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Les espaces vectoriels introduisent un langage commun pour des situations a priori différentes (fonctions, polynémes,
suites, matrices, ...). Ils permettent de résoudre avec la méme méthode des problémes de domaines différents.
Dans tout le chapitre, K désignera R ou C.

1 Espaces vectoriels
1.1 Définition et propriétés
Définition 1.1 (Espace vectoriel)

Soit E un ensemble non vide, muni d’une addition interne +: E X E — E et d’une multiplication externe
-: Kx E— E. On dit que (E,+,-) est un K-espace vectoriel lorsque :

o L’opération interne + vérifie les propriétés suivantes :

— pour tout (z,y) € E?, z +y =y + 2« (la loi + est commutative),

— pour tout (z,y,2) € B>, (x4+y)+2 =2+ (y+ 2) (laloi + est associative),

— il existe un unique e € F appelé élément neutre tel que pour tout t € F, x +e=x =e + x.

— pour tout x € E, il existe 2’ € E tel que x + 2" = e = 2’ 4+ x. Cet élément est unique, appelé
opposé de z, et noté —z.

o L’opération externe - vérifie les propriétés suivantes :

— pour tout x € E et pour tout (o, 3) € K2, (a+p) -z =a-z+ -2
— pour tout (z,y) € E? et pour tout a €K, o+ (z+y) =a-z+a-y
— pour tout x € E et pour tout (o, ) € K?, a- (B -2) = (aff) - =

—pourtoutx € £, 1-z==x

On appelle vecteurs les éléments d’un K-espace vectoriel et scalaires les éléments de K.

Exemple. Les regles de calcul sur R et C donnent directement que K est un K-espace vectoriel.

Exemple. Dans 'ensemble R? :

e Siz=(z,,7,) €ER? et y = (y;,y5) € R?, on définit x + y comme (2, + vy, Ty + yo) € R% 11 s’agit bien d'une
opération interne dans R?, qui vérifie les propriétés :
— pour tout = = (z1,2,) € R* et y = (y1,4,) ER*, &+ y = () + Y1, 9 +Y0) = (Y1 + 21,90 + 7)) =y + .
— pour tout = = (x,,25) € R%, y = (y;,9,) € R? et 2 = (2, 2,) € R?,
(@+y)+2z = (@141, Totya)+ (21, 20) = (@1 Fy1 21, Ty Hyp+22) = (1, To) + (Y121, Yo +22) = T+ (y+2).
— il existe un élément e = (0,0) € R?, tel que pour tout 2 € R*, z +e = = e + .
— pour tout = (1y,7,) € R?, il existe 2’ = (—xy, —x,) ER? tel que v + 2’ =e =2 + 2.
e Siz=(xy,75) € R? et a € R, on définit a - x comme (az;,axr,) € R Il s’agit bien d’une multiplication
externe, qui vérifie les propriétés :
— pour tout x = (x,,z5) € R? et pour tout (o, B) € R?,
(a+p)-z=((a+ Bz, (a+ B)zy) = (axy + By, axy + Bry) = (a@y, 0wy) + (B, Bry) = -z + - .
— pour tout x = (2, 25) € R y = (y;,7,) ER? et a € R,
a-(z+y) =z +y, @ + 1) = (axy + ayy, axy + ayy) = (@, axy) + (o, ayp) = a -z +a-y.
— pour tout x = (7, 5) € R? et pour tout (a, B) € R?, a-(B-7) = a-(Bzy, Bzy) = (afzy, afzy) = () .

— pour tout x = (z,,2,) € R 1.2 = (zy,2,) = .

Donc (R?,+,.) est un R-espace vectoriel.



Exemple. L’ensemble des vecteurs de I’espace, muni de ’addition de deux vecteurs et de la multiplication d’un
réel par un vecteur, est un R-espace vectoriel. Son élément neutre est le vecteur nul.

Remarque. Le symbole de 'opération externe - est parfois omis. Qu’il soit présent ou pas, il faut toujours placer
le scalaire a gauche du vecteur.

Remarque. L’élément neutre pour + est souvent noté O, ou 0 lorsqu’il n’y a pas de risque de confusion.
Proposition 1.2 (Cas d’un produit valant 0p)

Soit (E,+,-) un K-espace vectoriel. Alors Vz € Eet VA€ K, Az =05 < A =0ou x = 0p.

