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Dans tout le chapitre, les fonctions f considérées sont définies sur un intervalle I C R non vide et non réduit a un
point. Elle sont toutes supposées a valeurs réelles (sauf dans la derniére section).

1 Dérivabilité
1.1 Dérivabilité en un point

Définition 1.1 (Fonction dérivable en un point, nombre dérivé, rappel)

Soit a € I. On dit que f est dérivable en a lorsque lim %{J;(G) existe et est finie. Cette limite est alors
r—a

notée f’(a) et appelée nombre dérivé de f en a.

Remarque. Cette définition équivaut a dire que f est dérivable en a si et seulement si }llirr(l) w € R.
—

Remarque. Dans le cas d’une fonction physique, la dérivée au point a correspond & la vitesse instantanée.
Proposition 1.2 (Dérivabilité et approximation locale)

Soit a € I. La fonction f est dérivable en a si et seulement si il existe v € R et une fonction ¢ tels que
}llin%) e(h) = 0 et qu’au voisinage de 0, f(a+ h) = f(a) +v.h + h.e(h). Le réel v est alors unique et vaut f’(a).
—

Démonstration. On montre les deux implications successivement.

fla+h)— f(a)
h

= v+ 0 =, ce qui permet de conclure que f est dérivable en a avec f’(a) = v.

e Supposons qu’il existe v et £ qui vérifient ces conditions. Alors, au voisinage de 0,

Donc lim flath) = fla)
h—0 h

=v+e(h).

f(a+h)_f<a) ’
L1 pra).

Par construction et définition du nombre dérivé, on a bien }llin%) e(h) = 0. De plus, au voisinage de 0,
—
fla+h) — f(a) = hf’'(a) + he(h), on obtient donc le résultat annoncé en posant v = f’(a).

o Réciproquement, supposons f dérivable en a. Soit h au voisinage de 0 et e(h) =

Proposition 1.3 (Tangente a la courbe, rappel)
Soit a € I. Si f est dérivable en a, alors la courbe € admet au point de coordonnées (a, f(a)) une tangente

d’équation y = f(a) + f'(a)(x — a).

Démonstration. D’apres le résultat précédent, si f est dérivable en a, alors il existe une fonction ¢ telle que pour z
au voisinage de a, f(r) = f(a) + f'(a)(x — a) + (¥ — a)e(z — a) et lim,_,, e(z — a) = 0. Donc la courbe €; admet
au point de coordonnées (a, f(a)) une tangente d’équation y = f(a) + f'(a)(x — a). O

Remarque. Interprétation géométrique :




Définition 1.4 (Dérivée a droite ou & gauche en un point)

Soit @ € I. On dit que f est dérivable a droite (respectivement dérivable a gauche) en a lorsque

lim w (resp. lim W) existe et est finie. On note alors cette limite f;(a) (resp. f;(a)).

z—at T—a~ -

Proposition 1.5 (Demi-tangente a la courbe)

Soit a € I. Si f est dérivable a gauche en a, € admet une demi-tangente d’équation y = f(a) + f,(a)(z —a),
avec r < a.
Si f est dérivable & droite en a, € admet une demi-tangente d’équation y = f(a) + f;(a)(x — a), avec = > a.

Démonstration. Le raisonnement est le méme que pour obtenir I’équation de la tangente & la courbe, mais on se
contente d’étudier les limites a droite ou a gauche. O

Exemple. Soit f la fonction définie sur R par : x i |z|. Elle est :

o dérivable & droite en 0, f7(0) = liHOl+ 28 = 1.
z—

o

o dérivable a gauche en 0, f;(0) = lim =0 _ 1,

r—0— z—0
\/

Proposition 1.6 (Lien entre dérivabilité, dérivabilité & droite et dérivabilité a gauche)

Soit a € 1. Si f est dérivable & droite et & gauche en a et si fj(a) = f/(a) =¥ € R, alors f est dérivable en a

g
et f'(a) ="

Démonstration. D’apres le chapitre sur les limites de fonction, le taux d’accroissement de f en a admet une limite
£ € R en a si et seulement si il admet des limites & droite et & gauche égales a £ en a. D’ou le résultat. O

1.2 Dérivabilité et continuité

Proposition 1.7 (Continuité d’une fonction dérivable)

Toute fonction f dérivable en un point @ est continue en a.

Démonstration. Soit f une fonction dérivable en a. Donc il existe une fonction ¢ telle que ]1lin% e(h) =0 et qu'au
—

voisinage de 0,
fla+h) = f(a) +hf'(a) + he(h) — f(a).

Or lim a+h = a, donc une composition de limites donne %irr(l) fla+h) = lim f(z). On obtient donc lim f(x) = f(a),
— r—a T—a

h—
ce qui est la définition de la continuité en a. O
Remarque. Attention : La réciproque est FAUSSE, la continuité n’implique pas la dérivabilité.

Exemple. La fonction définie sur R par x i |x|, est continue, mais pas dérivable en 0.



1.3 Dérivabilité sur un intervalle

Définition 1.8 (Dérivée sur un intervalle, fonction dérivée)

On dit que la fonction f est dérivable sur I lorsque f est dérivable en tout point de I (sauf pour les bornes
de I, pour lesquelles on se restreint a la dérivabilité a droite ou a gauche).
On définit alors la fonction dérivée de f notée f’, définie sur I par f: x +— f'(x).

