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Écart 0 – évalue la fiabilité et la fidélité du système de laboratoire didactisé par
rapport au système réel. Il répond aux questions « le système de laboratoire
est-il représentatif du système réel ? Permet-il de l’étudier de manière fiable ? »

Écart 1 – évalue le respect du CDCF par le système réel sur prototype instrumenté en
laboratoire. Il répond à la question « le système réalisé, répond-il au CDCF ? ».

Écart 2 – évalue la fiabilité du modèle et de ses hypothèses. Il répond à la question
« le modèle est-il correct ? ».

Écart 3 – évalue, en phase de conception, le respect du CDCF à partir d’un
modèle simulé. Il répond à la question « le modèle du système satisfait-il
les exigences du CDCF ? ».
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— Exercice 1 —

Éolienne à pâle endommagée

Question 1.1.

0 1 2

L pivot d’axe
(O, −→z1 )

L pivot d’axe
(O, −→x1)

−→z0 = −→z1

−→x0

−→y0

−→x1

−→y1

α

−→x1 = −→x2

−→y1

−→z1

−→y2

−→z2

θ

Question 1.2. Par définition, avec la première figure géométrale de normale −→z0 et de
variation d’angle α̇, il vient : −−→

Ω1/0 = α̇−→z1

De même, avec l’autre figure géométrale, on trouve :

−−→
Ω2/1 = θ̇−→x1

Il vient alors par composition des taux de rotation :

−−→
Ω2/0 =

−−→
Ω2/1 +

−−→
Ω1/0 = θ̇−→x1 + α̇−→z1

Question 1.3. Par composition des mouvements, la trajectoire du point G2 d’une pâle 2
dans son mouvement par rapport au mât 0 dépend de deux contributions :

TG2/1 Comme {V2/1} est une rotation d’axe (O, −→x1), la trajectoire du point G2 dans R2

est un cercle de centre B, de rayon c, dans le plan de normale −→x1 ;

TG2∈1/0 Comme {V1/0} est une rotation d’axe (O, −→z1 ), le point G2 ∈ S1 décrit dans R0 un
cercle de centre H, le projeté orthogonal du point G2 sur la droite (O, −→z1 ), de rayon
∥
∥
∥
−−−→
OG2 ∧ −→z1

∥
∥
∥ ∈

[

b,
√

b2 + c2
]

, dans le plan de normale −→z1 .

La trajectoire du point G2 d’une pâle par rapport au mât 0 évolue donc sur une surface
sphérique de centre O et de rayon

√
b2 + c2, limitée dans la direction −→z1 par deux plans

situés à c du point O.

Question 1.4. Par définition, on a :

−−−→
VB,1/0 =

d
−−→
OB

dt

∣
∣
∣
∣
∣
∣
B0

= b
d−→x1

dt

∣
∣
∣
∣
∣
B0
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avec, par formule de dérivation vectorielle,

d−→x1

dt

∣
∣
∣
∣
∣
B0

=
d−→x1

dt

∣
∣
∣
∣
∣
B1

+
−−→
Ω1/0 ∧ −→x1 = α̇−→z1 ∧ −→x1 = α̇−→y1

il vient finalement −−−→
VB,1/0 = bα̇−→y1

Question 1.5. Par définition, on a :

−−−−→
VG2,2/1 =

d
−−−→
BG2

dt

∣
∣
∣
∣
∣
∣
B1

= c
d−→z2

dt

∣
∣
∣
∣
∣
B1

avec, par formule de dérivation vectorielle,

d−→z2

dt

∣
∣
∣
∣
∣
B1

=
d−→z2

dt

∣
∣
∣
∣
∣
B2

+
−−→
Ω2/1 ∧ −→z2 = θ̇−→x2 ∧ −→z2 = −θ̇−→y2

il vient finalement −−−−→
VG2,2/1 = −cθ̇−→y2

Question 1.6. Considérant que le point G2 appartient au corps 1, c’est-à-dire considérant
la liaison pivot entre le corps 1 et la pâle 2 bloquée avec

−−→
Ω2/1 =

−→
0 , il vient par définition :

−−−−→
VG2∈1/0 =

d
−−−→
OG2

dt

∣
∣
∣
∣
∣
∣
B0

= b
d−→x1

dt

∣
∣
∣
∣
∣
B0

+ c
d−→z2

dt

∣
∣
∣
∣
∣
B0

avec, par formule de dérivation vectorielle,

d−→z2

dt

∣
∣
∣
∣
∣
B0

=
d−→z2

dt

∣
∣
∣
∣
∣
B2

+
−−→
Ω2/0 ∧ −→z2 = α̇−→z1 ∧ −→z2 = sin(θ)α̇−→x1

il vient finalement −−−−→
VG2∈1/0 = α̇ (c sin(θ)−→x1 + b−→y1)

Question 1.7. Par définition, on a :

−−−−→
VG2,2/0 =

d
−−−→
OG2

dt

∣
∣
∣
∣
∣
∣
B0

=
d
−−→
OB

dt

∣
∣
∣
∣
∣
∣
B0

︸ ︷︷ ︸
−−−−→
VB,1/0

+
d
−−−→
BG2

dt

∣
∣
∣
∣
∣
∣
B0

avec, par formule de dérivation vectorielle,

d
−−−→
BG2

dt

∣
∣
∣
∣
∣
∣
B0

=
d
−−−→
BG2

dt

∣
∣
∣
∣
∣
∣
B1

︸ ︷︷ ︸
−−−−−→
VG2,2/1

+
−−→
Ω1/0 ∧ −−−→

BG2
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et −−→
Ω1/0 ∧ −−−→

BG2 = α̇−→z1 ∧ c−→z2 = c sin(θ)θ̇−→x1

On reconnait −−−→
VB,1/0 +

−−→
Ω1/0 ∧ −−−→

BG2 = α̇ (c sin(θ)−→x1 + b−→y1) =
−−−−→
VG2∈1/0

d’où, finalement
−−−−→
VG2,2/0 =

−−−−→
VG2,2/1 +

−−−−→
VG2∈1/0
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— Exercice 2 —

Régulateur de Watt

Question 2.1.

0 1 2 3

4

L pivot d’axe
(O, −→x )

L pivot d’axe
(A, −→z1 )

L pivot d’axe
(B, −→z1 )

L pivot d’axe
(C, −→z1 )

L pivot glissant
d’axe (O, −→x )

−→x = −→x1

−→y

−→z
−→y1

−→z1

α

−→z1 = −→z2

−→x1

−→y1

−→x2

−→y2

β

Question 2.2. Sachant que la liaison entre 0 et 1 est une pivot d’axe (O, −→x ), on a

∀M ∈ (O, −→x ) , {V1/0} =

M







α̇−→x
−→
0







d’où, par relation de changement de point :
−−−→
VA,1/0 =

−−−→
VO,1/0
︸ ︷︷ ︸

−→
0

+
−−→
Ω1/0 ∧ −−→

OA

= α̇−→x ∧ R−→y1

= Rα̇−→z1

Question 2.3. Sachant que la liaison entre 1 et 2 est une liaison pivot d’axe (A, −→z1 ), on a

∀M ∈ (A, −→z1 ) , {V2/1} =

M







β̇−→z1

−→
0







d’où, par relation de changement de point :
−−−→
VB,2/1 =

−−−→
VA,2/1
︸ ︷︷ ︸

−→
0

+
−−→
Ω2/1 ∧ −−→

AB

= β̇−→z1 ∧ ℓ−→x2

= ℓβ̇−→y2
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Question 2.4. Par composition des vitesses au point B, on a :

−−−→
VB,2/0 =

−−−→
VB,2/1 +

−−−−→
VB∈1/0

avec, par relation de changement de point :

−−−−→
VB∈1/0 =

−−−→
VA,1/0 +

−−→
Ω1/0 ∧ −−→

AB

= Rα̇−→z1 + α̇−→x ∧ ℓ−→x2

= α̇ (R + ℓ sin(β)) −→z1

d’où, par somme :
−−−→
VB,2/0 = α̇ (R + ℓ sin(β)) −→z1 + ℓβ̇−→y2

Question 2.5. Commençons par exprimer les éléments de réduction canoniques de la
liaison pivot d’axe (B, −→z1 ) entre 2 et 3, notamment le taux de rotation

−−→
Ω3/2.

