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Les espaces vectoriels introduisent un langage commun pour des situations a priori différentes (fonctions, polynômes, 
suites, matrices, …). Ils permettent de résoudre avec la même méthode des problèmes de domaines différents.
Dans tout le chapitre, 𝕂 désignera ℝ ou ℂ.

1 Espaces vectoriels

1.1 Définition et propriétés

Définition 1.1 (Espace vectoriel)

Soit 𝐸 un ensemble non vide, muni d’une addition interne + ∶  𝐸 × 𝐸 → 𝐸 et d’une multiplication externe 
⋅ ∶ 𝕂 × 𝐸 → 𝐸. On dit que (𝐸, +, ⋅) est un 𝕂-espace vectoriel lorsque :

• L’opération interne + vérifie les propriétés suivantes :

– pour tout (𝑥, 𝑦) ∈ 𝐸2, 𝑥 + 𝑦 = 𝑦 + 𝑥 (la loi + est commutative),
– pour tout (𝑥, 𝑦, 𝑧) ∈ 𝐸3, (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) (la loi + est associative),
– il existe un unique 𝑒 ∈ 𝐸 appelé élément neutre tel que pour tout 𝑥 ∈ 𝐸, 𝑥 + 𝑒 = 𝑥 = 𝑒 + 𝑥.
– pour tout 𝑥 ∈ 𝐸, il existe 𝑥′ ∈ 𝐸 tel que 𝑥 + 𝑥′ = 𝑒 = 𝑥′ + 𝑥. Cet élément est unique, appelé

opposé de 𝑥, et noté −𝑥.

• L’opération externe ⋅ vérifie les propriétés suivantes :

– pour tout 𝑥 ∈ 𝐸 et pour tout (𝛼, 𝛽) ∈ 𝕂2, (𝛼 + 𝛽) ⋅ 𝑥 = 𝛼 ⋅ 𝑥 + 𝛽 ⋅ 𝑥
– pour tout (𝑥, 𝑦) ∈ 𝐸2 et pour tout 𝛼 ∈ 𝕂, 𝛼 ⋅ (𝑥 + 𝑦) = 𝛼 ⋅ 𝑥 + 𝛼 ⋅ 𝑦
– pour tout 𝑥 ∈ 𝐸 et pour tout (𝛼, 𝛽) ∈ 𝕂2, 𝛼 ⋅ (𝛽 ⋅ 𝑥) = (𝛼𝛽) ⋅ 𝑥
– pour tout 𝑥 ∈ 𝐸, 1 ⋅ 𝑥 = 𝑥

On appelle vecteurs les éléments d’un 𝕂-espace vectoriel et scalaires les éléments de 𝕂.

Exemple. Les règles de calcul sur ℝ et ℂ donnent directement que 𝕂 est un 𝕂-espace vectoriel.

Exemple. Dans l’ensemble ℝ2 :

• Si 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 et 𝑦 = (𝑦1, 𝑦2) ∈ ℝ2, on définit 𝑥 + 𝑦 comme (𝑥1 + 𝑦1, 𝑥2 + 𝑦2) ∈ ℝ2. Il s’agit bien d’une 
opération interne dans ℝ2, qui vérifie les propriétés :

– pour tout 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 et 𝑦 = (𝑦1, 𝑦2) ∈ ℝ2, 𝑥 + 𝑦 = (𝑥1 + 𝑦1, 𝑥2 + 𝑦2) = (𝑦1 + 𝑥1, 𝑦2 + 𝑥2) = 𝑦 + 𝑥.
– pour tout 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2, 𝑦 = (𝑦1, 𝑦2) ∈ ℝ2 et 𝑧 = (𝑧1, 𝑧2) ∈ ℝ2,

(𝑥+𝑦)+𝑧 = (𝑥1+𝑦1, 𝑥2+𝑦2)+(𝑧1, 𝑧2) = (𝑥1+𝑦1+𝑧1, 𝑥2+𝑦2+𝑧2) = (𝑥1, 𝑥2)+(𝑦1+𝑧1, 𝑦2+𝑧2) = 𝑥+(𝑦+𝑧).
– il existe un élément 𝑒 = (0, 0) ∈ ℝ2, tel que pour tout 𝑥 ∈ ℝ2, 𝑥 + 𝑒 = 𝑥 = 𝑒 + 𝑥.
– pour tout 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2, il existe 𝑥′ = (−𝑥1, −𝑥2) ∈ ℝ2 tel que 𝑥 + 𝑥′ = 𝑒 = 𝑥′ + 𝑥.

