Exercices PCSI .
£ Bouchet Espaces vectoriels

Exercice 1 (%). Les ensembles suivants munis des opérations usuelles sont-ils des espaces vectoriels sur R ?
1. B, ={(z,y,2) € R*3z — 2y — 2 = 0}.
2. By ={(v,y,2) € R}y = 22 et 2 = 2x}.

E; est 'ensemble des fonctions f continues sur R, vérifiant 2f(—1) = f(1).

E, = {f € R¥3(a,b) € R? tels que Vz € R, f(x) = asin(x) + bcos(x)}.

By = {(z,y) € R?[a® +y* = 4}.

A A

Ejg est I'ensemble des fonctions y € C*°(R, R) solutions de y" + ¢ 'y = 0.

Résultat attendu :

1. Oui 2. Non 3. Oul 4. Oui 5. Non 6. Oui

Exercice 2 (). Pour chacun des ensembles suivants, déterminer 8’il s’agit ou non d’un espace vectoriel :
1. L’ensemble F, = {(z,y) € R*|z — 4y = 0}.
2. L’ensemble F, des suites réelles qui divergent vers +oo.
3. L’ensemble F; = {(r,y) € R*|z? — y* = 0}.
4. L’ensemble F, des fonctions de R dans R telles que f(0) = f(1).
5. L’ensemble Fy = {(2z,y + 1, —x + y) avec (r,y) € R?}.
6. L’ensemble Fy des polynomes de C[X] de degré exactement 5.

Résultat attendu :

1. Oui 2. Non 3. Non 4. Oui 5. Non 6. Non

Exercice 3 (%). Les familles suivantes sont-elles libres dans leurs espaces vectoriels de référence respectifs ?
1. (eq,eq,€q) avec ; = (5,—2,—3), e = (4,1,—3) et e5 = (—2,6,1).
2. (hg, hy, hy) oil ces trois fonctions sont définies sur R par hy : @ > 1, hy : 7+ €” et hy : @ > €.
3. (u,v) avec u = (10, —5,15), v = (—4, 2, —6).

Résultat attendu :

1. Oui 2. Oui 3. Non:2u+5v=0

n n

Exercice 4 (k). Soit u, v et w trois suites réelles définies pour tout n € N par u,, = 2", v,, = 3" et w,, = 4".
1. La famille (u,w) est-elle libre dans R ?
2. La famille (u,v,w) est-elle libre dans R™ ?

Résultat attendu : Les deux familles sont libres dans RY. On le montre en prenant des valeurs particuliéres
pour se ramener a une résolution de systeme, ou en divisant les expressions par w,, avant de passer a la limite.

Exercice 5 (% %). Dans C5[X], on donne Py(X) =1 —iX, P|(X) =1+ X? et Py(X) =iX — X3. La famille
(Py, Py, Py) est-elle une famille libre dans C4[X]? génératrice de C5[X]?
Résultat attendu : La famille est libre, mais pas génératrice de C5[X].

Exercice 6 (%%). Soit n un entier naturel non nul. Dans l'espace vectoriel C(R) des fonctions continues de R
dans R, on donne f, : 2 - 1 et pour tout entier naturel non nul k, f;, :  + cos®(2). La famille (fy, fi, ..., f,,)
est-elle une famille libre de C(R) ?

Résultat attendu : Oui. Pour le montrer, on introduit un polynéme aux coefficients bien choisi et on se rameéne
a montrer qu’il s’agit du polynéme nul. On peut aussi raisonner par récurrence, mais c’est plus long.




Exercice 7 (k). On considére les sous-ensembles de R* suivants :

L F={(z,y,zt) eR sa+y+z+t=0} 2. G={(z,y,2,t) ER* iz +y=2+1},
3. HZ{(a,b,C,d)E[R4:a:b:c:d}.

Vérifier que ce sont des sous-espaces vectoriels de R*; donner une base de chacun d’eux.
Résultat attendu : Exemples de bases convenant (d’autres peuvent étre possibles) :

1. ((1,0,0,—1),(0,1,0,—1),(0,0,1,—1)) 2. ((1,0,0,1),(0,1,0,1),(0,0,1,—1))
3. ((1,1,1,1))

Exercice 8 (%). Dans les cas suivants, indiquer si F'est un sous-espace vectoriel de E. Si ¢’est le cas, en donner
une base.

1. E=R3 F ={(z,y,2) € R®|z = 0}. 2. E=R% F={(z,y,2) € Ry =2z et z = z}.
3. E=R? F={(x,y) € R?ly =1}.

Résultat attendu :

1. Oui, une base est ((0,1,0),(0,0,1)). 2. Oui, une base est ((1,2,1)).
3. Non, ce n’est pas un sous-espace vectoriel de E (F ne contient pas (0,0)).

Exercice 9 (%). On se place dans E = Ry[X]. Soit A = {P € E|P(1) =0 et P’(2) = 0}. Montrer que A est un
sous-espace vectoriel de E et en déterminer une base.
Résultat attendu : Une base de A est X? —4X + 3.

Exercice 10 (%%). Montrer que les polynomes 1, X, X(X —1), X(X —1)(X — 2) forment une base de I’espace
vectoriel R3[X] des polynémes a coefficients réels de degré au plus 3. En particulier, exprimer X 2 et X? dans
cette base.
Résultat attendu : La famille est échelonnée en degré donc libre. On montre ensuite que X* = X (X —1) + X
et X3 = X(X —1)(X —2)+3X(X —1) + X, ce qui montre que la famille est génératrice (en revenant a la
définition).