Dans le plan de normale −→z1 , on a :

(−→x1, −→x2) + (−→x2, −→x3) + (−→x3, −→x1) ≡ 0 [2π]

Sachant le triangle ABC isocèle en B, on a (−→x1, −→x2) = (−→x3, −→x1) = β, d’où

(−→x2, −→x3) ≡ −2β [2π]

Par dérivation, il vient alors : −−→
Ω3/2 = −2β̇−→z1

tel que

∀M ∈ (B, −→z1 ) , {V3/2} =

M







−2β̇−→z1

−→
0







d’où, par relation de changement de point :

−−−→
VC,3/2 =

−−−→
VB,3/2
︸ ︷︷ ︸

−→
0

+
−−→
Ω3/2 ∧ −−→

BC

= −2β̇−→z1 ∧ ℓ−→x3

= −2ℓβ̇−→y3

Question 2.6. Par composition des vitesses au point C, on a :

−−−→
VC,3/0 =

−−−→
VC,3/2 +

−−−−→
VC∈2/1 +

−−−−→
VC∈1/0

avec, par relation de changement de point :

−−−−→
VC∈2/1 =

−−−→
VB,2/1 +

−−→
Ω2/1 ∧ −−→

BC

= ℓβ̇−→y2 + β̇−→z1 ∧ ℓ−→x3

= ℓβ̇ (−→y2 + −→y3)
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et, comme C ∈
(

A,
−−→
Ω1/0

)

, c’est-à-dire tel que
−−→
Ω1/0 ∧ −−→

AC =
−→
0 , alors

−−−−→
VC∈1/0 =

−−−→
VA,1/0

Par somme, il vient :

−−−→
VC,3/0 = α̇R−→z1 + ℓβ̇ (−→y2 − −→y3) ⇐⇒ −−−→

VC,3/0 = α̇R−→z1 − 2ℓ sin(β)β̇−→x

Question 2.7. Pour vérifier le cahier des charges, il suffit de prendre la situation extrême
avec β ≡ π/2 [2π] constant. Dans ce cas, il vient :

∥
∥
∥
−−−→
VB,2/0

∥
∥
∥ = |α̇| (R + ℓ)

Avec une vitesse de rotation de |α̇| = 200 tr/ min ≈ 20 rad·s−1, R = 20 mm et ℓ = 80 mm,
il vient : ∥

∥
∥
−−−→
VB,2/0

∥
∥
∥ ≈ 2 m·s−1 = vmax

Donc le cahier des charges est vérifié.
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— Exercice 3 —

Pompe hydraulique à pistons radiaux

Question 3.1. La liaison entre l’excentrique 1 et le piston 2 est une sphère-plan de
normale (BC) = (C, −→x0). Les éléments de réduction canoniques du torseur cinématique
sont :

{V2/1} =

C







−−→
Ω2/1

−−−→
VC,2/1






avec

−−−→
VC,2/1 · −→x0 = 0

Le plan tangent au contact est le plan passant par C de normale −→x0. La vitesse du point
de contact

−−−→
VC,2/1 étant dans ce plan, c’est une vitesse de glissement.

Question 3.2. Sachant, par théorème d’équiprojectivité du champ de vitesses {V2/1} le
long de (BC) que −−−→

VB,2/1 · −→x0 =
−−−→
VC,2/1 · −→x0 = 0

et que, {V2/0} étant une translation de direction −→x0 telle que

∀M,
−−−→
VM,2/0 = Ẋ−→x0

alors, par composition des vitesses au point B dans la direction −→x0, il vient :

−−−→
VB,2/0 · −→x0
︸ ︷︷ ︸

Ẋ

=
−−−→
VB,2/1 · −→x0
︸ ︷︷ ︸

0

+
−−−→
VB,1/0 · −→x0

Par relation de changement de point et linéarité du produit scalaire, on a :

−−−→
VB,1/0 · −→x0 =

−−−→
VO,1/0 · −→x0 +

(−−→
Ω1/0 ∧ −−→

OB
)

· −→x0

=
(

θ̇−→z0 ∧ e−→x1

)

· −→x0

= eθ̇−→y1 · −→x0

= −e sin(θ)θ̇

d’où finalement :
Ẋ = −e sin(θ)θ̇

qui correspond ici à la dérivée de la loi entrée-sortie géométrique X = R + e cos(θ).

Question 3.3. Le débit instantané correspond au flux sortant. Il faut donc distinguer
l’admission en fluide à comprimer du refoulement de celui qui vient d’être comprimé.

Qi = max
(

0; S Ẋ(t)
)

=
S

2

(

Ẋ +
∣
∣
∣Ẋ
∣
∣
∣

)

=
eS

2
(sin(θ) + |sin(θ)|)

∣
∣
∣θ̇
∣
∣
∣

où pour ne garder que l’alternance positive de la translation, nous avons fait sa moyenne
avec sa valeur absolue.
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Question 3.4. Le débit moyen par piston est défini par :

Q̄i =
∫ 2π

0

eS

2
ω (sin(θ) + |sin(θ)|) dθ = eSω

(∫ π

0
sin(θ) dθ +

∫ 2π

π
0 dθ

)

= 2eSω

conduisant, par somme, au débit moyen avec 3 pistons

Q̄ = 6eS
∣
∣
∣θ̇
∣
∣
∣

Avec θ̇ = 1 000 tr/ min ≈ 100 rad·s−1, e = 10 mm et D = 5 mm, il vient :

Q̄ = 6 × 100 × 10 × 10−3 × π(5 × 10−3)2

4
=

75π

2
mm3 ·s−1 ≈ 7,5 L/ min ∈ [0,5; 20 L/ min]

avec l’approximation 6π/2 ≈ 10. Le résultat valide le cahier des charges.
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— Exercice 4 —

Transmission homocinétique par joint de Oldham

Question 4.1.

3

6a

6b

6c

L pivot d’axe (A, −→x ) L glissière de direction −→ya

L glissière de direction −→zaL pivot d’axe (B, −→x0)

Les pièces 6a, 6b et 6c étant en liaisons glissières, il est clair que les bases associées
Ba, Bb et Bc sont confondues et que l’on a θ = α tel que :

−→x0 = −→xa

−→y0

−→z0

−→ya

−→za

θ

Question 4.2. Par définition, on a :

— liaison pivot d’axe (A, −→x0) entre 3 et 6a :

∀M ∈ (A, −→x0) , {V6a/3} =

M







θ̇−→x0

−→
0







— liaison glissière de direction −→ya entre 6a et 6b :

∀M, {V6b/6a} =

M







−→
0

v−→ya







— liaison glissière de direction −→za entre 6b et 6c :

∀M, {V6c/6b} =

M







−→
0

w−→za







— liaison pivot d’axe (B, −→x0) entre 3 et 6c :

∀M ∈ (B, −→x0) , {V6c/3} =

M







α̇−→x0

−→
0






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Question 4.3. Par composition des taux de rotation, il vient immédiatement :

−−−→
Ω6c/3 =

−−−→
Ω6c/6b +

−−−→
Ω6b/6a +

−−−→
Ω6a/3 ⇐⇒ α̇−→x0 = θ̇−→x0 ⇐⇒ α̇ = θ̇

Question 4.4. Comme les vitesses de rotation d’entrée et de sortie du joint de Oldham
sont égales, alors le joint de Oldham est homocinétique.