• Si 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 et 𝛼 ∈ ℝ, on définit 𝛼 ⋅ 𝑥 comme (𝛼𝑥1, 𝛼𝑥2) ∈ ℝ2. Il s’agit bien d’une multiplication 
externe, qui vérifie les propriétés :

– pour tout 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 et pour tout (𝛼, 𝛽) ∈ ℝ2,
(𝛼 + 𝛽) ⋅ 𝑥 = ((𝛼 + 𝛽)𝑥1, (𝛼 + 𝛽)𝑥2) = (𝛼𝑥1 + 𝛽𝑥1, 𝛼𝑥2 + 𝛽𝑥2) = (𝛼𝑥1, 𝛼𝑥2) + (𝛽𝑥1, 𝛽𝑥2) = 𝛼 ⋅ 𝑥 + 𝛽 ⋅ 𝑥.

– pour tout 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2, 𝑦 = (𝑦1, 𝑦2) ∈ ℝ2 et 𝛼 ∈ ℝ,
𝛼 ⋅ (𝑥 + 𝑦) = 𝛼(𝑥1 + 𝑦1, 𝑥2 + 𝑦2) = (𝛼𝑥1 + 𝛼𝑦1, 𝛼𝑥2 + 𝛼𝑦2) = (𝛼𝑥1, 𝛼𝑥2) + (𝛼𝑦1, 𝛼𝑦2) = 𝛼 ⋅ 𝑥 + 𝛼 ⋅ 𝑦.

– pour tout 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 et pour tout (𝛼, 𝛽) ∈ ℝ2, 𝛼⋅(𝛽 ⋅𝑥) = 𝛼⋅(𝛽𝑥1, 𝛽𝑥2) = (𝛼𝛽𝑥1, 𝛼𝛽𝑥2) = (𝛼𝛽)⋅𝑥.
– pour tout 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2, 1 ⋅ 𝑥 = (𝑥1, 𝑥2) = 𝑥.

Donc (ℝ2, +, .) est un ℝ-espace vectoriel.
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Exemple. L’ensemble des vecteurs de l’espace, muni de l’addition de deux vecteurs et de la multiplication d’un 
réel par un vecteur, est un ℝ-espace vectoriel. Son élément neutre est le vecteur nul.

Remarque. Le symbole de l’opération externe ⋅ est parfois omis. Qu’il soit présent ou pas, il faut toujours placer 
le scalaire à gauche du vecteur.

Remarque. L’élément neutre pour + est souvent noté 0𝐸, ou 0 lorsqu’il n’y a pas de risque de confusion.

Proposition 1.2 (Cas d’un produit valant 0𝐸)

Soit (𝐸, +, ⋅) un 𝕂-espace vectoriel. Alors ∀𝑥 ∈ 𝐸 et ∀𝜆 ∈ 𝕂, 𝜆 ⋅ 𝑥 = 0𝐸 ⟺ 𝜆 = 0 ou 𝑥 = 0𝐸.

Exemple. Soit 𝑥 ∈ ℝ2 et 𝜆 ∈ ℝ. Alors 𝜆 ⋅ 𝑥 = (0, 0) ⟺ 𝜆 = 0 ou 𝑥 = (0, 0).

Proposition 1.3 (Construction de l’opposé)

Soit (𝐸, +, ⋅) un 𝕂-espace vectoriel. Alors pour tout 𝑥 ∈ 𝐸, −𝑥 = (−1) ⋅ 𝑥, où −𝑥 est l’opposé de 𝑥 dans 𝐸.

1.2 Espaces vectoriels de référence

Pour montrer les résultats qui suivent, on vérifie mécaniquement toutes les propriétés.

