𝛼𝑛 ∈ ℝ. Si les 𝑟𝑘 sont tous réels, la décomposition est encore 
valable dans ℝ[𝑋]. Il reste donc à traiter le cas où l’on rencontre 𝑟𝑘0

∈ ℂ ∖ ℝ. Dans ce cas, par la proposition 
précédente, 𝑟𝑘0

 est également racine de 𝑃, avec le même ordre de multiplicité 𝑗. On simplifie alors tous les termes 
contenant ces deux racines :

(𝑋 − 𝑟𝑘0
)𝑗(𝑋 − 𝑟𝑘0

)𝑗 = ((𝑋 − 𝑟𝑘0
)(𝑋 − 𝑟𝑘0

))
𝑗

= (𝑋2 − 𝑋(𝑟𝑘0
+ 𝑟𝑘0

) + 𝑟𝑘0
𝑟𝑘0

)
𝑗

= (𝑋2 − 2 Re(𝑟𝑘0
)𝑋 + |𝑟𝑘0

|
2
)

𝑗
,

qui est bien dans ℝ[𝑋] et sans racine réelle. On procède de même pour toutes les racines complexes, ce qui permet 
de conclure. ∎

Remarque. Les polynômes irréductibles de ℝ[𝑋] sont donc :

• les polynômes de degré 1 ;

• les polynômes de degré 2 et de discriminant strictement négatif.

Exercice 10. Factoriser dans ℝ[𝑋] le polynôme 𝑃(𝑋) = 𝑋3 + 𝑋.
Solution : On a 𝑃(𝑋) = 𝑋(𝑋2 + 1). Or 𝑋2 + 1 a pour discriminant Δ = −4 < 0, donc 𝑋2 + 1 n’a donc pas de 
racine réelle et la factorisation est terminée.

6 Fractions rationnelles
Définition 6.1 (Fraction rationnelle)

On appelle fraction rationnelle tout quotient de type 𝑃
𝑄  où (𝑃 , 𝑄) ∈ 𝕂[𝑋]2 avec 𝑄 ≠ 0.
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Proposition 6.2 (Décomposition en éléments simples)

Soit 𝑅 = 𝑃
𝑄  une fraction rationnelle sur 𝕂. Si 𝑄 est scindé de racines simples distinctes 𝜆1, …, 𝜆𝑟, alors il 

existe une unique décomposition de la forme :

𝑅(𝑋) = 𝐸(𝑋) +
𝑟

∑
𝑖=1

𝑎𝑖
𝑋 − 𝜆𝑖

,

avec 𝐸(𝑋) ∈ 𝕂[𝑋] et ∀𝑖 ∈ [[1, 𝑟]], 𝑎𝑖 ∈ 𝕂.

Démonstration. Admis ∎

Remarque. Dans le cas où le polynôme au dénominateur aurait des racines multiples ou ne serait pas scindé, la 
forme cherchée pour la décomposition est plus complexe et sera fournie par l’exercice.

Exercice 11. Décomposer en éléments simples la fraction 𝑅(𝑋) = 𝑋3 + 3𝑋 + 1
𝑋2 − 1

.
Solution : Comme 𝑋2 − 1 = (𝑋 − 1)(𝑋 + 1), on est bien dans le cas d’un dénominateur scindé à racines simples.
Comme deg(𝑋3 + 3𝑋 + 1) ⩾ deg(𝑋2 − 1), on commence par poser la division euclidienne associée :

𝑋3 + 3𝑋 + 1 = 𝑋(𝑋2 − 1) + 4𝑋 + 1,  avec deg(4𝑋 + 1) = 1 < 2 = deg(𝑋2 − 1).

Donc 𝑅(𝑋) = 𝑋 + 4𝑋+1
(𝑋−1)(𝑋+1) . Par décomposition des fractions rationnelles, il existe 𝑎 et 𝑏 deux réels tels que :

4𝑋 + 1
(𝑋 − 1)(𝑋 + 1)

= 𝑎
𝑋 − 1

+ 𝑏
𝑋 + 1

.

Tout multiplier par 𝑋 − 1 donne 4𝑋+1
𝑋+1 = 𝑎 + 𝑏(𝑋−1)

𝑋+1 , ce qui évalué en 1 donne à son tour 5
2 = 𝑎 + 0, donc 𝑎 = 5

2 .
De même, tout multiplier par 𝑋 + 1 donne 4𝑋+1

𝑋−1 = 𝑎(𝑋+1)
𝑋−1 + 𝑏, ce qui évalué en −1 donne −3

−2 = 0 + 𝑏 donc 𝑏 = 3
2 .

La décomposition cherchée est donc :

𝑅(𝑋) = 𝑋 + 5
2(𝑋 − 1)

+ 3
2(𝑋 + 1)

.

Remarque. Dans le cas de décompositions plus complexes, on peut aussi utiliser des limites en ±∞ ou l’évaluation 
en d’autres valeurs particulières pour déterminer les valeurs des constantes.

Exercice 12. Déterminer une primitive de 𝑓 ∶ 𝑥 ↦ 𝑥3 + 3𝑥 + 1
𝑥2 − 1

 sur ]1, +∞[.

Solution : On a montré que ∀𝑥 ∈]1, +∞[, 𝑓(𝑥) = 𝑥 + 5
2(𝑥 − 1)

+ 3
2(𝑥 + 1)

= 𝑥 + 5
2

1
𝑥 − 1

+ 3
2

1
𝑥 + 1

, une primitive 

sur ]1, +∞[ est donc 𝐹 ∶ 𝑥 ↦ 𝑥2

2
+ 5

2
ln(|𝑥 − 1|) + 3

2
ln(|𝑥 + 1|).
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