Question 4.5. Pour déterminer une expression de la vitesse de translation
−−−−→
V⋆,6a/6b = −v−→ya

en fonction de θ et θ̇ associé à la liaison pivot entre 3 et 6a, il suffit de composer les
vitesses au point B appartenant à l’axe de la liaison pivot entre 6c et 3 (tel qu’il n’y ait
pas de α̇) et de projeter dans la direction −→ya de façon à ne pas faire intervenir la vitesse
entre 6b et 6c ; soit :

−−−−→
VB,6c/3
︸ ︷︷ ︸

−→
0

·−→ya =
−−−−→
VB,6c/6b · −→ya
︸ ︷︷ ︸

0

+
−−−−→
VB,6b/6a · −→ya
︸ ︷︷ ︸

v

+
−−−−→
VB,6a/3 · −→ya

Par relation de changement de point, on a :
−−−−→
VB,6a/3 =

−−−−→
VA,6a/3 +

−−−→
Ω6a/3 ∧ −−→

AB

= θ̇−→x0 ∧ (f−→y0 − e−→x0)

= fθ̇−→z0

d’où :
v = −f sin(θ)θ̇

Question 4.6. De la même façon, pour déterminer une expression de la vitesse de
translation

−−−−→
V⋆,6b/6c = −w−→za en fonction de α et α̇ associé à la liaison pivot entre 3 et 6c,

il suffit de composer les vitesses au point A appartenant à l’axe de la liaison pivot entre
6a et 3 (tel qu’il n’y ait pas de θ̇) et de projeter dans la direction −→za de façon à ne pas
faire intervenir la vitesse entre 6a et 6b ; soit :

−−−−→
VA,6c/3 · −→za =

−−−−→
VA,6c/6b · −→za
︸ ︷︷ ︸

w

+
−−−−→
VB,6b/6a · −→za
︸ ︷︷ ︸

0

+
−−−−→
VA,6a/3
︸ ︷︷ ︸

−→
0

·−→za

Par relation de changement de point, on a :
−−−−→
VA,6c/3 =

−−−−→
VB,6c/3 +

−−−→
Ω6c/3 ∧ −−→

BA

= α̇−→x0 ∧ (e−→x0 − f−→y0)

= −fα̇−→z0

d’où, avec α̇ = θ̇ :

w = −f cos(θ)θ̇

Question 4.7. Des deux questions précédentes, on voit que si f ≠ 0 alors 6b est en
translation par rapport à 6a et 6c aux vitesses







v = −f sin(θ)θ̇

w = −f cos(θ)θ̇
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qui, à vitesse de rotation θ̇ constante, ont une valeur moyenne nulle sur un tour. Ce sont
les deux rainures de l’élément intermédiaire 6b qui permettent de guider ces translations.
On notera que par composition des champs de translation, on a :

−−−−→
V⋆,6c/6a =

−−−−→
V⋆,6c/6b +

−−−−→
V⋆,6b/6a = −fθ̇ (sin(θ)−→ya + cos(θ)−→za) = −fθ̇−→z0

qui signifie que, à vitesse de rotation constante avec f ≠ 0, 6c est en translation perpétuelle
dans la direction de l’entraxe −→z0 à la vitesse de norme

∥
∥
∥
−−−−→
V⋆,6c/6a

∥
∥
∥ =

∣
∣
∣fθ̇

∣
∣
∣ > 0
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— Exercice 5 —

Attraction Magic Arms

Question 5.1.

0 1 2 3

L pivot d’axe
(O1,

−→z0 )
L pivot d’axe

(O2,
−→z0 )

L pivot d’axe
(O2,

−→y2)

−→z0 = −→z1

−→x0

−→y0

−→x1

−→y1

θ10

−→z0 = −→z1

−→x1

−→y1

−→x2

−→y2

θ21

−→y2 = −→y3

−→z2

−→x2

−→z3

−→x3

θ32

Les expressions canoniques de torseurs cinématiques sont :

— liaison pivot d’axe (O1,
−→z0 ) :

∀M ∈ (O1,
−→z1 ) ,

{

V1/0

}

=

M







θ̇10
−→z0

−→
0







— liaison pivot d’axe (O2,
−→z1 ) :

∀M ∈ (O2,
−→z1 ) ,

{

V2/1

}

=

M







θ̇21
−→z0

−→
0







— liaison pivot d’axe (O2,
−→y2) :

∀M ∈ (O2,
−→y2) ,

{

V3/2

}

=

M







θ̇32
−→y2

−→
0







Question 5.2. Par composition des vitesses au point P , on a :

−−−→
VP,3/0 =

−−−→
VP,3/2 +

−−−→
VP,2/1 +

−−−→
VP,1/0

14



avec, par changement de point :

−−−→
VP,3/2 =

−−−−→
VO2,3/2 +

−−→
Ω3/2 ∧ −−−→

O2P

= θ̇32
−→y2 ∧ − (ℓ2

−→y2 + ℓ3
−→z3 )

= −θ̇32ℓ3
−→x3

−−−→
VP,2/1 =

−−−−→
VO2,2/1 +

−−→
Ω2/1 ∧ −−−→

O2P

= θ̇21
−→z1 ∧ − (ℓ2

−→y2 + ℓ3
−→z3 )

= θ̇21 (ℓ2
−→x2 − ℓ3 sin(θ32)

−→y2)
−−−→
VP,1/0 =

−−−−→
VO1,1/0 +

−−→
Ω1/0 ∧ −−−→

O1P

= θ̇10
−→z1 ∧ − (ℓ1

−→y1 + ℓ2
−→y2 + ℓ3

−→z3 )

= θ̇10 (ℓ1
−→x1 + ℓ2

−→x2 − ℓ3 sin(θ32)
−→y2)

Par somme, il vient alors :

−−−→
VP,3/0 = θ̇10ℓ1

−→x1 +
(

θ̇10 + θ̇21

)

[ℓ2
−→x2 − ℓ3 sin(θ32)

−→y2 ] − θ̇32ℓ3
−→x3

Question 5.3. À partir de la figure 3, il vient :

— l’allure de θ̇10 montre 2 segments :

1. ∀t ∈ [0, 9] :

θ̈10 =
0,84

9
=⇒ θ̇10(t) =

0,84

9
t =⇒ θ10(t) = θ10(0) +

∫ t

0

0,84

9
x dx =

0,84t2

18

2. ∀t ∈ [9, 27] :

θ̇10 = 0,84 =⇒ θ10(t) = θ10(9) +
∫ t

9
0,84 dx = 0,84 ×

(

t − 9

2

)

— l’allure de θ̇21 montre 3 segments :

1. ∀t ∈ [0, 9] :
θ̇21 = 0 =⇒ θ21(t) = 0

2. ∀t ∈ [9, 17] :

θ̈21 =
0,94

17 − 9
=⇒ θ̇21(t) =

0,94

8
(t − 9)

d’où

θ21(t) = θ21(9) +
∫ t

9

0,94

8
(x − 9) dx =

0,94 (t − 9)2

16

3. ∀t ∈ [17, 27] :

θ̇21 = 0,94 =⇒ θ21(t) = θ21(17) +
∫ t

17
0,94 dx = 0,94 ×

(

t − 26

2

)

— l’allure de θ̇32 montre 1 segment :

15



1. ∀t ∈ [0, 27] :

θ̇32 = −0,628 =⇒ θ32(t) = θ32(0) +
∫ t

0
−0,628 dx = −0,628t

Question 5.4. Pour t = 19,8 s, on a :

θ10(19,8) = 0,84 ×
(

19,8 − 9

2

)

≈ 12,85 ≡ 0,28 [2π]

θ21(19,8) = 0,94 ×
(

19,8 − 26

2

)

≈ 6,39 ≡ 0,10 [2π]

θ32(19,8) = −0,628 × 19,8 ≈ −12,43 ≡ 0,13 [2π]

Ces résultats sont cohérents avec les valeurs lues sur la figure 4.

Question 5.5. Par définition, on a :

∥
∥
∥
−−−→
VP,3/0

∥
∥
∥ =

√−−−→
VP,3/0 · −−−→

VP,3/0

Avec les produits scalaires

−→x1 · −→x2 = cos(θ21)
−→x2 · −→y2 = 0 −→y2 · −→x3 = 0

−→x1 · −→y2 = − sin(θ21)
−→x2 · −→x3 = cos(θ32)

−→x1 · −→x3 = cos(θ32) cos(θ21)

il vient :

∥
∥
∥
−−−→
VP,3/0

∥
∥
∥

2
=
(

θ̇10ℓ1

)2
+
(

θ̇10 + θ̇21

)2 [

ℓ2
2 + (ℓ3 sin(θ32))

2
]

+
(

θ̇32ℓ3

)2

+ 2ℓ1θ̇10

[(

θ̇10 + θ̇21

)

[ℓ2 cos(θ21) + ℓ3 sin(θ32) sin(θ21)] − θ̇32ℓ3 cos(θ32) cos(θ21)
]

− 2ℓ2ℓ3

(

θ̇10 + θ̇21

)

θ̇32 cos(θ32)

À l’instant t = 19,8 s, avec le code python suivant

import math as ma

l_1 = 3.90 ; l_2 = 2.87 ; l_3 = 2.61

theta_10 = .28 ; theta_10p = .84

theta_21 = .10 ; theta_21p = .94

theta_32 = .13 ; theta_32p = -.628

VP30 = ma.sqrt(

(l_1*theta_10p)**2

+ (theta_10p+theta_21p)**2*(l_2**2+(l_3*ma.sin(theta_32))**2)

+ (l_3*theta_32p)**2

+ 2*l_1*theta_10p*(

(theta_10p+theta_21p)*(l_2*ma.cos(theta_21)

+ l_3*ma.sin(theta_32)*ma.sin(theta_21))

16



- theta_32p*l_3*ma.cos(theta_32)*ma.cos(theta_21)

)

- 2*l_2*l_3*(theta_10p+theta_21p)*theta_32p*ma.cos(theta_32)

)

on trouve
∥
∥
∥
−−−→
VP,3/0

∥
∥
∥ ≈ 10,03 m·s−1

qui correspond bien à ce qui est observé sur le graphe de la figure 5. Cette vitesse est
maximale car à cet instant les trois vitesses de rotation ont valeur absolue maximale.