Remarque. ATTENTION : Une fonction peut étre dérivable sur [a, b] et sur [b, c] sans étre dérivable sur [a, c].
L’étude locale de la dérivabilité en b est indispensable pour affirmer qu’elle est dérivable sur [a, |.

Exercice 1. Soit f la fonction définie sur R par Vo > 0, f(z) = 2% et Vo <0, f(x) = 0.

Etudier sa dérivabilité sur R.

Solution : Il est immédiat que f est dérivable sur RY et sur R*, car elle coincide sur ces intervalles avec des fonctions
polyndémes. Mais il faut étudier le raccord en 0 avant de conclure a la dérivabilité sur R.

Vo <0, M:O’ Vo >0, M:ﬁ:x'
r—0 z—0 T

Donc f est dérivable a droite et & gauche en 0, et f3(0) = 0 = f(0). Donc f est dérivable en 0 et f est bien
dérivable sur R tout entier.

1.4 Opérations sur les fonctions dérivables
Proposition 1.9 (Linéarité)
Soient u et v deux fonctions dérivables sur un intervalle I et o un réel. Alors au + v est dérivable sur [ et
(au+v) =au +v'.

Démonstration. Soit a € I. Au voisinage de a,

(cu+v)(x) = (au+v)(a) _ (au(z) +v(@)) = (qu(a) + v(a)) _ ulx) —ula) v(z)—v(a)

= =« + — au’(a) + v'(a),
r—a r—a r—a r—a za
car u et v sont dérivables en a. Donc au + v est dérivable en a et (au +v)'(a) = au'(a) +v'(a). O

Proposition 1.10 (Dérivée d’un produit et d’un quotient)

Soient u et v deux fonctions dérivables sur un intervalle I. Alors uv est dérivable sur I et (uv)" = u'v + uv’.

u u'v—uv/

Si de plus, la fonction v ne s’annule sur I, alors - est dérivable sur I et (%)/ = 4

Démonstration. Soit a € I. Au voisinage de a,

(U’U)(m;z : iuv)(a) _ U(H?)U(lz. : Z(a)v(a> — u($> U(xx) : Z(a) + U(a) — ::1 u(a)v’(a) + U(a)u/(a),

u(z) —ufa)

car u et v sont dérivables en a et u est continue (car dérivable) en a. Donc uv est dérivable en a et on obtient
(uwv)(a) = u(a)v’(a) + v(a)u'(a).
De plus, au voisinage de a,

1(z) — L(a) 1 w(z)—ov(a) 1

x — ; B Cv(z)v(a) z—a -~ _v(a)zvl<a)’

car v est dérivable et continue en a. Donc 1 est dérivable en a et (%), (a) = —ﬁv’ (a).
Le résultat sur le quotient découle ensuite directement de ceux sur le produit et 'inverse. O



Proposition 1.11 (Dérivée d'une composée)

Soient f une fonction dérivable sur un intervalle I et g une fonction dérivable sur f(I). Alors g o f est
dérivable sur I, et (go f) = f"-(¢" o f).

Démonstration. Soit a € I. Au voisinage de a, on aimerait écrire :

gof(x)—gofla) _g(f(z)) —g(f(a)) [f(z)—fla)

= X

T—a 7o) = fla) —a
pour faire apparaitre les taux d’accroissement de f et g. Mais rien ne garantit la non-annulation de f(z) — f(a).
On utilise une fonction auxiliaire pour contourner ce probléme. Soit ¢ la fonction définie au voisinage de f(a) par :

w(y)zwﬁy#f(a) et o(f(a) =g (f(a).

Par définition de ¢'(f(a)), ¢ est continue au point f(a). Et Vo # a, gef@) =g fla) = go(f(:n))w.

Comme f est dérivable en a, f est continue en a et ¢ est continue en f(a), le membre de droite admet bien une
limite en a. Donc g o f est dérivable en a et par passage a la limite :

(g0 1)(a) = im LT =927 _ 0y (a) = g/ (£(a)) £ ().

T—a T —a

Proposition 1.12 (Dérivée de la fonction réciproque)

Soit f une fonction dérivable et strictement monotone sur un intervalle I et a valeurs dans J = f(I). Soit
a € I. La fonction réciproque f~! est dérivable en b = f(a) si et seulement si f'(a) # 0 et lorsqu’elle est
dérivable, (f71)" (b) = v = Fray-

Démonstration. La fonction f est continue sur I (car dérivable) et strictement monotone sur cet intervalle. D’apres
le théoréme de la bijection, elle réalise donc bien une bijection de I sur J = f(I) et f~! existe et est continue (et
strictement monotone) sur J.

Soit b € J et a son unique antécédent par f. On a b = f(a), donc a = f~1(b). Pour tout y € J \ {b},

) - ) ) —a
y—b 7T w) — fla)

Or f~! est continue sur J, donc en b. Donc lim,, ,, f~'(y) = f~'(b) = a. Par continuité de f sur I, composition de
limites et dérivabilité de f en a, on trouve alors :

—1 o _
g 20 @) — F@) @) = f@)
vob fHy) —a rwa r—a
Si f’(a) = 0, par passage a l'inverse % n’admet pas de limite finie en b, donc f~! n’est pas dérivable en b.