Exemple. Soit z € R2 et A € R. Alors A -z = (0,0) <= A =0 ou = = (0,0).
Proposition 1.3 (Construction de 'opposé)

Soit (E,+,+) un K-espace vectoriel. Alors pour tout € F, —x = (—1) - z, o —x est I'opposé de = dans E.

1.2 Espaces vectoriels de référence

Pour montrer les résultats qui suivent, on vérifie mécaniquement toutes les propriétés.
Proposition 1.4 (K")

Soit n € N*. Muni des opérations usuelles, K™ est un K-espace vectoriel.

Remarque. L’élément neutre de K" est le n-uplet (0, ...,0).

Proposition 1.5 (M, ,(K))

Soit (n,p) € (N*)2. Muni de I’addition de deux matrices et de la multiplication d’une matrice par un scalaire,
M, ,(K) est un K-espace vectoriel.

Remarque. L’élément neutre de M, ,(K) est la matrice nulle de taille n x p.

Proposition 1.6 (K[X])
Muni de laddition de deux polynémes et de la multiplication d’un polynéme par un scalaire, K[ X] est un
K-espace vectoriel.
Remarque. L’élément neutre de K[X] est le polynéme nul.
Proposition 1.7 (E x F)
Soit E et F'sont deux K-espaces vectoriels. Muni des opérations usuelles, le produit cartésien E x F est aussi
un K-espace vectoriel.
Remarque. L’élément neutre de E X Fest (0g,0p).
Proposition 1.8 (F (1, F))

Soit 2 un ensemble non vide et F' un K-espace vectoriel. Muni des opérations usuelles, 'ensemble 7 (), F')
des applications de 2 dans I est un K-espace vectoriel.



Remarque. L’élément neutre de F (2, F') est I'application nulle de €2 dans F' (’application qui a tout élément de
2 associe 0p).

Remarque. () n’a pas besoin d’étre un espace vectoriel pour que le résultat soit valide.

Exemple. L’ensemble KN des suites & valeurs dans K est un K-espace vectoriel. Son élément neutre est la suite
nulle.

Exemple. Soit A une partie de R. L’ensemble K* des applications de A dans K est un K-espace vectoriel. Son
élément neutre est la fonction nulle.

1.3 Combinaison linéaire
Définition 1.9 (Famille finie de vecteurs)
Soit E un espace vectoriel et p € N*. On dit que (eq, ey, ...,€,) est une famille finie de vecteurs de F
lorsque tous les e; appartiennent a E.

Exemple. (1,0), (0,1,3) et (1,2,2,4) sont trois familles finies de 1’espace vectoriel R.

((1,0),(2,3),(2,1)) est une famille finie de I'espace vectoriel R

Définition 1.10 (Combinaison linéaire)

Soit £ un K-espace vectoriel, p € N*, § = (e;,); <k<p UDE famille finie de vecteurs de E et z € E. On dit que
T est combinaison linéaire des vecteurs de S lorsqu’il existe p scalaires (o), <p de K tels que

p
xTr = E Oékek.

k=1

Exemple. Soit n € N et P € K[X]| un polynéme de degré inférieur ou égal a n. Alors il existe des scalaires
n

(ag, ..., a,) tels que P(X) = Zaka, donc P est combinaison linéaire de (1, X, ..., X™).
k=0

Exercice 1. Montrer que (4, 13) est combinaison linéaire de ((1,5),(2,3)).

Exercice 2. Montrer que (1, 1) n’est pas combinaison linéaire de ((0,0), (0,1), (0,2)).

2 Sous-espaces vectoriels

2.1 Définition et caractérisation

Définition 2.1 (Sous-espace vectoriel)
Soit (E, +,-) un K-espace vectoriel et F une partie de E stable par combinaison linéaire. On dit que F est
un sous-espace vectoriel de F lorsque (F',+,-) est un K-espace vectoriel.
Remarque. Dire que F'est stable par combinaison linéaire signifie que toute combinaison linéaire d’éléments de F
appartient a F.
Exemple. Si E est un K-espace vectoriel, {0y} (sous-espace nul) et E sont des sous-espaces vectoriels de E.
Proposition 2.2 (Cas de ’élément neutre)

Soit E un K-espace vectoriel et F'un sous-espace vectoriel de E. Alors Oy € F.



Remarque. Si F est un sous-espace vectoriel de E, 'unicité de 1’élément neutre donne donc 0 = 0.
Proposition 2.3 (Caractérisation d’un sous-espace vectoriel)
Soit E un K-espace vectoriel et ' un sous-ensemble de E. Alors :

F est un sous-espace vectoriel de £ <= 0 € Fet ¥(r,y) € F>Va €K, (a-2)+y€ F.