Question 5.6. Sur la figure 3, on observe sur l’intervalle de temps [17 ;27] s que les valeurs
de vitesses θ̇i/i−1, i ∈ J1, 3K, sont constantes d’où, par dérivation :

∀i ∈ J1, 3K, θ̈i/i−1 = 0

Question 5.7. par définition, on a :

−−−→
ΓP,3/0 =

d
−−−→
VP,3/0

dt
(t)

∣
∣
∣
∣
∣
∣
B0

= θ̇10ℓ1
d−→x1

dt

∣
∣
∣
∣
∣
B0

+
(

θ̇10 + θ̇21

)
[

ℓ2
d−→x2

dt

∣
∣
∣
∣
∣
B0

−ℓ3

(

cos(θ32)θ̇32
−→y2 + sin(θ32)

d−→y2

dt

∣
∣
∣
∣
∣
B0

)]

− θ̇32ℓ3
d−→x3

dt

∣
∣
∣
∣
∣
B0

où nous avons exploité le fait que les accélérations angulaires sont nulles dans l’intervalle
de temps [17 ;27] s. Avec les dérivées de vecteurs de base

d−→x1

dt

∣
∣
∣
∣
∣
B0

=
d−→x1

dt

∣
∣
∣
∣
∣
B1

+
−−→
Ω1/0 ∧ −→x1 = θ̇10

−→z0 ∧ −→x1 = θ̇10
−→y1

d−→x2

dt

∣
∣
∣
∣
∣
B0

=
d−→x2

dt

∣
∣
∣
∣
∣
B2

+
−−→
Ω2/0 ∧ −→x2 =

(

θ̇21 + θ̇10

)−→z0 ∧ −→x2 =
(

θ̇21 + θ̇10

)−→y2

d−→y2

dt

∣
∣
∣
∣
∣
B0

=
d−→y2

dt

∣
∣
∣
∣
∣
B2

+
−−→
Ω2/0 ∧ −→x2 =

(

θ̇21 + θ̇10

)−→z0 ∧ −→y2 = −
(

θ̇21 + θ̇10

)−→x2

d−→x3

dt

∣
∣
∣
∣
∣
B0

=
d−→x3

dt

∣
∣
∣
∣
∣
B3

+
−−→
Ω3/0 ∧ −→x3 =

[(

θ̇21 + θ̇10

)−→z0 + θ̇32
−→y2

]

∧ −→x3 =
(

θ̇21 + θ̇10

)

cos(θ32)
−→y2 − θ̇32

−→z3

il vient

−−−→
ΓP,3/0 = θ̇2

10ℓ1
−→y1 +

(

θ̇10 + θ̇21

)2
(ℓ2 + ℓ3 sin(θ32))

−→y2 − 2ℓ3θ̇32

(

θ̇21 + θ̇10

)

cos(θ32)
−→y2 + θ̇2

32ℓ3
−→z3

Question 5.8. Avec la courbe de la figure 6, on trouve dans l’intervalle de temps [17 ;27] s
que l’accélération est maximale à l’instant

t = 19,8 s

Question 5.9. En t = 19,8 s, on relève les éléments demandés dans le diagramme
d’exigences :
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— vitesse absolue > 30 km·h−1 : validé, car la valeur max est de 36 km·h−1 (10 m·s−1) ;
— accélération absolue de la nacelle > 1 g : validé, car la valeur max est de 18 m · s−2

ce qui est bien supérieur à 1 g (9, 8 m · s−2) ;
— accélération absolue de la nacelle < 3 g : validé, car la valeur max est de 18 m · s−2

ce qui est bien inférieur à 3 g (28 m · s−2) ;
— jerk absolu de la nacelle < 20 m · s−3 : vérifié car si on calcule la pente la plus grande

du tracé de l’accélération on la retrouve inférieure à la valeur max demandée.

18



— Exercice 6 —

Modélisation d’une encapsuleuse

Question 6.1.

0

5

3

17

18

L
pivot d’axe

(O
,
−→x )

L pivot d’axe
(A, −→x2)

L pivot glissant
d’axe (C, −→y2)

L sphérique de

centre C

L
pivot glissant

d’axe (D, −→
x )

−→x = −→x1

−→y

−→z
−→y1

−→z1

θ10. −→z1 = −→z2

−→x1

−→y1

−→x2

−→y2

α
. −→x2 = −→x3

−→y2

−→z2

−→y3

−→z3

θ32.

Les expressions canoniques de torseurs cinématiques sont :

— liaison pivot d’axe (O, −→x ) :

∀M ∈ (O, −→x ) ,
{

V5/0

}

=

M







θ̇10
−→x

−→
0







— liaison pivot d’axe (A, −→x2) :

∀M ∈ (A, −→x2) ,
{

V17/5

}

=

M







θ̇21
−→x2

−→
0







— liaison pivot glissant d’axe (C, −→y2) :

∀M ∈ (C, −→y2) ,
{

V18/17

}

=

M







q18/17
−→y2

v18/17
−→y2






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— liaison sphérique de centre C

{

V3/18

}

=

C







p3/18
−→x2 + q3/18

−→y2 + r3/18
−→z2

−→
0







— liaison pivot glissant d’axe (D, −→x ) :

∀M ∈ (D, −→x ) ,
{

V3/0

}

=

M







p3/0
−→x

u3/0
−→x







Question 6.2. Par composition des champs de vitesses, on a

{V3/17} = {V3/18} + {V18/17} =

C







p3/18
−→x2 +

(

q3/18 + q18/17

)−→y2 + r3/18
−→z2

v18/17
−→y2







Comme le point C appartient à la fois à l’axe central de {V18/17} (la droite (C, −→y2)) et

à l’axe central de {V3/18} (la droite
(

C,
−−−→
Ω3/18

)

), alors C est un point de l’axe central
de {V3/17}. Par conséquent, il est possible d’identifier la liaison à partir des éléments de
réduction canoniques au point C.

On identifie alors comme liaison équivalente une liaison sphère-cylindre de centre C et
d’axe (C, −→y2). Elle possède 4 degrés de liberté et une mobilité interne : la rotation autour
de l’axe (C, −→y2), paramétrée avec 2 inconnues.

Question 6.3.