Proposition 1.4 (𝕂𝑛)

Soit 𝑛 ∈ ℕ∗. Muni des opérations usuelles, 𝕂𝑛 est un 𝕂-espace vectoriel.

Remarque. L’élément neutre de 𝕂𝑛 est le 𝑛-uplet (0, …, 0).

Proposition 1.5 (ℳ𝑛,𝑝(𝕂))

Soit (𝑛, 𝑝) ∈ (ℕ∗)2. Muni de l’addition de deux matrices et de la multiplication d’une matrice par un scalaire, 
ℳ𝑛,𝑝(𝕂) est un 𝕂-espace vectoriel.

Remarque. L’élément neutre de ℳ𝑛,𝑝(𝕂) est la matrice nulle de taille 𝑛 × 𝑝.

Proposition 1.6 (𝕂[𝑋])

Muni de l’addition de deux polynômes et de la multiplication d’un polynôme par un scalaire, 𝕂[𝑋] est un 
𝕂-espace vectoriel.

Remarque. L’élément neutre de 𝕂[𝑋] est le polynôme nul.

Proposition 1.7 (𝐸 × 𝐹)

Soit 𝐸 et 𝐹 sont deux 𝕂-espaces vectoriels. Muni des opérations usuelles, le produit cartésien 𝐸 × 𝐹 est aussi 
un 𝕂-espace vectoriel.

Remarque. L’élément neutre de 𝐸 × 𝐹 est (0𝐸, 0𝐹).

Proposition 1.8 (ℱ(Ω, 𝐹))

Soit Ω un ensemble non vide et 𝐹 un 𝕂-espace vectoriel. Muni des opérations usuelles, l’ensemble ℱ(Ω, 𝐹)
des applications de Ω dans 𝐹 est un 𝕂-espace vectoriel.
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Remarque. L’élément neutre de ℱ(Ω, 𝐹) est l’application nulle de Ω dans 𝐹 (l’application qui à tout élément de 
Ω associe 0𝐹).

Remarque. Ω n’a pas besoin d’être un espace vectoriel pour que le résultat soit valide.

Exemple. L’ensemble 𝕂ℕ des suites à valeurs dans 𝕂 est un 𝕂-espace vectoriel. Son élément neutre est la suite 
nulle.

Exemple. Soit 𝐴 une partie de ℝ. L’ensemble 𝕂𝐴 des applications de 𝐴 dans 𝕂 est un 𝕂-espace vectoriel. Son 
élément neutre est la fonction nulle.

1.3 Combinaison linéaire

Définition 1.9 (Famille finie de vecteurs)

Soit 𝐸 un espace vectoriel et 𝑝 ∈ ℕ∗. On dit que (𝑒1, 𝑒2, ..., 𝑒𝑝) est une famille finie de vecteurs de 𝐸
lorsque tous les 𝑒𝑖 appartiennent à 𝐸.

Exemple. (1, 0), (0, 1, 3) et (1, 2, 2, 4) sont trois familles finies de l’espace vectoriel ℝ.
((1, 0), (2, 3), (2, 1)) est une famille finie de l’espace vectoriel ℝ2.

Définition 1.10 (Combinaison linéaire)

Soit 𝐸 un 𝕂-espace vectoriel, 𝑝 ∈ ℕ∗, 𝒮 = (𝑒𝑘)1⩽𝑘⩽𝑝 une famille finie de vecteurs de 𝐸 et 𝑥 ∈ 𝐸. On dit que 
𝑥 est combinaison linéaire des vecteurs de 𝒮 lorsqu’il existe 𝑝 scalaires (𝛼𝑘)1⩽𝑘⩽𝑝 de 𝕂 tels que

𝑥 =
𝑝

∑
𝑘=1

𝛼𝑘𝑒𝑘.

Exemple. Soit 𝑛 ∈ ℕ et 𝑃 ∈ 𝕂[𝑋] un polynôme de degré inférieur ou égal à 𝑛. Alors il existe des scalaires 

(𝑎0, …, 𝑎𝑛) tels que 𝑃(𝑋) =
𝑛

∑
𝑘=0

𝑎𝑘𝑋𝑘, donc 𝑃 est combinaison linéaire de (1, 𝑋, …, 𝑋𝑛).