Remarque. Pour montrer qu’un ensemble F' est un espace vectoriel, revenir a la définition est peu pratique. Il est
beaucoup plus rapide de montrer par la caractérisation ci-dessus que c’est un sous-espace vectoriel d’un espace
vectoriel connu.

Exercice 3. Montrer que I’ensemble F des suites réelles convergentes est un R-espace vectoriel.

Exercice 4. Montrer que ’ensemble D des suites réelles divergentes n’est pas un R-espace vectoriel.

Exercice 5. L’ensemble E’ des fonctions f définies de R dans R et telles que f(0) = 0 est-il un R-espace vectoriel ?
Exercice 6. Soit n € N, ’ensemble C,,[X] des polynémes de degré au plus n est-il un C-espace vectoriel ?

2.2 Intersection de sous-espaces vectoriels

Proposition 2.4 (Intersection de sous-espaces vectoriels)

Soit E un K-espace vectoriel. L’intersection de deux sous-espaces vectoriels de F est un sous-espace vectoriel
de E.

Remarque. Ce résultat se généralise a 'intersection de plus de deux sous-espaces vectoriels.

Remarque. Attention : de maniére générale, la réunion de deux sous-espaces vectoriels de F n’est PAS un
sous-espace vectoriel de F.

Exercice 7. {0} x R et R x {0} sont deux sous-espaces vectoriels de R?. Montrer que ({0} x R) U (R x {0}) n’est
pas un sous-espace vectoriel de R

2.3 Sous-espace vectoriel engendré par une famille
Définition 2.5 (Sous-espace vectoriel engendré)

Soit E un K-espace vectoriel, p € N* et § = (¢;),;., une famille finie de vecteurs de E. On note Vect(S)
I’ensemble de toutes les combinaisons linéaires des vecteurs de §.
Vect(S) est un sous-espace vectoriel de E, appelé sous-espace vectoriel engendré par la famille §.

Exemple. Soit (a,b) € R\ {(0,0)}, Vect((a, b)) est un sous-espace vectoriel de R? appelé droite vectorielle :

Exemple. Soit (a;,b;,c;) et (ay, by, cy) deux vecteurs non colinéaires de R®. Alors Vect((ay, by, ¢;), (ag, by, c5)) est
un sous-espace vectoriel de R3, appelé plan vectoriel.



Exemple. Dans M, (K), Vect (($9),(83),(59)) est Pensemble des matrices triangulaires supérieures (qui forme
donc un espace vectoriel).

Exercice 8. Montrer que Vect((1,2),(1,0)) = R?.
Proposition 2.6 (Sous-espace contenant une famille)
Soit E un K-espace vectoriel, p € N* et § = (e;), <icp UNE famille finie de vecteurs de E. Tout sous-espace
vectoriel de E contenant les e; contient Vect(S).
Proposition 2.7 (Cas d’un vecteur combinaison linéaire)
Soit E un K-espace vectoriel et § une famille finie de vecteurs de E. Si z € § est combinaison linéaire des
autres vecteurs de §, alors Vect(S) = Vect(8"), ot 8" est la famille obtenue en retirant x a §.

Exemple. (3,6) = 3(1,2), donc Vect((1,2),(3,6)) = Vect((1,2)) = {(A,2)), X € R}.

3 Familles finies de vecteurs
3.1 Familles génératrices
Définition 3.1 (Famille génératrice)
Soit E un espace vectoriel et § une famille finie d’éléments de F. La famille § est dite génératrice de F

lorsque Vect(S) = E.

Remarque. L’inclusion Vect(S) C E est évidente. Pour prouver que § est génératrice de E, il suffit donc de
montrer que E C Vect(S), c’est-a-dire de montrer que tout = € E peut s’écrire comme combinaison linéaire des
éléments de S.

Exemple. Si P(X) € K,[X], alors il existe (a,b,c) € K> tels que P(X) = aX? + bX + c. Les vecteurs X%, X et 1
sont bien dans K,[X], donc (1, X, X?) est une famille génératrice de K,[X].

Exercice 9. La famille ((1,0), (1,1)) est-elle une famille génératrice de R??
Exercice 10. La famille ((1,0)) est-elle une famille génératrice de R? ?