Question 6.4. Par composition des vitesses au point O, on a :

−−−−→
VO,17/5 +

−−−→
VO,5/0
︸ ︷︷ ︸

−→
0

=
−−−−→
VO,17/18 +

−−−−→
VO,18/3

︸ ︷︷ ︸
−−−−−→
VO,17/3

+
−−−→
VO,3/0

Par relation de changement de point, il vient :

−−−−→
VO,17/5 =

−−−−→
VA,17/5 +

−−−→
Ω17/5 ∧ −−→

AO

= θ̇21
−→x2 ∧ −ℓ−→x

= ℓ sin(α)θ̇21
−→z1

−−−−→
VO,17/3 =

−−−−→
VC,17/3 +

−−−→
Ω17/3 ∧ −−→

CO

= v17/3
−→y2 +

(

p17/3
−→x + q17/3

−→y + r17/3
−→z
)

∧ (−x30
−→x − r−→y )

= v17/3
−→y2 + rr17/3

−→x − x30r17/3
−→y +

(

x30q17/3 − rp17/3

)−→z
−−−→
VO,3/0 =

−−−→
VD,3/0 +

−−→
Ω3/0 ∧ −−→

DO

= u3/0
−→x + p3/0

−→x ∧ (−L−→x − r−→y )

= u3/0
−→x − rp3/0

−→z
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d’où, avec
−→z1 = cos(θ10)

−→z − sin(θ10)
−→y

et
−→y2 = cos(α)−→y1 − sin(α)−→x = cos(α) (cos(θ10)

−→y + sin(θ10)
−→z ) − sin(α)−→x

il vient les projections dans la base (−→x , −→y , −→z ) :






/−→x : 0 = −v17/3 sin(α) + rr17/3 + u3/0

/−→y : −ℓ sin(α) sin(θ10)θ̇21 = v17/3 cos(α) cos(θ10) − x30r17/3

/−→z : ℓ sin(α) cos(θ10)θ̇21 = v17/3 cos(α) sin(θ10) +
(

x30q17/3 − rp17/3

)

+ rp3/0

Question 6.5. Il n’est pas possible d’utiliser la composition des vitesses au point O pour
déterminer une expression de ẋ30 = u3/0 en fonction de θ̇10 car ce dernier n’apparait pas

car
−−−→
VO,5/0 =

−→
0 . Pour obtenir une telle relation, il serait intéressant de se placer au point

C et de projeter la relation dans la direction −→x2 tel que l’on ait :
−−−−→
VC,17/5 · −→x2
︸ ︷︷ ︸

0

+
−−−→
VC,5/0 · −→x2 =

−−−−→
VC,17/3 · −→x2
︸ ︷︷ ︸

0

+
−−−→
VC,3/0 · −→x2
︸ ︷︷ ︸

u3/0 cos(α)

⇐⇒ u3/0 cos(α) =
−−−→
VC,5/0 · −→x2

car

— comme
−−−→
Ω17/5 = θ̇21

−→x2, alors

∀−→v ,
(−−−→
Ω17/5 ∧ −→v

)

· −→x2 = 0

et donc pour −→v =
−−→
AC , tel que

−−−−→
VC,17/5 · −→x2 = 0 ;

—
−−−−→
VC,17/3 = u17/3

−→y2 ⊥ −→x2 ;
— comme C ∈ (D, −→x ) alors on a

−−−→
VC,3/0 =

−−−→
VD,3/0 = u3/0

−→x

d’où −−−→
VC,3/0 · −→x2 = u3/0 cos(α)

Il ne reste à calculer que la projection dans la direction −→x2 de
−−−→
VC,5/0. Par relation de

changement de point, on a :
−−−→
VC,5/0 =

−−−→
VO,5/0 +

−−→
Ω5/0 ∧ −−→

OC

= θ̇10
−→x ∧ (x30

−→x + r−→y )

= rθ̇10
−→z

d’où, avec

−→z · −→x2 = sin(θ10)
−→y1 · −→x2 = sin(θ10) sin(α) car −→z1 ⊥ −→x2

il vient finalement

u3/0 cos(α) = r sin(θ10) sin(α)θ̇10 ⇐⇒ u3/0 = r sin(θ10) tan(α)θ̇10
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Question 6.6. La vitesse de rotation θ̇10 maximale permettant de respecter le cahier des
charges est obtenue lorsque θ10 ≡ π/2 [π], d’où, supposant α ∈]0, π/2] :

r tan(α)
∣
∣
∣θ̇10

∣
∣
∣ ⩽ vmax ⇐⇒

∣
∣
∣θ̇10

∣
∣
∣ ⩽

vmax

r tan(α)

d’où
∣
∣
∣θ̇10

∣
∣
∣
max

=
vmax

r tan(α)
=

0,12

115 × 10−3 tan(α)
≈ 1

tan(α)
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— Exercice 7 —

Planeuse sous traction pour bandes d’acier inoxydable

7.1 Étude du différentiel

Avant de commencer l’étude cinématique, il est nécessaire de réaliser un graphe de
structure du différentiel :

0 I

II

III

IV

L pivot d’axe
(O, −→y )

L
pivot d’axe

(O
,
−→y )

L
pivot d’axe

(O, −→
y )

L pivot d’axe
(A, −→y )

L
sphère-plan

avec RSG en J

L
sphère

-plan

avec
RSG

en
K

Question 7.1. La condition de roulement sans glissement au point J s’écrit
−−−−→
VJ,IV/II =

−→
0

Par composition des vitesses au point J , il vient
−−−−→
VJ,IV/II =

−−−−→
VJ,IV/I − −−−→

VJ,II/I =
−→
0

Par changement de point, il vient :
−−−−→
VJ,IV/I =

−−−−→
VA,IV/I +

−−−→
ΩIV/I ∧ −−→

AJ

= ωIV/I
−→y ∧ −mβ

2
−→z

=
−mβ

2
ωIV/I

−→x
−−−→
VJ,II/I =

−−−−→
VO,II/I +

−−−→
ΩII/I ∧ −−→

OJ

= ωII/I
−→y ∧ mα

2
−→z

=
mα

2
ωII/I

−→x

Il vient alors dans la direction −→x :

/−→x : ωIV/I = −α

β
ωII/I
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Question 7.2. De façon similaire, la condition de roulement sans glissement au point K
s’écrit −−−−−→

VK,IV/III =
−→
0

Par composition des vitesses au point K, il vient

−−−−−→
VK,IV/III =

−−−−→
VK,IV/I − −−−−→

VK,III/I =
−→
0

Par changement de point, il vient :

−−−−→
VK,IV/I =

−−−−→
VB,IV/I +

−−−→
ΩIV/I ∧ −−→

BK

= ωIV/I
−→y ∧ −mγ

2
−→z

=
−mγ

2
ωIV/I

−→x
−−−−→
VK,III/I =

−−−−→
VC,III/I +

−−−→
ΩIII/I ∧ −−→

CK

= ωIII/I
−→y ∧ mδ

2
−→z

=
mδ

2
ωIII/I

−→x

Il vient alors dans la direction −→x :

/−→x : ωIV/I = − δ

γ
ωIII/I

Question 7.3. Comme toutes les liaisons pivot ont des axes parallèles, on a par composition
des taux de rotation, on a :

∀x ∈ {II, III},
−−→
Ωx/I =

−−→
Ωx/0 − −−→

ΩI/0 ⇐⇒ ωx/I = ωx − ωI

Ainsi, des résultats aux deux questions précédentes, on en déduit






ωIV/I = −α

β
(ωII − ωI)

ωIV/I = − δ

γ
(ωIII − ωI)

=⇒ α

β
(ωII − ωI) =

δ

γ
(ωIII − ωI)

Après regroupement des termes, il vient finalement :

ωII = (1 − λ) ωI + λωIII , avec λ =
δβ

αγ
la raison basique du train

Question 7.4. D’après la table des correspondances pour le paramétrage, on trouve :

ω5 = (1 − λ) ω4 + λω6
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7.2 Mouvement principal et allongement

Question 7.5. La vitesse linéaire en sortie Vs est définie par

Vs = Rsωs

Sachant
ks =

ωs

ω1

⇐⇒ ωs = ksω1

il vient par substitution :
Vs = ksRsω1

Question 7.6. Partant de
ω5 = (1 − λ) ω4 + λω6

avec
ω6 = k1ω1 , et ω4 = k2ω2

par simples substitutions, il vient :

ω5 = (1 − λ) k2ω2 + λk1ω1

Question 7.7. Sachant







kE =
ωE

ω5

Ve = ReωE

⇐⇒







ω5 =
ωE

kE

ωE =
Ve

Re

=⇒ ω5 =
Ve

kERe

par simple substitution, il vient :

Ve = kERe [(1 − λ) k2ω2 + λk1ω1]

Question 7.8. Avec les résultats précédents, on a :

Vs − Ve = ksRsω1 − kERe [(1 − λ) k2ω2 + λk1ω1]

Sachant que l’on veut
Vs − Ve = aω2

on en déduit que pour tout ω1 et ω2 on doit avoir :







λ =
ksRs

k1kERe

a = kERek2 (λ − 1)

Question 7.9. Avec les nombres de dents α = 38 dents, β = 26 dents, γ = 23 dents,
δ = 35 dents, il vient la raison basique

λ =
δβ

αγ
=

35 × 26

38 × 23
≈ 1,04
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Avec les paramètres de production Vs = 60 m·min−1 = 1 m·s−1 et l’expression Vs = ksRsω1,
il vient