Si par contre f’(a) # 0, la limite de 'inverse est finie donc f~! est dérivable en b et on trouve :

) —f1e) 1
—b fr(a)

(f71)(b) = lim

y—b Yy



2 Principaux théoremes

2.1 Caractérisation d’un extremum local
Définition 2.1 (Maximum/minimum local)
e On dit que fadmet un maximum local en a € I lorsqu’au voisinage de a, f(z) < f(a).
>

f(a).

o On dit que f admet un minimum local en a € I lorsqu’au voisinage de a, f(x)

Exemple. Représentation graphique :

maximum global (et minimum local sur la partie constante)

maximum local
maximum local
>

minimum local
minimum global

Définition 2.2 (Point critique)

Soit f une fonction dérivable sur I et a € I. On dit que a est un point critique de f lorsque f'(a) = 0.

Proposition 2.3 (Caractérisation d’un extremum par la dérivée)

Soit f une fonction dérivable sur un intervalle I. Soit a € I qui n’est pas une borne de I. Si f admet un
extremum local en a alors f'(a) = 0.

Démonstration. Supposons que f possede un maximum local en a. Il existe alors a € RY. tel que Ja —a,a + a[C
et Va €la— a,a+ af, f(z) < f(a).

x)— f(a
Donc, pour tout x €la,a + «f, 7() < 0. Or f est dérivable en a par hypothese. On peut donc passer a la

0.
limite dans cette inégalité et on trouve f'(a) <
f(z) — f(a)

0.
> 0, ce qui donne f’(a) > 0. Donc f’(a) = 0. O
r—a

De méme, pour tout z €]a — a, al,
Remarque. ATTENTION : la réciproque est fausse! Il se peut que f’(a) = 0 sans que f n’admette d’extremum
en a. Par exemple, la fonction définie sur R par x = 22 a une dérivée nulle en 0, mais n’atteint ni un maximum ni
un minimum en ce point.

Exercice 2. Sans utiliser de tableau de variations, trouver les extremums locaux de la fonction f définie sur R par
Vo €R, f(z) =2 + z.

Solution : Comme l'intervalle R ne contient pas ses bornes et comme f est dérivable partout sur R, il suffit d’étudier
les points critiques. La fonction est dérivable sur R, et Vo € R, f/(z) = 423 + 1.

3:

Cette dérivée s’annule si et seulement si x vk Il'y a une seule solution réelle, ———, et la dérivée est négative

V4
avant et positive apres. Donc la fonction est décroissante avant ——=, et croissante ensuite. On en conclut que la

V4

. . 1 . . .
fonction admet un minimum local en 7 Comme la dérivée ne s’annule pas ailleurs, et qu’il n’y a pas de borne

ou de point ou la fonction n’est pas dérivable, cela signifie que la fonction n’admet pas de maximum.

Remarque. Cette technique sera surtout utile dans les cas ot le tableau de variations de la fonction est compliqué
a obtenir. On verra plus tard d’autres stratégies d’étude locale.



2.2 Théoreme de Rolle et égalité des accroissements finis
Proposition 2.4 (Théoréme de Rolle)
Soit @ < b. Si f est une fonction continue sur [a, b], dérivable sur |a, b[ et qui vérifie f(a) = f(b), alors il
existe ¢ €]a, b[ tel que f'(c) = 0.

Démonstration. La fonction f est continue sur le segment [a, b] donc par le théoréme des bornes atteintes elle y est

bornée et atteint ses bornes. On note m le minimum global et M le maximum global.

o Sim = M, la fonction est constante sur [a,b], et donc f” est nulle sur ]a,b[. Dans ce cas, on peut choisir
n’importe quel ¢ €]a, b[ qui conviendra.

o Sim # M, 'une de ces valeurs au moins n’est atteinte ni en a ni en b (puisque f(a) = f(b)). Supposons qu’il
s’agit de M (un raisonnement analogue se fait avec m). Il existe alors ¢ €|a, b[ tel que f(¢) = M. Comme la
fonction admet un maximum en c et qu’elle est dérivable en ce point, sa dérivée s’annule par le théoreme
précédent. D’ou le résultat.

O

Remarque. Le réel ¢ n’est pas forcément unique.

Remarque. Interprétation graphique : il existe donc un point de la courbe admettant une tangente parallele a
I’axe des abscisses.

Proposition 2.5 (Egalité des Accroissements Finis)

Soit a < b. Si f est une fonction continue sur [a,b] et dérivable sur ]a,b[ alors il existe ¢ €]a, b[ tel que

_ fb)—f(a)
f'(e) = ==,

Démonstration. On se rameéne aux hypotheses du théoréme de Rolle. Pour tout z € [a, ], on pose :

o@) = fl) - 10D o)

La fonction g est continue sur [a,b] comme somme de fonctions continues, et elle est dérivable sur |a, b[ comme

b) —
somme de fonctions dérivables. Et pour tout = €la,b|, ¢’ (z) = f'(x) — f<l))f<a).
On remarque que ¢g(b) = g(a) = f(a). Donc g vérifie les hypotheéses du théoreme de Rolle, et il existe ¢ €]a, b[ tel
b) —
que ¢g’'(c) = 0. Et donc tel que f'(c) = f(l))f(a). O
—a
Remarque. w est le coefficient directeur du segment [AB], donc il existe un point de € 7 admettant une

tangente paralléle a ce segment.