Exercice 1. Montrer que (4, 13) est combinaison linéaire de ((1, 5), (2, 3)).

Exercice 2. Montrer que (1, 1) n’est pas combinaison linéaire de ((0, 0), (0, 1), (0, 2)).

2 Sous-espaces vectoriels

2.1 Définition et caractérisation

Définition 2.1 (Sous-espace vectoriel)

Soit (𝐸, +, ⋅) un 𝕂-espace vectoriel et 𝐹 une partie de 𝐸 stable par combinaison linéaire. On dit que 𝐹 est 
un sous-espace vectoriel de 𝐸 lorsque (𝐹 , +, ⋅) est un 𝕂-espace vectoriel.

Remarque. Dire que 𝐹 est stable par combinaison linéaire signifie que toute combinaison linéaire d’éléments de 𝐹
appartient à 𝐹.

Exemple. Si 𝐸 est un 𝕂-espace vectoriel, {0𝐸} (sous-espace nul) et 𝐸 sont des sous-espaces vectoriels de 𝐸.

Proposition 2.2 (Cas de l’élément neutre)

Soit 𝐸 un 𝕂-espace vectoriel et 𝐹 un sous-espace vectoriel de 𝐸. Alors 0𝐸 ∈ 𝐹.
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Remarque. Si 𝐹 est un sous-espace vectoriel de 𝐸, l’unicité de l’élément neutre donne donc 0𝐹 = 0𝐸.

Proposition 2.3 (Caractérisation d’un sous-espace vectoriel)

Soit 𝐸 un 𝕂-espace vectoriel et 𝐹 un sous-ensemble de 𝐸. Alors :

𝐹 est un sous-espace vectoriel de 𝐸 ⟺ 0𝐸 ∈ 𝐹 et ∀(𝑥, 𝑦) ∈ 𝐹 2, ∀𝛼 ∈ 𝕂, (𝛼 ⋅ 𝑥) + 𝑦 ∈ 𝐹.

Remarque. Pour montrer qu’un ensemble 𝐹 est un espace vectoriel, revenir à la définition est peu pratique. Il est 
beaucoup plus rapide de montrer par la caractérisation ci-dessus que c’est un sous-espace vectoriel d’un espace 
vectoriel connu.

Exercice 3. Montrer que l’ensemble 𝐸 des suites réelles convergentes est un ℝ-espace vectoriel.

Exercice 4. Montrer que l’ensemble 𝐷 des suites réelles divergentes n’est pas un ℝ-espace vectoriel.

Exercice 5. L’ensemble 𝐸′ des fonctions 𝑓 définies de ℝ dans ℝ et telles que 𝑓(0) = 0 est-il un ℝ-espace vectoriel ?

Exercice 6. Soit 𝑛 ∈ ℕ, l’ensemble ℂ𝑛[𝑋] des polynômes de degré au plus 𝑛 est-il un ℂ-espace vectoriel ?

2.2 Intersection de sous-espaces vectoriels

Proposition 2.4 (Intersection de sous-espaces vectoriels)

Soit 𝐸 un 𝕂-espace vectoriel. L’intersection de deux sous-espaces vectoriels de 𝐸 est un sous-espace vectoriel 
de 𝐸.

Remarque. Ce résultat se généralise à l’intersection de plus de deux sous-espaces vectoriels.

Remarque. Attention : de manière générale, la réunion de deux sous-espaces vectoriels de 𝐸 n’est PAS un 
sous-espace vectoriel de 𝐸.

Exercice 7. {0} × ℝ et ℝ × {0} sont deux sous-espaces vectoriels de ℝ2. Montrer que ({0} × ℝ) ∪ (ℝ × {0}) n’est 
pas un sous-espace vectoriel de ℝ2.

2.3 Sous-espace vectoriel engendré par une famille

Définition 2.5 (Sous-espace vectoriel engendré)

Soit 𝐸 un 𝕂-espace vectoriel, 𝑝 ∈ ℕ∗ et 𝒮 = (𝑒𝑖)1⩽𝑖⩽𝑝 une famille finie de vecteurs de 𝐸. On note Vect(𝒮)
l’ensemble de toutes les combinaisons linéaires des vecteurs de 𝒮.
Vect(𝒮) est un sous-espace vectoriel de 𝐸, appelé sous-espace vectoriel engendré par la famille 𝒮.