Exercice 11 (%%). Soit f et g les fonctions définies par : Vz € R, f(z) = exp(2z) et g(z) = zexp(2x).
On note F I'ensemble des fonctions h telles qu'il existe (a,b) € R? vérifiant : Vo € R, h(z) = (ax + b)e**.

1. Prouver que E est un espace vectoriel sur R.
2. La famille (f, g) est-elle une famille libre de E'? une base de E?

3. Soit ¢ la fonction définie pour tout x € R par ¢(z) = 3x. La fonction ¢ est-elle un élément de E?

Résultat attendu :

1. E est un sous-espace vectoriel de ’ensemble des fonctions de R dans R, donc un R-espace vectoriel.
2. La famille est constituée de vecteurs de E, libre et génératrice de E, donc c’est une base de E.

3. On montre par I'absurde que ¢ ¢ E.

Exercice 12 (k%). Soient F' = {(a,a,a) € R3,a € R} et G = {(b+ ¢,b,c) € R3, (b,c) € R?}. Ces deux
sous-espaces vectoriels de R? sont-ils supplémentaires ?

Résultat attendu : Oui, on le montre par exemple par analyse-syntheése, en exhibant pour tout vecteur de R?
une décomposition unique dans F' + G.




Exercice 13 (% %). Soit E = R[X]. On pose F = Vect (X —1,X) et G = {P € E|P(0) = P(1) = 0}.
1. Montrer que G est un espace vectoriel.
2. Montrer que F et G sont supplémentaires dans FE.

Résultat attendu :

1. G est un sous-espace vectoriel de R[X| donc un espace vectoriel.

2. On montre F = F 4+ G et FNG = {0g}. Variante : pour tout élément de F on montre qu’il existe une
unique décomposition dans F + G.

Exercice 14 (k%). Soit £ = F(R,R) l'espace vectoriel des fonctions de R dans R. On note P I’ensemble des
fonctions paires, et I I’ensemble des fonctions impaires. Montrer que P et I sont des sous-espaces vectoriels de E
etque E=P® 1.

Résultat attendu : On montre que P et I sont des sous-espaces vectoriels de E en revenant a la définition.
Pour montrer que F = P @ I, il suffit de montrer que toute fonction f € E se décompose de manieére unique
comme somme d’un élément de P et d’un élément de I.

Exercice 15 (%%). Soit E un espace vectoriel et F, G et H des sous-espaces vectoriels de E. Montrer que :
1. (FNH)+(GNH)C(F+G)NH 2. (FNG)+HC(F+H)Nn(G+ H)

Résultat attendu : Dans les deux cas, il faut se ramener a la définition d’une inclusion d’ensembles, puis
traduire étape par étape les informations dont on dispose.




Exercice 16 (Type DS). Soit F 'ensemble des suites réelles vérifiant la relation de récurrence suivante :

YneN, U,o=1u,,+2u,.

1. Montrer que F est un R-espace vectoriel.

2. On pose a et b les suites définies par Vn € N, a,, = (—1)" et b, = 2™.

(a)
(b)
()
(d)

Montrer que (a,b) est une famille d’éléments de F.
Montrer que (a,b) est une famille génératrice de F.
Montrer que (a,b) est une famille libre de F.

Que peut-on déduire des questions précédentes ?

Résultat attendu :

1. La suite nulle vérifie Vn > 0, 0 = 04 2 x 0, elle est donc dans F.
Soit u et v deux suites de Fet A € R. Soit n € N,

2.

(M4 0),00 = MUyio + V00
= ANty g + 2uy,) + v,.1 + 2v, car (u,v) € F?
=My + 0,1 +2(Au, +v,)

(A +v),00 = (Au+0),,.1 +2(Au+v),

Donc Au 4+ v € F. Donc F est stable par combinaison linéaire.

Donc F est un sous-espace vectoriel de ’ensemble des suites réelles. Donc F'est un R-espace vectoriel. -

(a)

(b)

Soit n € N, b,y +2b, =2"" +2x 2" =2x 2"t =272 =p .

De méme, a,,. +2a, = (=1)"™ +2(=1)" = (=1)" (=1 +2) = (-1)" = (=1)""? = q,,_,.

Donc a et b sont des suites de F.

Soit u € F. La suite u est récurrente linéaire d’ordre 2, d’équation caractéristique ¢> = ¢ + 2 qui

équivaut a ¢> — g — 2 = 0. Le discriminant associé vaut A =1+ 8 = 9, les solutions de cette équation
sont donc % =—1let % = 2. Il existe donc deux réels « et [ tels que Vn € N,

Uy = a<_1>n + ﬂzn = aa, + /an'
Donc u est combinaison linéaire de a et b. Comme par la question précédente, (a,b) € F?, (a,b) est

une famille génératrice de F.

Soit (A, 1) € R%. On suppose que Aa + ub = 0.
Alors Vn € N, A(—1)" 4+ p2" = 0. En particulier, pour n =0, A+ pu =0 et pour n =1, =\ + 2 = 0.
Sommer ces égalités donne 3 = 0, donc p = 0, on en déduit A = 0. La famille (a,b) est donc libre.

D’apres les questions précédentes la famille (a,b) est une famille d’éléments de F'libre et génératrice,
c’est donc une base de F.
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