2.3 Inégalité des accroissements finis

Définition 2.6 (Fonction lipschitzienne)

Soit M > 0. On dit qu’'une fonction f définie sur un intervalle I est M-lipschitzienne si V(z,y) € I?,

[f(@) = f(y)| < M|z —yl.

Remarque. Cela signifie que pour tout (x,y) € I, la distance entre f(z) et f(y) (qui se lit sur I'axe des ordonnées)
peut étre majorée proportionnellement & la distance entre x et y (qui se lit sur 'axe des abscisses).

Remarque. C’est équivalent a dire que pour tous x # y, |f ‘ < M. Autrement dit, une fonction est
M-lipschitzienne si et seulement si ses accroissements sont bornés par M.

Exercice 3. Montrer que la fonction f: z % est lipschitzienne sur [1, +o0o[, mais pas sur RY.

Solution : Soit (z,y) € (1,400, |f(y) — f(z)| = LI x—y‘ ly — 2|

i = <y —af.
Yy LY
Donc f est 1-lipschitzienne sur [1, +o00].
Supposons qu’elle 'est aussi sur R* . Alors 3K € R tel que V(z,y) € R, [f(y) — f(z)| < K|y — z|. En particulier,

T

pour z =1, Vy € K7,
lipschitzienne sur R? .
On peut illustrer tout cela graphiquement, en observant les pentes de la courbe :

m 1‘ < |y — 1]. Faire tendre y vers 0 donnerait alors +oo < 1 : absurde. Donc f n’est pas

y = f(z)

Proposition 2.7 (Continuité d’une fonction lipschitzienne)

Soit M > 0. Si f est M-lipschitzienne sur I, alors f est continue sur I.

Démonstration. Soit a € I, Va € I, |f(x) — f(a)| < M|z — a| — 0. Donc par théoréme d’encadrement, lim f(z) =
r—a r—a

f(a). Donc f est continue au point a. Donc f est continue sur I. O
Proposition 2.8 (Inégalité des Accroissements Finis)

Soit f une fonction dérivable sur un intervalle I de R et telle que |f’| est majorée par un réel K, alors f est
K-lipschitzienne.

Démonstration. Soit (z,y) € I?. Si x =y, alors |f(z) — f(y)| =0< 0= K|z —y|.

Six <y (le cas y < z se traite de la méme fagon), on applique I’égalité des accroissements finis & la fonction f,

continue et derlvable sur [z, y]. Donc il existe ¢ €]z, y[ tel que % = f’(c¢). Comme c € I, on obtient |f'(¢)| < K
‘ flz

et donc | < K. 11 suffit alors de multiplier par |z — y| > 0 pour conclure que f est K-lipschitzienne. O

Exercice 4. Montrer que Vx € R, |cos(x) — 1| < |z|.

Solution : La fonction cosinus est dérivable sur R et Vo € R, |cos’(z)| = |—sin(z)| < 1. Donc par inégalité des
accroissements finis, cos est 1-lipschitienne sur R. Donc Va € R, |cos(z) —cos(0)| < |z —0|. D’ou le résultat
annonce.



Remarque. Les accroissements finis (égalité et inégalité) permettent en particulier de récupérer des informations
sur une fonction f & partir d’informations sur sa dérivée f”.

Proposition 2.9 (Application des accroissements finis aux suites récurrentes)

Soit u une suite d’éléments de I définie par la relation de récurrence Vn € N, u,,; = f(u,,). On suppose
qu’il existe un intervalle J tel que :

o Jest stable par f et contient au moins un terme de la suite.
e fadmet un unique point fixe £ sur J.
o Jk €[0,1] tel que f est k-lipschitzienne sur J.

Alors u converge vers /.

Démonstration. Puisqu’il existe un rang n, tel que u, € Jet que Jest stable par f, tous les termes de u a partir
de ce rang sont bien définis et appartiennent a J.
Soit n > ng, nos hypotheses donnent |u, ; —¥¢| = |f(u,) — f({)] < k|u, —¢|.
Soit n > ng, on pose P(n) : « |u, — | < k" "0 ‘uno — €| ».
‘u —£| < KO |un0 —E‘ donc P(ng) est vraie.

7o

e Soit n > ng, on suppose que P(n) est vraie. La relation de récurrence obtenue précédemment donne alors :
1—
[ty1 — O] < klu, — €] < k7m0 Ju, — 0.
Donc P(n + 1) est vraie.

Donc Vn > ny, |u,, — €] < k™™o ‘uno — E‘. Comme k € [0,1], on a K — 0. Donc par théoreme d’encadrement,

. n—+oo
lu, — € — 0, c’est-a-dire u,, —> L. O
n—-+0oo n——+oo
Remarque. L’'un des gros intéréts de cette méthode est qu’elle montre au passage Vn > ny, |u, —¢ <
k™o ’uno —6‘. Cela permet de déterminer la vitesse de convergence (au moins géométrique), ce qui donne
des approximations numériques de la valeur de la limite.

1

Exercice 5. Soit u € R" une suite définie par uy > —2 et la relation Vn € N, u,,,; = 57—.

que cette suite était bien définie, étudier son comportement en +oo.
Solution : On pose f :x — 24%1 On commence par tracer la courbe sur | — 2, 400], la droite d’équation y = z et
les premiers termes de la suite pour conjecturer son comportement :

Apres avoir démontré

Choisissons J. On constate que f est positive, et comme on aura besoin de montrer qu’elle est lipschitzienne sur
'intervalle J, on choisit d’écarter le voisinage de —2 de I’étude (c’est 1a que les tangentes sont les plus pentues, et il
nous faut des tangentes de pentes inférieures a 1). On pose donc J = R,.