Exercice 11. Soit £ = {(z,y, 2) € R¥|z = 2y}. Montrer que c’est un R-espace vectoriel, dont on déterminera une
famille génératrice.

Proposition 3.2 (Famille contenant une famille génératrice)

Toute famille de vecteurs qui contient une famille génératrice de I’espace vectoriel E est une famille génératrice
de ’espace vectoriel E.

Proposition 3.3 (Cas d’un élément combinaison linéaire des autres)

Soit E un espace vectoriel et S est une famille génératrice de E. Si x € § est combinaison linéaire des autres
vecteurs de 8, alors la famille 8" obtenue en retirant x & S est aussi génératrice de F.



3.2 Familles libres
Définition 3.4 (Famille libre, famille liée)

Une famille (e, ey, ..., ep) de 'espace vectoriel E est dite libre lorsque pour tout p-uplet (o), <i<p de scalaires

de KP,
P

age, =0 = Vke[l,p], a4 =0.
k=1

On dit alors que les vecteurs ey, e, .., €, sont linéairement indépendants. Une famille qui n’est pas libre
est dite liée.

Remarque. Siz € E et x # 0, alors la famille (x) est libre.

p
Remarque. Pour montrer qu'une famille est libre, on fixe (;), <p € K, on suppose que g ore, = 0 et on
k=1
cherche a en déduire que tous les «; sont nuls.

Exercice 12. Montrer que la famille ((2,1,0), (0,0,1)) obtenue précédemment est une famille libre de R?.
Exercice 13. Montrer que ((1,2),(3,6)) est une famille liée.
Proposition 3.5 (Unicité de la décomposition dans une famille libre)

Soit E un K-espace vectoriel. Une famille (eq, e, ..., ep) de F est libre si et seulement si pour tous scalaires
P D

Qs Qgy ey oy By, Boy vy B, de K, Zakek = Zﬁkek = Vk € [1,p], oy = Bg-
k=1 k=1

Remarque. La liberté d’une famille permet donc d’identifier les coefficients dans une égalité.

Exercice 14. Soit f et g les fonctions définies sur R par Vo € R, f(z) = e et g(x) = €?*. La famille (f,g) est-elle
libre dans I'espace vectoriel des fonctions réelles ?

Exercice 15. Montrer que la famille (X 4 2, X + 1, X?) est libre dans R[X].
Proposition 3.6 (Famille de polynomes échelonnée en degré)

Soit n € N* et (P, ..., P,) une famille de polynémes de K[X]. Si la famille est échelonnée en degré

(c’est-a-dire si 0 < deg(P;) < ... < deg(P,)), alors elle est libre.

Exemple. La famille (1, (X 4 1)%, (X —2)7) est échelonnée en degrés, donc libre dans R[X].
Proposition 3.7 (Sous-famille d’une famille libre)

Toute sous-famille d’une famille libre est libre.

Proposition 3.8 (Cas d’un vecteur combinaison linéaire des autres)

Soit £ un K-espace vectoriel. Une famille (e;, ey, ...,e,) de E est liée si et seulement si I'un des vecteurs de
cette famille peut s’écrire comme une combinaison linéaire des autres vecteurs.

Remarque. En particulier toute famille qui contient I’élément neutre est liée, car si e; = 0p, e; = 0ey + ... + Oe,,.

Remarque. Si on ajoute a une famille libre un vecteur qui n’est pas combinaison linéaire de ses éléments, on
obtient donc une nouvelle famille libre.

Exercice 16. La famille ((0,1,2),(0,2,1),(0,1,1)) est-elle libre ?



3.3 Bases

Définition 3.9 (Base, coordonnées)

Soit E un K-espace vectoriel. Une famille (e;),_, <p st une base de E lorsque tout vecteur z de E peut
s’écrire d’une maniere unique comme une combinaison linéaire des vecteurs eq, ey, ..., €
On appelle alors coordonnées de x les coefficients de cette combinaison linéaire.

p*

Exemple. (1, X, X?) est une base de R,[X] et les coefficients de 1 + 3X? dans cette base sont 1, 0 et 3.
Proposition 3.10 (Caractérisation des bases)
Soit E un K-espace vectoriel. Une famille finie d’éléments de E est une base de E si et seulement si elle est a

la fois libre et génératrice de E.

Exercice 17. Dans K", on pose e; = (1,0,...,0), .., e, = (0, ..., 1 v 0)y ey e, = (0,...,0,1). Montrer
kéme position
que (eq, €q, ..., €, ) forme une base de K".