Exemple. Soit (𝑎, 𝑏) ∈ ℝ2 ∖ {(0, 0)}, Vect((𝑎, 𝑏)) est un sous-espace vectoriel de ℝ2 appelé droite vectorielle :

𝑎

Vect((𝑎, 𝑏))𝑏

Exemple. Soit (𝑎1, 𝑏1, 𝑐1) et (𝑎2, 𝑏2, 𝑐2) deux vecteurs non colinéaires de ℝ3. Alors Vect((𝑎1, 𝑏1, 𝑐1), (𝑎2, 𝑏2, 𝑐2)) est 
un sous-espace vectoriel de ℝ3, appelé plan vectoriel.
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Exemple. Dans ℳ2(𝕂), Vect (( 1 0
0 0 ), ( 0 1

0 0 ), ( 0 0
0 1 )) est l’ensemble des matrices triangulaires supérieures (qui forme 

donc un espace vectoriel).

Exercice 8. Montrer que Vect((1, 2), (1, 0)) = ℝ2.

Proposition 2.6 (Sous-espace contenant une famille)

Soit 𝐸 un 𝕂-espace vectoriel, 𝑝 ∈ ℕ∗ et 𝒮 = (𝑒𝑖)1⩽𝑖⩽𝑝 une famille finie de vecteurs de 𝐸. Tout sous-espace 
vectoriel de 𝐸 contenant les 𝑒𝑖 contient Vect(𝒮).

Proposition 2.7 (Cas d’un vecteur combinaison linéaire)

Soit 𝐸 un 𝕂-espace vectoriel et 𝒮 une famille finie de vecteurs de 𝐸. Si 𝑥 ∈ 𝒮 est combinaison linéaire des 
autres vecteurs de 𝒮, alors Vect(𝒮) = Vect(𝒮′), où 𝒮′ est la famille obtenue en retirant 𝑥 à 𝒮.

Exemple. (3, 6) = 3(1, 2), donc Vect((1, 2), (3, 6)) = Vect((1, 2)) = {(𝜆, 2𝜆), 𝜆 ∈ ℝ}.

3 Familles finies de vecteurs

3.1 Familles génératrices

Définition 3.1 (Famille génératrice)

Soit 𝐸 un espace vectoriel et 𝒮 une famille finie d’éléments de 𝐸. La famille 𝒮 est dite génératrice de 𝐸
lorsque Vect(𝒮) = 𝐸.

Remarque. L’inclusion Vect(𝒮) ⊂ 𝐸 est évidente. Pour prouver que 𝒮 est génératrice de 𝐸, il suffit donc de 
montrer que 𝐸 ⊂ Vect(𝒮), c’est-à-dire de montrer que tout 𝑥 ∈ 𝐸 peut s’écrire comme combinaison linéaire des 
éléments de 𝒮.

Exemple. Si 𝑃(𝑋) ∈ 𝕂2[𝑋], alors il existe (𝑎, 𝑏, 𝑐) ∈ 𝕂3 tels que 𝑃(𝑋) = 𝑎𝑋2 + 𝑏𝑋 + 𝑐. Les vecteurs 𝑋2, 𝑋 et 1
sont bien dans 𝕂2[𝑋], donc (1, 𝑋, 𝑋2) est une famille génératrice de 𝕂2[𝑋].

Exercice 9. La famille ((1, 0), (1, 1)) est-elle une famille génératrice de ℝ2 ?

Exercice 10. La famille ((1, 0)) est-elle une famille génératrice de ℝ2 ?

Exercice 11. Soit 𝐸 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3|𝑥 = 2𝑦}. Montrer que c’est un ℝ-espace vectoriel, dont on déterminera une 
famille génératrice.

Proposition 3.2 (Famille contenant une famille génératrice)

Toute famille de vecteurs qui contient une famille génératrice de l’espace vectoriel 𝐸 est une famille génératrice 
de l’espace vectoriel 𝐸.