Soit z € R,, 24+ x > 0, donc f(z) > 0. Donc R, est stable par f, ce qui comme u; = > 0 garantit la bonne

1
24ug
définition de la suite. La suite u est donc a valeurs dans R (sauf éventuellement ).



Cherchons les points fixes de f. Soit x € R,

flz) =2 <= o == 1=24+22 =22 +2r—1=0=r=—14+V2<=z=—1+2,
T

ou on a utilisé le calcul de discriminant A =4 +4 = 8 > 0, puis éliminé la valeur —1 — V2 < 0. Donc —1 + /2 est
I'unique point fixe de fsur R, .

Montrons maintenant que f est lipschitzienne sur R,. La fonction f est dérivable sur R, comme quotient de
= (2+1x)2. Orsiz>0,2+x>2 donc (2+ )% >4 > 0 par
croissance du carré sur R, . Donc par passage a l'inverse, |f’(z)| < %. Donc par inégalité des accroissements finis, f
est i—lipschitzienne sur R

fonctions dérivables, et Vo € R, |f'(z)| = ‘(23:)2

Comme 0 < i < 1, on en déduit que la suite u converge vers —1 + v/2.

2.4 Caractérisation des fonctions constantes et monotones
Proposition 2.10 (Variations de fonctions dérivables)
Soit f une fonction dérivable sur un intervalle I. Alors :
o fest croissante sur I si et seulement si : Vo € I, f'(x) > 0.
o f est décroissante sur [ si et seulement si : Vo € I, f'(z) <O0.

o fest constante sur I si et seulement si : Vo € I, f'(z) = 0.

Démonstration. On va montrer le premier point. Le deuxiéme point s’obtient en appliquant le premier point a —f,
et le troisieme point s’obtient avec la réunion des deux premiers points.

o Supposons que f est croissante sur I. Soit a € I, si x > a, f(x) > f(a). De méme, si x < a, f(x) < f(a).
f@) ~ fla)
x

Donc pour tout z € I\ {a}, on a
—a

Par passage a la limite (ce qui est possible puisque f est dérivable en a), on obtient f’(a) > 0. Ceci étant
vrai pour tout a € I, cela donne la positivité de f” sur I.
e Supposons que Vz € I, f'(x) > 0. On revient a la définition de la croissance : soit = et y dans [ tels que
x < y. Six =y, il est immédiat que f(z) = f(y). Si z < y, la fonction f étant dérivable (et continue) sur I,
— f(x
W=7 ot >0
y—x

donc sur [z, y], 'égalité des accroissements finis donne : 3¢ €|z, y[ tel que f'(c) =

puisque f’ est positive. Dot f(z) < f(y). Donc la fonction f est croissante sur I.

Proposition 2.11 (Cas particulier de la stricte monotonie)

Soit f une fonction dérivable sur un intervalle I de R, et soit J un ensemble obtenu en retirant un nombre
fini de points a I. Si Vx € J, f'(x) > 0 (resp. f'(z) < 0) et Yz € I\ J, f'(z) =0, alors f est strictement
croissante (resp. strictement décroissante) sur I.

Remarque. L’annulation en un nombre fini de points n’empéche donc pas la stricte croissance de la fonction.

Démonstration. Quitte & considérer la fonction —f plutét que f, on peut ne considérer que le cas ou f’ est
strictement positive sur J. Soit a < b deux points de I, on va chercher a montrer que f(a) < f(b).

On note z; < ... < x,, les points de (I \ J)N]a, b[ (c’est-a-dire les points de Ja, b ou il n’y a pas stricte positivité de
la dérivée), et on pose zy = a et z,,,; = b. On a alors :

a=xy<z<..<2,<T,,,=0
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Or f’ est positive sur I (puisqu’elle est soit strictement positive, soit nulle), donc f est croissante sur I et on a :

fla) = f(zo) < flay) <o < @) < fl@pgn) = f(0). (%)

Soit i € [0,n], f est dérivable (et continue) sur [z;,z;,,], donc on peut y appliquer 1’égalité des accroissements
f(@ip) = f(zy) — f/(C»)
5

finis : il existe ¢; €|x;, x;, [ tel que e

Comme ¢; ne vaut aucun des z;, ¢; € Jetona f'(¢;) > 0. Donc %

> 0, ce qui signifie que f(z;) < f(x;, ;).
Les inégalités dans (x) sont donc strictes, donc f(a) < f(b).

La fonction f est donc strictement croissante sur I. O

2.5 Théoréme de la limite de la dérivée

Proposition 2.12 (Limite de la dérivée)

Soit a € I. Soit f une fonction continue sur I, dérivable sur I \ {a} et telle que lim f'(z) = ¢ € R.
r—a

z#a
Alors f est dérivable en a et f'(a) = £.

Démonstration. Soit x € IN|a,+oo[. La fonction f est continue sur [a, z], dérivable sur |a, z[, I'égalité des accrois-
f@)=fla) _ £

r—a

sements finis donne donc qu’il existe ¢, €|a, x| tel que ¢,)- On procéde de méme si z € IN] — oo, af,
ce qui donne ¢, €|z, al.
On construit ainsi une fonction ¢ : x - ¢,, définie de I\ {a} dans lui-méme, et qui vérifie par construction (comme
¢, €la,z[ ou ¢, €]z, al),

Ve e IN{a}, |c,—al<|xr—al.