ω1 =
Vs

ksRs

=
1 × 155

7 × 0,15
≈ 147,6 rad·s−1

Avec la valeur d’allongement

ϵ =
Vs − Ve

Vs

=
aω2

Vs

= 2 %

il vient

ω2 =
2Vs

100a
=

2Vs

100RekEk2 (λ − 1)
=

2 × 1 × 9100 × 93

100 × 0,1 × 1311 × 28 × (1,04 − 1)
≈ 57,6 rad·s−1
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— Exercice 8 —

Robot Rovio

Question 8.1. À chaque instant, on a
∥
∥
∥
−−→
IA

∥
∥
∥ =

∥
∥
∥
−−→
JB

∥
∥
∥ =

∥
∥
∥
−−→
KC

∥
∥
∥ = R

Or les points I, J et K sont en contact avec le sol de normale −→z1 donc






A ∈ (I, −→z1 ) =⇒ −−→
IA = R−→z1

B ∈ (J, −→z1 ) =⇒ −−→
JB = R−→z1

C ∈ (K, −→z1 ) =⇒ −−→
KC = R−→z1

ce qui signifie que les points A, B et C sont situés dans un plan parallèle au sol (défini
par les points I, J et K, de normale −→z1 ) et distant de R du sol. Le mouvement du corps 1
par rapport au sol 0 se fait donc dans des plans parallèles de normales −→z1 , tel que :

−−→
Ω1/0 = ωz

−→z1 et ∀M,
−−−→
VM,1/0 · −→z1 = 0

d’où
{

V1/0

}

=

O1







ωz
−→z1

Vx
−→x1 + Vy

−→y1







Question 8.2. En chaque point de contact, on a roulement sans glissement, ce qui se
traduit au point I par −−−→

VI,11/0 =
−→
0

d’où
{

V11/0

}

=

I







−−−→
Ω11/0

−→
0







Choisissant simplement la base (−→x10,
−→y10,

−→z1 ) pour exprimer les trois composantes du taux
de rotation, il vient :

{

V11/0

}

=

I







ωix
−→x10 + ωiy

−→yA + ωiz
−→z1

−→
0







Question 8.3.
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1

10 11

020 21

30 31

L
pivo

t d’ax
e

(A
,
−→x10

)

L pivot d’axe
(P, −→y10)

L
sphère-plan

avec RSG
en

I
L pivot d’axe

(B, −→x20)
L pivot d’axe

(Q, −→y20)
L sphère-plan
avec RSG en J

L
pivot d’axe

(C, −→x
30 )

L pivot d’axe
(R, −→y30)

L
sphère

-plan

avec
RSG en

K

Les expressions canoniques de torseurs cinématiques sont :

— liaison pivot d’axe (A, −→x10) :

∀M ∈ (A, −→x10) ,
{

V10/1

}

=

M







ω10
−→x10

−→
0







— liaison pivot d’axe (P, −→y10) :

∀M ∈ (P, −→y10) ,
{

V11/10

}

=

M







ω11
−→y10

−→
0







— liaison sphère-plan avec roulement sans glissement en I :

{

V11/0

}

=

I







−−−→
Ω11/0

−→
0







Question 8.4. Par composition des vitesses au point O1, il vient :

−−−−→
VO1,1/0 =

−−−−→
VO1,1/10 +

−−−−−→
VO1,10/11 +

−−−−→
VO1,11/0

avec −−−−→
VO1,1/0 = Vx

−→x1 + Vy
−→y1 , et

−−−−→
VO1,1/10 =

−→
0 car O1 ∈ (A, −→x10)
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et, par relations de changement de point :

−−−−−→
VO1,10/11 =

−−−−→
VP,10/11 +

−−−→
Ω10/11 ∧ −−−→

PO1

= −ω11/10
−→y10 ∧ (b−→z10 − a−→x10)

= −ω11/10 (b−→x10 + a−→z10)
−−−−→
VO1,11/0 =

−−−→
VI,11/0 +

−−−→
Ω11/0 ∧ −−→

IO1

= (ωix
−→x10 + ωiy

−→yA + ωiz
−→z1 ) ∧ (R−→z1 − a−→x10)

= − (Rωix + aωiz) −→yA + ωiy (R−→x10 − a−→z1 )

où nous avons exploité les figures géométrales

−→z0 = −→z1
−→x0

−→y0

−→x1

−→y1

α. −→z1 = −→zA
−→x1

−→y1

−→xA

−→yA

β(fixe). −→xA = −→x10
−→yA

−→zA

−→y10

−→z10

θ10.

Avec les projections

−→x1 = cos(β)−→x10 − sin(β)−→yA

−→y1 = cos(β)−→yA + sin(β)−→x10

−→z10 = cos(θ10)
−→z1 − sin(θ10)

−→yA

il vient :






/−→x10 : Vx cos β + Vy sin β = −bω11/10 + Rωiy

/−→yA : −Vx sin β + Vy cos β = −Rωix + a
(

cos(θ10)ω11/10 − ωiz

)

/−→z1 : 0 = −a
(

ωiy + cos(θ10)ω11/10

)

Question 8.5. Dans le système d’équations précédent, il n’apparaît pas de ω10 car
O1 ∈ (A, −→x 10). Pour faire apparaître cette vitesse de rotation, il est possible d’utiliser une
composition des taux de rotation ou une composition de vitesses en un point M tel que

−−−→
AM ∧ −→x1 ̸= −→

0 ⇐⇒ M /∈ (A, −→x1)

par exemple au point I :

−−−→
VI,1/0 =

−−−→
VI,1/10 +

−−−−→
VI,10/11 +

−−−→
VI,11/0
︸ ︷︷ ︸

−→
0
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avec, par relations de changement de point :

−−−→
VI,1/0 =

−−−−→
VO1,1/0 +

−−→
Ω1/0 ∧ −−→

O1I

= Vx
−→x1 + Vy

−→y1 + ωz
−→z1 ∧ (a−→x10 − R−→z1 )

= Vx
−→x1 + Vy

−→y1 + aωz
−→yA

−−−→
VI,1/10 =

−−−−→
VA,1/10 +

−−−→
Ω1/10 ∧ −−→

AI

= −ω10
−→x10 ∧ −R−→z1

= −Rω10
−→yA

−−−−→
VI,10/11 =

−−−−→
VP,10/11 +

−−−→
Ω10/11 ∧ −−→

PI

= −ω11/10
−→y10 ∧ (b−→z10 − R−→z1 )

= −ω11/10 (R cos(θ10) − b) −→x10

Avec les projections déjà calculées, il vient :







/−→x10 : Vx cos β + Vy sin β = ω11/10 (R cos(θ10) − b)

/−→yA : −Vx sin β + Vy cos β + aωz = −Rω10

/−→z1 : 0 = 0

On obtient alors :

ω10 =
Vx sin(β) − Vy cos(β) − aωz

R
ω11/10 =

Vx cos β + Vy sin β

R cos(θ10) − b

Question 8.6. Avec β10 = −β20 = 60° et β30 = 180°, il vient :

ω10 = Vx

√
3

2R
− Vy

2R
− ωz

a

R
ω20 = −Vx

√
3

2R
− Vy

2R
− ωz

a

R
ω30 =

Vy

R
− ωz

a

R

Question 8.7. Pour une rotation à la vitesse ωz, sans translation, c’est-à-dire avec
Vx = Vy = 0, il vient :

ω10 = ω20 = ω30 = −ωz
a

R

Question 8.8. On veut enfin vérifier le respect du critère de vitesse linéaire. Pour un
déplacement en ligne droite dans la direction −→x1 à une vitesse Vx, on pose ωz = 0 et Vy = 0
tels que :

ω10 = −ω20 = Vx

√
3

2R
ω30 = 0
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— Exercice 9 —

Étude d’un différentiel automobile

Question 9.1. Un différentiel est un mécanisme qui, sur un véhicule automobile, permet
aux roues motrices de tourner à des fréquences angulaires différentes ce qui est nécessaire
en virage où la fréquence angulaire de la roue située à l’intérieur du virage est inférieure à
celle de la roue située à l’extérieur du virage. De plus, comme il est impossible d’avoir une
égalité parfaite des diamètres des roues compte tenu de l’usure et de la déformation des
pneumatiques, alors même en ligne droite les vitesses de rotations doivent pourvoir être
différentes.