Remarque. Plusieurs ensembles usuels ont des bases « naturelles », appelées bases canoniques :

Espace vectoriel ‘ Base canonique associée
K" ((1,0,...,0),(0,1,0,...,0),...(0,...,0, 1))
K, [X] (1,X,X% .., X"
M, ,(K) (E; )G j)elt,n] < [L.p]

On rappelle que E; ; désigne la matrice dont tous les coeflicients sont nuls a I'exception de celui placé a la i-eme
ligne et j-ieéme colonne, qui vaut 1.

Exemple. La famille ((1,0,0),(0,1,0),(0,0,1)) est la base canonique de R* ou de C3.

Exercice 18. Soit I I'ensemble des suites réelles qui vérifient la relation de récurrence : Vn € N, u,,, o = 4, | +u,.
1. Montrer que E est un espace vectoriel.

2. En déterminer une base.

4 Somme de sous-espaces vectoriels
4.1 Définitions et premiéres propriétés
Définition 4.1 (Somme de deux sous-espaces vectoriels)

Soit F un espace vectoriel et F' et G deux sous-espaces vectoriels de E. L’ensemble des éléments de F
s’écrivant sous la forme de la somme d’un élément de F'et d’un élément de G est un sous-espace vectoriel de
E appelé somme des sous-espaces vectoriels F' et G. On note F' + G = {z + y|(z,y) € F x G}.
Proposition 4.2 (Somme d’espaces vectoriels engendrés)

Soit F un K-espace vectoriel et §;, &5 deux familles finies d’éléments de E. On note § la famille qui juxtapose

les vecteurs de &, et §5. Alors Vect(S;) + Vect(S,) = Vect(S).

Remarque. Si F et G sont deux sous-espaces vectoriels de F, on obtient donc une famille génératrice de F'+ G en
juxtaposant des familles génératrices de F et de G.

Exercice 19. On se place dans R[X]. Que vaut R,[X] + Vect(X?)?



Définition 4.3 (Somme directe de deux sous-espaces vectoriels)

Soit E un K-espace vectoriel et F'et G deux sous-espaces vectoriels de F. On dit que la somme F' + G est
une somme directe lorsque tout élément v de F' + G s’écrit de maniere unique sous la forme u = x + v,
avec (z,y) € F x G. La somme est alors notée F' @ G.

Remarque. La définition de F' + G donne 'existence de cette décomposition, il suffit donc de montrer I'unicité
pour conclure que la somme est directe.

Proposition 4.4 (Caractérisation des sommes directes)

Soit E un K-espace vectoriel et F'et G deux sous-espaces vectoriels de E. La somme F + G est une somme

directe si et seulement si F' NG = {0g}.

Remarque. Comme F et G sont des sous-espaces vectoriels de F, on a toujours {0z} C FFNG. 11 suffit donc de
montrer que F'NG C {0z} pour montrer qu'une somme est directe.

Exercice 20. Montrer que la somme R, [X] + Vect(X?) est directe.

4.2 Sous-espaces vectoriels supplémentaires
Définition 4.5 (Sous-espaces vectoriels supplémentaires)
Soit E un K-espace vectoriel et F et G deux sous-espaces vectoriels de E. On dit que F' et G sont supplé-

mentaires dans F lorsque £ = F'® G.

Remarque. Un méme espace vectoriel peut avoir plusieurs supplémentaires différents.

Remarque. Des méthodes pratiques de construction de supplémentaire seront étudiées dans un prochain chapitre.
Exemple. Vect(X?) et Vect(X? + 1) sont deux supplémentaires de R,[X] dans Ry[X]

(on a montré Ry[X] = R, [X] @ Vect(X?) dans l'exercice I'égalité Ry[X] = R,[X] @ Vect(X? + 1) s’établit de la
méme maniere).

Exemple. Les supplémentaires d’une droite du plan passant par 0 sont toute autre droite du plan passant

par 0. Par exemple, les supplémentaires de Vect((1,0)) dans R? sont les ensembles de la forme Vect((a,b)) avec
(a,b) € R x R*.

1 ect((1,1))

>
/ :
Supplémentaires possibles

Exemple. Les supplémentaires d’un plan P de R? passant par 0 sont toute droite du plan passant par 0 et non
incluse dans le plan P.

Exercice 21. Soit n un entier naturel non nul, on se place dans M, (R). Montrer que §,,(R) et A, (R) sont deux
sous-espaces vectoriels supplémentaires.
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