Or lim |z —a| = 0, un théoreme d’encadrement donne donc lim ¢, = a. On sait par ailleurs que lim f'(x) = £.

r—a r—a r—a
r#a
Donc par composition, lim f’(c,) = ¢. Or W = f’(c,) par définition de c,. Donc lim J)=Jla) _ £. Donc
T—a T—a Tr—a
f est dérivable en a, de dérivée f’'(a) = £. O]

Remarque. On montre au passage que la fonction f’ est continue en a.

Exercice 6. Soit f la fonction définie sur R par Yz > 0, f(z) = 22 et Yz < 0, f(z) = 0. Etudier sa dérivabilité
sur R, cette fois-ci en utilisant le théoréeme de limite de la dérivée.

Solution : Il est immédiat que f est dérivable sur R% et sur R*, car elle coincide sur ces intervalles avec des fonctions
polynémes. Mais il faut étudier le raccord en 0 avant de conclure a la dérivabilité sur R.

VeeR, f'(x)=0-—0, Vee R, f'(z)=2x—0.

x—0 x—0

Donc liIr(l) f'(x) =0. Or fest continue sur R. Donc par le théoreme de la limite de la dérivée f est dérivable en 0
r—

x#0

(et 1/(0) = 0).
Remarque. Si lim f’(x) = +00 ou —oo, on peut adapter ce raisonnement pour montrer que f n’est pas dérivable
r—a

z#a
en a. Son graphe admet alors une tangente verticale en ce point.

3 Dérivées successives

3.1 Définitions et rappels

Définition 3.1 (Classe C1)

On dit que f est de classe C! sur I lorsque f est dérivable sur I et que f’ est continue sur I. On note alors
feCHI,R).
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Définition 3.2 (Fonction deux fois dérivable, classe C?)

On dit que f est deux fois dérivable sur I lorsque f est de classe C! sur I et que f’ est dérivable sur I.
On note alors (f) = f?.

On dit que f est de classe C? sur I lorsque f est deux fois dérivable sur I et que f?) est continue sur I. On
note alors f € C%(I,R).

Remarque. On peut ensuite définir récursivement toutes les dérivées suivantes : soit p un entier natul/rel non nul,
si fP) est dérivable sur I alors f est (p+ 1) fois dérivable sur I, avec pour tout x € I, fP+Y(z) = (f®)) (z). Si, de
plus, f®*1) est continue sur I alors f est de classe CP*! sur 1.

Définition 3.3 (Classe C*°)

On dit que f est de classe C° sur [ lorsque f est indéfiniment dérivable, c’est a dire dérivable & tout ordre.
On note alors f € C(I,R).

Remarque. Si f est continue sur I, on notera par convention f € CO(I,R) et f(0 = f.

3.2 Formulaire

La plupart des fonctions usuelles sont de classe C*° sur tout intervalle inclus dans leur domaine de dérivabilité. Les
formules suivantes sont & connaitre et se montrent par récurrence (n’hésitez pas a écrire explicitement la récurrence
dans le cas ou la formule ne vous parait pas évidente).

f(x) Dy, 7 () f(z) Dy ™ ()
R R o cos(z) R cos(z +ng)
zP (p € N¥) R (p f!n)p%p_” sin<p sinte) : e ng)

. 1 —1" |
penep are M9 (c§+;):“

z* (€ R\N) | RL | ala—1)...(a—n+ 1)z

nl 1 R\ {a} nil
= (Te-)err | oz (a—ay

3.3 Opérations sur les dérivées
Proposition 3.4 (Linéarité des dérivées successives)
Soit p € N, a € R, et soient f et g des fonctions de classe CP sur I'intervalle I. Alors :
o f+gestdeclasse CP sur I et (f + g)P) = fP) 4 ¢,

o af est de classe CP sur I et (af)P) = af®),

Démonstration. On montre le résultat par récurrence sur p € N en utilisant pour I'hérédité la linéarité de la
dérivée. O

Remarque. Ce résultat reste vrai si on remplace « de classe CP » par « p fois dérivable » ou « de classe C'*° ».

Exercice 7.

Soit k € N*, déterminer la dérivée k-ieme sur |1, +oo de f : @ s 2233241

r2—1
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Solution : On montre (cf chapitre sur les polyndmes) que Vz €]1, +o0[, f(x) = x+ 2(;’71) +m =g+3-L-43-L
la fonction f est donc de classe C™ sur |1, 4+o00[ et les formules de dérivées usuelles donnent :

51 3 1
v 1 ¢ —1-= _2
Pl SO =G T T
VES 2.Vr L ool f®(z) < > UL 3 (ZDMK
= 4y ) ) _2<.’13—]_>k+1 2($+1)k+1.

Proposition 3.5 (Formule de Leibniz : dérivées successives du produit)

Soit n € N et soient f et g des fonctions de classe C™ sur Uintervalle I. Alors fg est de classe C™ sur [ et

(fg)™ = Zn: (Z) FU) gln—h)

k=0

Remarque. Attention & ne pas se laisser induire en erreur par la notation en exposant : cette formule porte sur
des dérivées, pas sur des puissances !

