Informatique — MPSI/PCSI
Correction du TP n° 8

Exercice 8.1 (Tri a bulles)
1. En partant de la fin, on compare tous les couples

def TriBulles(L):
n = len(L)
for a in range(n-1):
for k in range (1,n-a):
if L[n-k] < L[n-k-1]:
Lln-k], LIn-k-1] = L[n-k-1], L[n-k]

2. Dans le meilleur des cas, ¢’est-a-dire lorsque la séquence est triée, il faut O(n) opérations. Dans le

pire des cas, c’est-a-dire lorsque la liste est triée en sens inverse, il faut

— nn—1
<n—1>+<n—z>+.-.+1:;:<2>

décalages, soit O(n?) opérations.

Exercice 8.2 (Tri par insertion)

1. A partir de la description du tri donnée, il vient I'implémentation suivante.

def Trilnsertion(L):
for k in range(1,len(L)):

c=L[k]

j=k

while j>0 and c<L[j-1]:
L[j1=L[j-1]
j-=

L[jl=c

2. La complexité au pire est obtenue lorsque la séquence, supposée de longueur n, est initialement en

ordre décroissant et que le k-iéme élément (0 < k < n — 1) nécessite k décalages. Il vient alors :

= ~n(n—1)
D k="

k=1

d’ott une complexité au pire en O(n?). La complexité au mieux est obtenue pour une séquence triée
et donc (n — 1) tests d’ott une complexité au mieux en O(n).
. Linvariant de boucle utilisé est que la séquence Ly = {ag,a1,...,ax} est triée.

Initialisation Quand k =1, Ly se compose d’un unique élément ag et est donc triée.

Conservation Au cours de la k-iéme insertion, 1 < k£ < n — 1, on a au début de l'itération Lj_1
triée. On insere a; dans cette séquence triée de sorte que ’on ait en fin d’itération L, triée.

Terminaison La boucle for prend fin lorsque k dépasse n—1 et donc vaut n. Ainsi, L,,_; correspond
a la version intégralement triée de la séquence initiale.

. Pour permuter deux éléments d’une séquence, il suffit de sauvegarder de fagon temporaire un des
deux objets pour réaliser la permutation. Tenant compte du fait que 'on agit sur la liste elle-méme
(pointeur), il n’est pas nécessaire de renvoyer quoi que ce soit.

def Permuter(L,i,j):
tmp=L[i]
L[i]=L[j]
L[jl1=tmp



La version suivante utilise le swap natif des objets en python.

def Permuter(L,i,j):
L[i],L[j]1=L[j1,L[i]

5. Pour définir la fonction Inserer, on commence par remarquer que ’on travaille sur une séquence L
de longueur k + 1 ou les k premiers éléments sont triés. Il faut donc trouver dans cette sous-séquence
et en partant de la fin, la position de I’élément & insérer. Avec ’expression donnée, il vient :

def Inserer(L,k):
if k>0 and L[k]<L[k-1]:
Permuter(L,k,k-1)
Inserer(L,k-1)

6. Pour définir une version récursive du tri par insertion, il suffit d’exploiter I'invariant de boucle,
partant de k = 1 et s’arrétant a k = n.

def TrilInsRec(L,k=1):
if k<len(L):
Inserer(L,k)
TriInsRec(L,k+1)

Exercice 8.3 (Tri par sélection)
1. On commence par définir une fonction imin qui renvoie l'indice du minimum d’une séquence a partir
de Vindice k :

def imin(L,k):
for i in range(k+1,len(L)):
if LIi1<L[k]:
k=1
return (k)

puis on parcourt la séquence en permutant le k-iéme élément avec le minimum des n — k + 1 éléments
suivants.

def TriSelection(L):
for k in range(len(L)):
Permuter (L,k,imin(L,k))

2. La complexité est ici constante pour toute séquence de longueur n. Positionner le k-ieme élément
(0 < k < n—2) nécessite n — k + 1 tests pour trouver le minimum. Il vient alors :

fk:n(n—l)
2
k=1

d’ott une complexité au pire en O(n?).
3. Pour définir une version récursive de ’algorithme de tri par sélection, il suffit d’exploiter 'invariant
de boucle qui est que, & la k-ieme itération, Ly <> min (L,;) et s’arréter & L,,_1.
k<j<n

def TriSelRec(L,k=0):
if k<len(L)-1:
Permuter (L,k,imin(L,k))
TriSelRec(L,k+1)

4. En procédant avec les maximums, il vient :

def imax(L):
i=0
for k in range(1,len(L)):
if L[k]>L[i]:
i=k
return(i)

et de fagon impérative



def TriSelection(L):
n=len(L)
for k in range(n):
Permuter (L,n-k-1,imax(L[:n-k]))

ou, de facon récursive

def TriSelRec(L,k=0):
n=len(L)
if k<n-1:
Permuter (L,n-k-1,imax(L[:n-k]))
TriSelRec(L,k+1)

Exercice 8.4 (Tri par partition-fusion)
1. Remarquant que le principe de la fusion consiste simplement a comparer les premiers éléments

des deux séquences puis a appeler récursivement la fonction elle-méme jusqu’a ce qu'une des deux

séquence soit vide, il vient le code suivant.

def Fusion(M,N):
if M==[]:
return(N)
elif N==[]:
return(Fusion(N,M))
elif M[0]<=N[0]:
return([M[0]]+Fusion(M[1:],N))
else:
return(Fusion(N,M))
2. Pour diviser une séquence de longueur n en deux, on utilise le slicing et le quotient de n/2. Si la
séquence contient 0 ou 1 élément, c’est qu’elle est triée. Il vient le code suivant.

def TriFusion(L):
n=len(L)
if n<2:
return(L)
else:

=n//2
return(Fusion(TriFusion(L[:m]),TriFusion(L[m:]1)))
3. La complexité en temps de 'algorithme de partition-fusion dépend :
— du nombre de comparaisons de la fonction Fusion, soit n—1 = O(n) pour 2 séquences contenant

n éléments en tout ;
— du nombre d’appels récursifs de la fonction Fusion pour réaliser :
n . 212
§J fusions de 2 éléments

+ QJ fusions de 4 éléments

+...
n . k 212
+ Q—kJ =1 fusion de 2" éléments

ol k ~ logy(n). Il vient alors par somme et au pire :

oga() | loms(n)
Z {EJ 2=n Z 1 =nlogy(n) = O (In(n))
i=1 i=1

La complexité est donc constante et vaut O (nln(n)). Attention, la complexité en espace est en O(n)
puisqu’on crée une nouvelle liste de méme longueur que la liste & trier et cela peut poser probléeme

pour de tres grandes listes.

Suite et fin du corrigé en fin de TP.