Proposition 3.3 (Cas d’un élément combinaison linéaire des autres)

Soit 𝐸 un espace vectoriel et 𝒮 est une famille génératrice de 𝐸. Si 𝑥 ∈ 𝒮 est combinaison linéaire des autres 
vecteurs de 𝒮, alors la famille 𝒮′ obtenue en retirant 𝑥 à 𝒮 est aussi génératrice de 𝐸.
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3.2 Familles libres

Définition 3.4 (Famille libre, famille liée)

Une famille (𝑒1, 𝑒2, ..., 𝑒𝑝) de l’espace vectoriel 𝐸 est dite libre lorsque pour tout 𝑝-uplet (𝛼𝑖)1⩽𝑖⩽𝑝 de scalaires 
de 𝕂𝑝,

𝑝

∑
𝑘=1

𝛼𝑘𝑒𝑘 = 0𝐸 ⟹ ∀𝑘 ∈ [[1, 𝑝]], 𝛼𝑘 = 0.

On dit alors que les vecteurs 𝑒1, 𝑒2, …, 𝑒𝑝 sont linéairement indépendants. Une famille qui n’est pas libre 
est dite liée.

Remarque. Si 𝑥 ∈ 𝐸 et 𝑥 ≠ 0𝐸, alors la famille (𝑥) est libre.

Remarque. Pour montrer qu’une famille est libre, on fixe (𝛼𝑖)1⩽𝑖⩽𝑝 ∈ 𝕂𝑝, on suppose que 
𝑝

∑
𝑘=1

𝛼𝑘𝑒𝑘 = 0𝐸 et on 

cherche à en déduire que tous les 𝛼𝑖 sont nuls.

Exercice 12. Montrer que la famille ((2, 1, 0), (0, 0, 1)) obtenue précédemment est une famille libre de ℝ3.

Exercice 13. Montrer que ((1, 2), (3, 6)) est une famille liée.

Proposition 3.5 (Unicité de la décomposition dans une famille libre)

Soit 𝐸 un 𝕂-espace vectoriel. Une famille (𝑒1, 𝑒2, …, 𝑒𝑝) de 𝐸 est libre si et seulement si pour tous scalaires 

𝛼1, 𝛼2, …, 𝛼𝑝, 𝛽1, 𝛽2, … , 𝛽𝑝 de 𝕂, 
𝑝

∑
𝑘=1

𝛼𝑘𝑒𝑘 =
𝑝

∑
𝑘=1

𝛽𝑘𝑒𝑘 ⟹ ∀𝑘 ∈ [[1, 𝑝]], 𝛼𝑘 = 𝛽𝑘.

Remarque. La liberté d’une famille permet donc d’identifier les coefficients dans une égalité.

Exercice 14. Soit 𝑓 et 𝑔 les fonctions définies sur ℝ par ∀𝑥 ∈ ℝ, 𝑓(𝑥) = 𝑒𝑥 et 𝑔(𝑥) = 𝑒2𝑥. La famille (𝑓, 𝑔) est-elle 
libre dans l’espace vectoriel des fonctions réelles ?

Exercice 15. Montrer que la famille (𝑋 + 2, 𝑋 + 1, 𝑋2) est libre dans ℝ[𝑋].

Proposition 3.6 (Famille de polynômes échelonnée en degré)

Soit 𝑛 ∈ ℕ∗ et (𝑃1, …, 𝑃𝑛) une famille de polynômes de 𝕂[𝑋]. Si la famille est échelonnée en degré
(c’est-à-dire si 0 ⩽ deg(𝑃1) < … < deg(𝑃𝑛)), alors elle est libre.

Exemple. La famille (1, (𝑋 + 1)5, (𝑋 − 2)7) est échelonnée en degrés, donc libre dans ℝ[𝑋].

Proposition 3.7 (Sous-famille d’une famille libre)

Toute sous-famille d’une famille libre est libre.

Proposition 3.8 (Cas d’un vecteur combinaison linéaire des autres)

Soit 𝐸 un 𝕂-espace vectoriel. Une famille (𝑒1, 𝑒2, …, 𝑒𝑝) de 𝐸 est liée si et seulement si l’un des vecteurs de 
cette famille peut s’écrire comme une combinaison linéaire des autres vecteurs.