Démonstration. Soit n € N, on pose P(n) = « V(f,g) € C*(I)?, fg € C™(I) et (fg)™ = ZZ:O (1) fR gn=h)

« Soit n = 0, le produit de deux fonctions continues sur I est continu et (fg)® = fg = 22:0 (g)ﬂk)g(o_k).
Donc P(0) est vraie.

« Soit n € N, supposons que P(n) est vraie. Soient f et g des fonctions de classe C™"*! sur I. Alors f et g sont
aussi de classe C', et I’hypothese de récurrence nous donne : fg est de classe C”, et :

( fg><n> _ Z (Z) fUR) gln—F),

k=0

(n=k) egt, de classe

Pour tout k € [0,n], %) est de classe C™ 1%, et donc au moins de classe C'. De méme, ¢
CnHl=n+k et donc au moins de classe C'. Donc par produit et somme de fonctions de classe C!, (fg) ™) est

de classe C*'. Ce qui signifie que fg est de classe C™*1. On obtient alors en dérivant la relation précédente :

(fg)("H) — Z Z) (f(k+1)g(n—k) + f(k)g(nﬂ—k))
k=0
n n n n
= Z k) f(k+1)g(n—k) 4 Z (k;) f(k)g(n+1—k)
k=0 k=0
n+1 n n n
= )f(k)g(mrlk) + Z ( )f(k)g(n+1k)
=\l o \k
(n+1) - n n (k) (n+1—k) (n+1)
SR CARRED DN I I I B B +gf
k=1
n+1

1
k=0

Donc P(n + 1) est vraie, ce qui termine la preuve.
O

2

Exercice 8. Etudier la dérivabilité de la fonction définie sur R par : Va € R, f(z) = x°e®, et calculer ses dérivées.
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Solution : On applique la formule de Leibniz & z - e et g : x - 22 qui sont de classe C* sur R. Donc f est de
. (n
classe C™ sur R, et pour tout entier n € N et pour tout réel z, f™(z) = Z (k e g™ ().
k=0
Or on sait par propriété des polynémes que Va € R, ¢'(z) = 2z, ¢”(z) = 2 et si k > 2, ¢'¥)(z) = 0. On en déduit
que si n > 2 (condition nécessaire pour avoir le droit de sortir les premiers termes de la somme) :

—1
fr(z) = (g) g0 (2)+ (T) e® g (z)+ (;) g (2)4+0 = exa;2+nem2x—|—n(n2)ez2 =e” (2?2 4+ 2nz +n(n—1)).

On vérifie ensuite que la formule s’applique aussi pour n = 0 et n = 1, ce qui est bien le cas ici : elle est donc vraie
pour tout n € N.

Proposition 3.6 (Formule de composition)

Soit n € N. Soit I et J deux intervalles de R, f une application définie sur I et g une application définie sur
Javec f(I) C J. Alors :

e Si fest dérivable n fois sur I et g est dérivable n fois sur J, alors g o f est dérivable n fois sur 1.

e Si fet gsont de classe C™ respectivement sur I et .J alors g o f est de classe C"™ sur I.

e Si fet gsont de classe C'° respectivement sur [ et J alors g o f est de classe C'™ sur [I.
Démonstration. On montre le premier point, les autres se montrent avec une démarche similaire. Soit n € N, on
pose P(n) = « si f est dérivable n fois sur I et g est dérivable n fois sur J, alors g o f est dérivable n fois sur I ».

e Soit n =0, et f et g deux fonctions dérivables 0 fois sur I et J respectivement. Alors g o f est dérivable 0 fois
sur I et P(0) est vraie.

o Soit n € N, on suppose que P(n) est vraie. Soit f et g deux fonctions n + 1 fois dérivables sur I et J
respectivement. Elles sont en particulier dérivables, et par théoreme de dérivation des fonctions composées,
g o f est dérivable sur I, avec (go f)" = (¢’ o f) x f’. Par hypothese, les fonctions ¢’ et f sont n fois dérivables
sur J et I respectivement, et donc par P(n) (¢’ o f) est n fois dérivable sur I. Comme de plus f” est n fois
dérivable sur I, par produit (go f)" est n fois dérivable. Donc g o f est n + 1 fois dérivable, et P(n + 1) est
vraie.

D’ou le résultat. O
Proposition 3.7 (Formule de réciproque)
Soit n € N*. Soit f une application bijective de I dans J = f(I). Alors :
e Si f est dérivable n fois sur I et f’ ne s’annule pas sur I, alors f~! est dérivable n fois sur J.
e Si fest de classe C™ sur I et f’ ne s’annule pas sur I, alors f~! est de classe C™ sur J.

e Si fest de classe O™ sur I et f’ ne s’annule pas sur I, alors f~! est de classe C* sur .J.

Remarque. Attention & ne pas oublier ’hypotheése de non-annulation de la dérivée!

Démonstration. Ce résultat se démontre par récurrence, en adaptant la démonstration du résultat précédent. [
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4 Fonctions convexes
4.1 Définition
Définition 4.1 (Fonction convexe, concave)
Soit f une fonction définie sur un intervalle I.
o fest convexe sur I lorsque V(z,75) € 12, Vt € [0,1], f(try + (1 —t)xy) < tf(xy) + (1 —1)f(xy).
o fest concave sur I lorsque V(z,,x,) € I?, Vt € [0,1], f(txy + (1 —t)z9) > tf(xy) + (1 — 1) f(ay).
Remarque. Interprétation géométrique : pour t € [0,1], y = tf(x,)+ (1—t)f(x,) parcourt le segment d’extrémités
f(zq) et f(xy), tandis que y = f(tx; + (1 — t)x,) parcourt I’arc de courbe de f situé entre ces mémes points. Donc

la courbe représentative d’une fonction convexe (respectivement concave) est en dessous (respectivement au dessus)
de ses cordes.