9.1 Nécessité du différentiel en virage

Question 9.2. La condition de roulement sans glissement de la roue gauche sur le sol
s’écrit −−−→

VI2,2/0 =
−→
0

Par composition des vitesses au point I2, on a :
−−−→
VI2,2/0 =

−−−→
VI2,2/1 +

−−−→
VI2,1/0 =

−→
0

Par relation de changement de point, on a :
−−−→
VI2,2/1 =

−−−→
V02,2/1 +

−−→
Ω2/1 ∧ −−−→

O2I2

= ω2/1
−→x1 ∧ −r−→z

= rω2/1
−→y1

−−−→
VI2,1/0 =

−−−→
V0,1/0 +

−−→
Ω1/0 ∧ −−−→

O2I2

= θ̇−→z ∧ [(R − ℓ/2) −→x1 − r−→z ]

= (R − ℓ/2) θ̇−→y1

Il vient alors dans la direction −→y1 :

/−→y1 : ω2/1 = −2R − ℓ

2r
θ̇

De façon similaire, en exploitant la condition de roulement sans glissement de la roue
droite sur le sol

−−−→
VI3,3/0 =

−→
0 et sachant

−−−→
MI3 = −−−−→

MI2 tel que, après avoir appliqué les
changements de variables :

∀□, □2 → □3, ω2/1 → ω3/1 et − ℓ → +ℓ

il vient dans la direction −→y1 :

/−→y1 : ω3/1 = −2R + ℓ

2r
θ̇
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On a par quotient et sachant 2R > ℓ :

ω3/1

ω2/1

=
2R + ℓ

2R − ℓ
> 1 ⇐⇒

∣
∣
∣ω3/1

∣
∣
∣ >

∣
∣
∣ω2/1

∣
∣
∣

En posant θ̇ > 0, il vient alors :
ω3/1 < ω2/1 < 0

ce qui signifie que la vitesse de rotation de la roue droite 3 par rapport à la voiture 1 doit
être, en valeur absolue, plus grande que celle de la roue gauche 2 par rapport à 1.

9.2 Étude du mécanisme de répartition de vitesse

Question 9.3.

1

2

3

4

5

L
pivot d’axe

(A
,
−→x1)

L pivot d’axe
(A, −→x1)

L
pivot d’axe

(A, −→x
1 )

L pivot d’axe

(E,
−→y4)

L
sphère-plan

avec RSG en C

L sphère-planavec RSG en D

Les expressions canoniques de torseurs cinématiques sont :

— les trois liaisons pivot d’axe (A, −→x1) :

∀□ ∈ {2, 3, 4}, ∀M ∈ (A, −→x1) ,
{

V□/1

}

=

M







ω□1
−→x1

−→
0







— liaison pivot d’axe (E, −→y4) :

∀M ∈ (E, −→y4) ,
{

V5/4

}

=

M







ω54
−→y4

−→
0







— liaison sphère-plan avec roulement sans glissement en C :

{

V5/2

}

=

C







−−→
Ω5/2

−→
0






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— liaison sphère-plan avec roulement sans glissement en D :

{

V5/3

}

=

D







−−→
Ω5/3

−→
0







Question 9.4. Les conditions de roulement sans glissement aux points C et D s’écrivent
respectivement −−−→

VC,5/2 =
−→
0 et

−−−→
VD,5/3 =

−→
0

Par composition des vitesses aux points C et D, il vient

−−−→
VC,5/2 =

−−−→
VC,5/4 +

−−−→
VC,4/1 − −−−→

VC,2/1 =
−→
0

−−−→
VD,5/3 =

−−−→
VD,5/4 +

−−−→
VD,4/1 − −−−→

VD,3/1 =
−→
0

Sachant que −−−→
VD,5/4 = −−−−→

VC,5/4 car
−−→
ED = −−−→

EC

et que

∀□ ∈ {2, 3, 4},
−−−→
VD,□/1 =

−−−→
VC,□/1 car

−−→
AD ∧ −→x1 =

(−−→
AC +

−−→
CD

)

∧ −→x1 =
−−→
AC ∧ −→x1

alors il n’est nécessaire que de calculer 2 vitesses. Par changement de point, il vient :

−−−→
VC,5/4 =

−−−→
VE,5/4 +

−−→
Ω5/4 ∧ −−→

EC

= ω54
−→y4 ∧ −r−→x1

= rω54
−→z4

−−−→
VC,□/1 =

−−−→
VA,□/1 +

−−→
Ω□/1 ∧ −−→

AC

= ω□1
−→x1 ∧ (a−→x1 + R−→y4)

= Rω□1
−→z4

Il vient alors dans la direction −→z4 :







0 = rω54 + R (ω41 − ω21)

0 = −rω54 + R (ω41 − ω31)
⇐⇒







ω41 =
ω21 + ω31

2

ω54 =
R

2r
(ω31 − ω21)

qui signifie que ω41 est la moyenne de ω21 et ω31 et que ω54 n’est pas nulle que si ω31 ≠ ω21,
c’est-à-dire qu’il est une image de la différence de vitesse de rotation de roues.

Question 9.5. En utilisant le porte satellite 4 comme référentiel, alors on a un train
d’engrenages simple tel que

|ω34|
|ω54|

=
|ω24|
|ω54|

=
r

R
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Pour signer ces expressions, il est nécessaire de trouver ceux des vitesses aux points C et
D. Soit

ω34 > 0 =⇒ ω54 < 0 =⇒ ω24 < 0

d’où
ω34 = − r

R
ω54 = −ω24 ⇐⇒ ω34 = −ω24

De plus, comme les liaisons pivot L2/1, L3/1 et L3/1 sont coaxiales (taux de rotation
colinéaires), il est possible de composer les taux de rotation dans la direction −→x1 tels que







ω24 = ω21 − ω41

ω34 = ω31 − ω41

d’où ω31 − ω41 = ω41 − ω21 ⇐⇒ ω41 =
ω21 + ω31

2

ce qui correspond bien à l’expression reliant ω21, ω31 et ω41 trouvée à la question précédente.

Question 9.6. Sachant de la question 9.2 que

ω2/1 = −2R − ℓ

2r
θ̇ et ω3/1 = −2R + ℓ

2r
θ̇

il vient 





ω41 = −Rθ̇

ω54 =
Rℓ

2r2
θ̇ ̸= 0

Il est donc bien possible de moduler la vitesse de rotation des roues en fonction de celle de
l’arbre moteur ω41 pour prendre un virage.

Question 9.7. Une roue patine si sa vitesse de rotation est grande par rapport à une
autre. En supposant que la roue droite patine, alors on a :

ω31 = lim
k→+∞

kω21 =⇒ ω21 = lim
k→+∞

2ω41

1 + k
= 0

ce qui signifie que la roue gauche ne tourne plus et donc que la voiture ne peut plus
avancer, quelle que soit la vitesse de rotation du moteur.

Question 9.8. Avec un différentiel, lorsqu’une roue patine, il n’est plus possible de
transmettre de puissance motrice au sol.

Pour éviter ce problème, il faudrait bloquer le différentiel en bloquant la liaison pivot
L5/4 ; c’est ce qui équipe les véhicules 4 × 4 (voire le blocage de pont pour transmettre la
puissance de façon inconditionnelle à l’avant et à l’arrière).
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— Exercice 10 —

Système d’aide à la navigation

10.1 Modélisation du comportement de la pompe

Question 10.1. La liaison L1/0 est une liaison pivot d’axe (O, −→x0) telle que :

∀M ∈ (O, −→x0) ,
{

V1/0

}

=

M







ω1/0
−→x0

−→
0







Question 10.2. La liaison L2/1 est une liaison pivot glissant d’axe (A, −→x0) dont la vitesse
le long de l’axe est définie par

−−−→
VC,2/1 =

−−→
VC/1 =

d
−−→
AC

dt

∣
∣
∣
∣
∣
∣
1

= λ̇−→x1

telle que

∀M ∈ (A, −→x0) ,
{

V2/1

}

=

M







ω2/1
−→x0

λ̇−→x0







Question 10.3. La liaison L2/0 est une liaison sphère-plan de normale (C, −→n ) = (I, −→n )
telle que −−−→