Remarque. En particulier toute famille qui contient l’élément neutre est liée, car si 𝑒1 = 0𝐸, 𝑒1 = 0𝑒2 + … + 0𝑒𝑝.

Remarque. Si on ajoute à une famille libre un vecteur qui n’est pas combinaison linéaire de ses éléments, on 
obtient donc une nouvelle famille libre.

Exercice 16. La famille ((0, 1, 2), (0, 2, 1), (0, 1, 1)) est-elle libre ?
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3.3 Bases

Définition 3.9 (Base, coordonnées)

Soit 𝐸 un 𝕂-espace vectoriel. Une famille (𝑒𝑖)1⩽𝑖⩽𝑝 est une base de 𝐸 lorsque tout vecteur 𝑥 de 𝐸 peut 
s’écrire d’une manière unique comme une combinaison linéaire des vecteurs 𝑒1, 𝑒2, …, 𝑒𝑝.
On appelle alors coordonnées de 𝑥 les coefficients de cette combinaison linéaire.

Exemple. (1, 𝑋, 𝑋2) est une base de ℝ2[𝑋] et les coefficients de 1 + 3𝑋2 dans cette base sont 1, 0 et 3.

Proposition 3.10 (Caractérisation des bases)

Soit 𝐸 un 𝕂-espace vectoriel. Une famille finie d’éléments de 𝐸 est une base de 𝐸 si et seulement si elle est à 
la fois libre et génératrice de 𝐸.

Exercice 17. Dans 𝕂𝑛, on pose 𝑒1 = (1, 0, …, 0), …, 𝑒𝑘 = (0, …, 1⏟
𝑘ème position

, …, 0), … , 𝑒𝑛 = (0, …, 0, 1). Montrer 

que (𝑒1, 𝑒2, …, 𝑒𝑛) forme une base de 𝕂𝑛.

Remarque. Plusieurs ensembles usuels ont des bases « naturelles », appelées bases canoniques :

 Espace vectoriel  Base canonique associée 
𝕂𝑛 ((1, 0, …, 0), (0, 1, 0, …, 0), …(0, …, 0, 1))

𝕂𝑛[𝑋] (1, 𝑋, 𝑋2, …, 𝑋𝑛)
ℳ𝑛,𝑝(𝕂) (𝐸𝑖,𝑗)(𝑖,𝑗)∈[[1,𝑛]]×[[1,𝑝]]

On rappelle que 𝐸𝑖,𝑗 désigne la matrice dont tous les coefficients sont nuls à l’exception de celui placé à la 𝑖-ème 
ligne et 𝑗-ième colonne, qui vaut 1.

Exemple. La famille ((1, 0, 0), (0, 1, 0), (0, 0, 1)) est la base canonique de ℝ3 ou de ℂ3.

Exercice 18. Soit 𝐸 l’ensemble des suites réelles qui vérifient la relation de récurrence : ∀𝑛 ∈ ℕ, 𝑢𝑛+2 = 𝑢𝑛+1 +𝑢𝑛.

1. Montrer que 𝐸 est un espace vectoriel.

2. En déterminer une base.

4 Somme de sous-espaces vectoriels

4.1 Définitions et premières propriétés

Définition 4.1 (Somme de deux sous-espaces vectoriels)

Soit 𝐸 un espace vectoriel et 𝐹 et 𝐺 deux sous-espaces vectoriels de 𝐸. L’ensemble des éléments de 𝐸
s’écrivant sous la forme de la somme d’un élément de 𝐹 et d’un élément de 𝐺 est un sous-espace vectoriel de 
𝐸 appelé somme des sous-espaces vectoriels 𝐹 et 𝐺. On note 𝐹 + 𝐺 = {𝑥 + 𝑦|(𝑥, 𝑦) ∈ 𝐹 × 𝐺}.