Convexe

< Concave

Exercice 9. On admet que le le logarithme est concave sur R¥. Montrer que Yu € [1,e], u —1 < (e — 1) In(u).
Solution : On étudie la corde d’extrémités 1 et e : 3(a, b) € R? tels que cette corde a une équation du type y = au+b.
Or :In(1) =0 et In(e) =1, donc 0 = a+bet 1 =ae+b. D'ou y = “=1. La concavité donne alors : pour tout
u € [1,e], = <In(u) et donc u—1 < (e — 1) In(u).

Proposition 4.2 (Lien entre convexité et concavité)

Une fonction f est concave sur un intervalle I si et seulement si — f est convexe sur I.
Démonstration. On montre que f concave = — f convexe, la réciproque se montre par la méme méthode.
Soit f une fonction concave sur un intervalle I.

Soit (z,,25) € I? et t € [0,1], alors f(tzy + (1 —t)zy) > tf(zy) + (1 —t)f(z5), d’oll en multipliant par —1,
(—f) (txy + (1 —t)zy) < t(—f)(z1) + (1 —t)(—f)(z5). Donc —f est convexe sur I. O

4.2 Convexité et dérivabilité
Proposition 4.3 (Convexité d’une fonction dérivable)
Soit f une fonction dérivable sur un intervalle I. Les propriétés suivantes sont équivalentes :
e fest convexe sur I,
e En tout point de I, la courbe de f est au dessus de ses tangentes,

e [’ est croissante sur I.

Démonstration. Admis (nécessite les inégalités des pentes qui n’ont pas été énoncées). O

Interprétation géométrique :
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Exercice 10. Montrer que pour tout z € R, e > x + 1.

Solution : La fonction x + e* est dérivable sur R et sa dérivée x > e® est croissante sur R, donc = > e* est convexe
sur R. Donc elle est au-dessus de sa tangente en 0, d’équation y = €%(z — 0) + €°, c’est-a-dire y = z + 1. Donc
Ve eR, e® > x4+ 1.

Exercice 11. Montrer que pour tout = €] — 1, +o0[, z > In(z + 1).
Solution : La fonction x + In(x + 1) est dérivable sur | — 1, 4+o00[ et sa dérivée z %ﬂ est décroissante sur
]—1, +00], donc x - In(z+ 1) est concave sur cet intervalle. Donc elle est en dessous de sa tangente en 0, d’équation

y = 0-1+1 (x —0) +In(1 4 0), c’est-a-dire y = x. Donc Vz €] — 1, +oo[, z = In(z + 1).

Proposition 4.4 (Convexité d’une fonction deux fois dérivable)

Soit f une fonction deux fois dérivable sur un intervalle 1. Alors f est convexe sur [ si et seulement si pour
tout x € I, f"(z) > 0.

Démonstration. Découle directement de la caractérisation par la croissance : f est croissante sur I si et seulement
si f” est positive sur cet intervalle. O

Remarque. De méme, f est concave sur [ si et seulement si pour tout x € I, f”(z) < 0.

5 Fonctions a valeurs complexes
Dans cette section, on considere une fonction f définie sur un intervalle I C R et a valeurs dans C.
Définition 5.1 (Dérivabilité)

Soit a € I. On dit que f est dérivable en a si lim W € C. On note alors f’(a) la valeur de la limite.
r—a

Proposition 5.2 (Lien avec la dérivabilité des parties réelle et imaginaire)

Soit a € I. f est dérivable en a si et seulement si Re(f) et Im(f) sont dérivables en a. On a alors :

f'(a) = (Re(f))"(a) +i(Im(f))"(a).

Démonstration. Découle du résultat analogue sur les limites de fonctions, appliqué a la fonction taux d’accroissement.
O

Remarque. Si k& € N*, on note C*(I,C) I'ensemble des fonctions I — C qui sont k fois dérivables et dont la
dérivée k-ieme est continue. La fonction dérivée k-itme de f est notée f*) et par convention, f(¥) = f.

Remarque. Les formules usuelles de dérivée (combinaison linéaire, produit, formule de Leibniz) se généralisent
sans difficulté au cas complexe. Ce n’est pas contre pas le cas des résultats évoquant une monotonie, des résultats
de convexité, du théoreme de Rolle ou de 1’égalité des accroissements finis.

Exemple. La fonction ¢ i e est continue et dérivable sur [0, 27], vérifie e’® = 1 = €™, mais sa dérivée t - ie’
ne s’annule pas sur [0, 27].

Proposition 5.3 (Inégalité des accroissements finis, cas complexe)

Soit f une fonction de classe C! sur I. On suppose qu’il existe un réel M tel que Vt € I, |f’(t)| < M. Alors
V(z,y) € I, [f(x) — f(y)| < Mz —yl.

Démonstration. Admis a ce stade de 'année, nécessite une majoration d’intégrale que I'on justifiera dans le cours
d’intégration. O
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