VI,2/0 · −→n = 0

d’où
{

V2/0

}

=

C







−−→
Ω2/0

−−−→
VI,2/0






avec

−−−→
VI,2/0 · −→n = 0

Question 10.4. Par théorème d’équiprojectivité du champ de vitesses
{

V2/0

}

le long de
−−→
CI , colinéaire à −→n , il vient :

−−−→
VI,2/0 · −→n =

−−−→
VC,2/0 · −→n = 0

Question 10.5. Par composition des vitesses au point C, dans la direction −→n , il vient :
−−−→
VC,2/0 · −→n
︸ ︷︷ ︸

0

=
−−−→
VC,2/1 · −→n +

−−−→
VC,1/0 · −→n

Sachant C ∈ (A, −→x0), on a : −−−→
VC,2/1 =

−−−→
VA,2/1 = λ̇−→x0

et par relation de changement de point, on a :
−−−→
VC,1/0 =

−−−→
VO,1/0 +

−−→
Ω1/0 ∧ −−→

OC

= ω1/0
−→x0 ∧ (λ−→x0 + r−→y1)

= rω1/0
−→z1

Avec les figures géométrales
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−→x0 = −→x1

−→y0

−→z0

−→y1

−→z1

θ10. −→z0

−→n

−→
t

−→x0

−→y0

β
.

on trouve

−→x0 · −→n = cos(β)
−→z1 · −→n = (cos(θ10)

−→z0 − sin(θ10)
−→y0) · −→n = sin(β) sin(θ10)

Par somme, il vient finalement :

λ̇ = −r tan(β) sin(θ10)ω1/0

qui correspond bien à la relation obtenue par dérivation de la loi entrée-sortie géométrique.

10.2 Calcul du débit instantané de la pompe

Question 10.6. Avec 6 pistons, on a :

∀i ∈ J0, 5K, λ̇i = −r tan(β) sin
(

θ10 +
iπ

3

)

ω1/0

et sachant que le débit instantané pour un piston s’écrit

∀i ∈ J0, 5K, Qi =
S

2

(

λ̇i +
∣
∣
∣λ̇i

∣
∣
∣

)

avec S =
πd2

4

D’où par somme, le débit instantané de la pompe :

Q = −rπd2

8
tan(β)ω1/0

5∑

i=0

[

sin
(

θ10 +
iπ

3

)

+
∣
∣
∣
∣sin

(

θ10 +
iπ

3

)∣
∣
∣
∣

]

Question 10.7. Sachant que sur une période on a :
∫ 2π

0
(sin(x) + |sin(x)|) dx =

∫ π

0
sin(x) dx = [− cos(x)]π0 = 2

alors il vient le débit moyen par piston

Q̄i =
1

2π

∫ 2π

0
Qi(θ10) dθ10 =

d2

4
r tan(β)ω1/0

d’où, par somme :

Q̄ =
3d2

2
r tan(β)ω1/0
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— Exercice 11 —

Table élévatrice

Question 11.1. Par théorème de Thalès dans les triangles AOD et BOC, isocèles en O, on
a

−−→
AD =

−−→
CB . Le contact du galet 5 avec le sol 1 étant maintenu, on a

−−→
AD =

−−→
CB = µ−→x ,

µ variable. Considérant que le contact est aussi maintenu entre le galet 6 et le plateau 2
alors on a que le plateau ne change pas d’orientation ; d’où on en déduit que

−−→
Ω2/1 =

−→
0

Donc
{

V2/1

}

est une translation.
Sachant le triangle AOC isocèle en O, on en déduit que le parallélogramme ADBC

est un rectangle car ses diagonales sont de même longueur ; d’où
(−−→
AD ,

−−→
AC

)

≡ π/2 [2π]

et donc que
−−→
AC = 2a sin(α)−→y est colinéaire à −→y . Ainsi, sachant que par définition

−−−→
VC,2/1 =

−−→
VC/1 =

d
−−→
AC

dt

∣
∣
∣
∣
∣
∣
1

= 2a cos(α)α̇−→y

qui, sachant
−−→
Ω2/1 =

−→
0 , conduit à

∀M,
{

V2/1

}

=

M







−→
0

2a cos(α)α̇−→y







qui correspond bien à un champ de translation de direction −→y .

Question 11.2. Par composition des taux de rotation, on a :
−−→
Ω6/2 =

−−→
Ω6/3 +

−−→
Ω3/1 − −−→

Ω2/1
︸ ︷︷ ︸

−→
0

Avec
−−→
Ω6/3 = ω63

−→z et
−−→
Ω3/1 = α̇−→z , il vient

−−→
Ω6/2 = (ω63 + α̇) −→z

Question 11.3. Par composition des vitesses au point B, on a :
−−−→
VB,2/1 =

−−−→
VB,2/6 +

−−−→
VB,6/3 +

−−−→
VB,3/1

En posant
−−−→
VB,2/1 = v−→y et sachant

−−−→
VB,6/3 =

−→
0 et par relations de changement de point :

−−−→
VB,2/6 =

−−−→
VI,2/6 +

−−→
Ω2/6 ∧ −−→

IB

= − (ω63 + α̇) −→z ∧ −R−→y
= −R (ω63 + α̇) −→x

−−−→
VB,3/1 =

−−−→
VA,3/1 +

−−→
Ω3/1 ∧ −−→

AB

= α̇−→z ∧ 2a−→x3

= 2aα̇−→y3
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il vient : 





/−→x : 0 = −R (ω63 + α̇) − 2a cos(α)α̇

/−→y : v = 2a cos(α)α̇

Question 11.4. De la relation

−−−→
VB,2/1 · −→x = 0 ⇐⇒ R (ω63 + α̇) = −2a cos(α)α̇ ⇐⇒ ω63 = −

(

1 +
2a cos(α)

R

)

α̇

On en déduit par anti-symétrie
ω54 = −ω63

Question 11.5. Par composition des taux de rotation, il vient :

−−→
Ω4/3 =

−−→
Ω4/1 − −−→

Ω3/1

Sachant que dans le plan de normale −→z , on a :

(−→x , −→x4) ≡ π − (−→x , −→x3) [2π] ≡ π − α [2π] =⇒ −−→
Ω4/1 = −α̇−→z

il vient alors par somme :
−−→
Ω4/3 = −2α̇−→z

Question 11.6. Sachant
−−−→
VF,3/7 ⊥ −→x7, on a par composition des vitesses au point F dans

la direction −→x7 : −−−→
VF,4/3 · −→x7 =

−−−→
VF,4/8
︸ ︷︷ ︸

−→
0

·−→x7 +
−−−→
VF,8/7 · −→x7 +

−−−→
VF,7/3 · −→x7
︸ ︷︷ ︸

0

avec
−−−→
VF,8/7 = λ̇−→x7 et, par changement de point

−−−→
VF,4/3 =

−−−→
VO,4/3 +

−−→
Ω4/3 ∧ −−→

OF

= −2α̇−→z ∧ b−→x4

= −2bα̇−→y4

et sachant (−→x4, −→x7) ≡ β + α − π [2π] tel que

−→y4 · −→x7 = sin(β + α − π) = − sin(β + α)

il vient finalement :
λ̇ = 2b sin(β + α)α̇

Question 11.7. En exploitant le résultat précédent et celui de la question 11.3, il vient :

v =
a cos(α)

b sin(β + α)
λ̇
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Question 11.8. Pour assurer une vitesse de translation supérieur à vmin = 50 mm·s−1, il
faut :

v =
a cos(α)

b sin(β + α)
λ̇ ⩾ vmin ⇐⇒ λ̇ ⩾

b sin(β + α)

a cos(α)
vmin

Sachant que le débit est défini par

Q =
πd2

4
λ̇

on en déduit

Q ⩾
πd2

4

b sin(β + α)

a cos(α)
vmin

Avec d = 50 mm, a = 0,6 m, b = 1,2 m et dans la configuration critique, c’est-à-dire telle
que

sin(β + α)

cos(α)
= sin(β) + cos(β) tan(α)

soit maximale. Au voisinage de α ≡ π/2 [2π] on a β ≈ α, tel que

sin(β + α)

cos(α)
≈ 2 sin(α) ⩽ 2

il vient :

Q ⩾
πbd2

2a
vmin =

π1,2 × (50 × 10−3)2 × 50 × 10−3

2 × 0,6
≈ 392 × 10−6 m3 ·s−1
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