Proposition 4.2 (Somme d’espaces vectoriels engendrés)

Soit 𝐸 un 𝕂-espace vectoriel et 𝒮1, 𝒮2 deux familles finies d’éléments de 𝐸. On note 𝒮 la famille qui juxtapose 
les vecteurs de 𝒮1 et 𝒮2. Alors Vect(𝒮1) + Vect(𝒮2) = Vect(𝒮).

Remarque. Si 𝐹 et 𝐺 sont deux sous-espaces vectoriels de 𝐸, on obtient donc une famille génératrice de 𝐹 + 𝐺 en 
juxtaposant des familles génératrices de 𝐹 et de 𝐺.

Exercice 19. On se place dans ℝ[𝑋]. Que vaut ℝ1[𝑋] + Vect(𝑋2) ?
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Définition 4.3 (Somme directe de deux sous-espaces vectoriels)

Soit 𝐸 un 𝕂-espace vectoriel et 𝐹 et 𝐺 deux sous-espaces vectoriels de 𝐸. On dit que la somme 𝐹 + 𝐺 est 
une somme directe lorsque tout élément 𝑢 de 𝐹 + 𝐺 s’écrit de manière unique sous la forme 𝑢 = 𝑥 + 𝑦, 
avec (𝑥, 𝑦) ∈ 𝐹 × 𝐺. La somme est alors notée 𝐹 ⊕ 𝐺.

Remarque. La définition de 𝐹 + 𝐺 donne l’existence de cette décomposition, il suffit donc de montrer l’unicité 
pour conclure que la somme est directe.

Proposition 4.4 (Caractérisation des sommes directes)

Soit 𝐸 un 𝕂-espace vectoriel et 𝐹 et 𝐺 deux sous-espaces vectoriels de 𝐸. La somme 𝐹 + 𝐺 est une somme 
directe si et seulement si 𝐹 ∩ 𝐺 = {0𝐸}.

Remarque. Comme 𝐹 et 𝐺 sont des sous-espaces vectoriels de 𝐸, on a toujours {0𝐸} ⊂ 𝐹 ∩ 𝐺. Il suffit donc de 
montrer que 𝐹 ∩ 𝐺 ⊂ {0𝐸} pour montrer qu’une somme est directe.

Exercice 20. Montrer que la somme ℝ1[𝑋] + Vect(𝑋2) est directe.

4.2 Sous-espaces vectoriels supplémentaires

Définition 4.5 (Sous-espaces vectoriels supplémentaires)

Soit 𝐸 un 𝕂-espace vectoriel et 𝐹 et 𝐺 deux sous-espaces vectoriels de 𝐸. On dit que 𝐹 et 𝐺 sont supplé­
mentaires dans 𝐸 lorsque 𝐸 = 𝐹 ⊕ 𝐺.

Remarque. Un même espace vectoriel peut avoir plusieurs supplémentaires différents.

Remarque. Des méthodes pratiques de construction de supplémentaire seront étudiées dans un prochain chapitre.

Exemple. Vect(𝑋2) et Vect(𝑋2 + 1) sont deux supplémentaires de ℝ1[𝑋] dans ℝ2[𝑋]
(on a montré ℝ2[𝑋] = ℝ1[𝑋] ⊕ Vect(𝑋2) dans l’exercice 20, l’égalité ℝ2[𝑋] = ℝ1[𝑋] ⊕ Vect(𝑋2 + 1) s’établit de la 
même manière).

Exemple. Les supplémentaires d’une droite du plan passant par 0 sont toute autre droite du plan passant 
par 0. Par exemple, les supplémentaires de Vect((1, 0)) dans ℝ2 sont les ensembles de la forme Vect((𝑎, 𝑏)) avec 
(𝑎, 𝑏) ∈ ℝ × ℝ∗.

1

Vect((1, 1))1

Supplémentaires possibles

Exemple. Les supplémentaires d’un plan 𝑃 de ℝ3 passant par 0 sont toute droite du plan passant par 0 et non 
incluse dans le plan 𝑃.

Exercice 21. Soit 𝑛 un entier naturel non nul, on se place dans ℳ𝑛(ℝ). Montrer que 𝒮𝑛(ℝ) et 𝒜𝑛(ℝ) sont deux 
sous-espaces vectoriels supplémentaires.
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