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Dans tout le chapitre, les fonctions 𝑓 considérées sont définies sur un intervalle 𝐼 ⊂ ℝ non vide et non réduit à un 
point. Elle sont toutes supposées à valeurs réelles (sauf dans la dernière section).

1 Dérivabilité

1.1 Dérivabilité en un point

Définition 1.1 (Fonction dérivable en un point, nombre dérivé, rappel)

Soit 𝑎 ∈ 𝐼. On dit que 𝑓 est dérivable en 𝑎 lorsque lim
𝑥→𝑎

𝑓(𝑥)−𝑓(𝑎)
𝑥−𝑎  existe et est finie. Cette limite est alors 

notée 𝑓 ′(𝑎) et appelée nombre dérivé de 𝑓 en 𝑎.

Remarque. Cette définition équivaut à dire que 𝑓 est dérivable en 𝑎 si et seulement si lim
ℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)
ℎ ∈ ℝ.

Remarque. Dans le cas d’une fonction physique, la dérivée au point 𝑎 correspond à la vitesse instantanée.

Proposition 1.2 (Dérivabilité et approximation locale)

Soit 𝑎 ∈ 𝐼. La fonction 𝑓 est dérivable en 𝑎 si et seulement si il existe 𝑣 ∈ ℝ et une fonction 𝜀 tels que 
lim
ℎ→0

𝜀(ℎ) = 0 et qu’au voisinage de 0, 𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑣.ℎ + ℎ.𝜀(ℎ). Le réel 𝑣 est alors unique et vaut 𝑓 ′(𝑎).

Démonstration. On montre les deux implications successivement.

• Supposons qu’il existe 𝑣 et 𝜀 qui vérifient ces conditions. Alors, au voisinage de 0, 𝑓(𝑎 + ℎ) − 𝑓(𝑎)
ℎ

= 𝑣 +𝜀(ℎ). 

Donc lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)
ℎ

= 𝑣 + 0 = 𝑣, ce qui permet de conclure que 𝑓 est dérivable en 𝑎 avec 𝑓 ′(𝑎) = 𝑣.

• Réciproquement, supposons 𝑓 dérivable en 𝑎. Soit ℎ au voisinage de 0 et 𝜀(ℎ) = 𝑓(𝑎 + ℎ) − 𝑓(𝑎)
ℎ

− 𝑓 ′(𝑎). 
Par construction et définition du nombre dérivé, on a bien lim

ℎ→0
𝜀(ℎ) = 0. De plus, au voisinage de 0, 

𝑓(𝑎 + ℎ) − 𝑓(𝑎) = ℎ𝑓 ′(𝑎) + ℎ𝜀(ℎ), on obtient donc le résultat annoncé en posant 𝑣 = 𝑓 ′(𝑎).

∎

Proposition 1.3 (Tangente à la courbe, rappel)

Soit 𝑎 ∈ 𝐼. Si 𝑓 est dérivable en 𝑎, alors la courbe 𝒞𝑓 admet au point de coordonnées (𝑎, 𝑓(𝑎)) une tangente 
d’équation 𝑦 = 𝑓(𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎).

Démonstration. D’après le résultat précédent, si 𝑓 est dérivable en 𝑎, alors il existe une fonction 𝜀 telle que pour 𝑥
au voisinage de 𝑎, 𝑓(𝑥) = 𝑓(𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) + (𝑥 − 𝑎)𝜀(𝑥 − 𝑎) et lim𝑥→𝑎 𝜀(𝑥 − 𝑎) = 0. Donc la courbe 𝒞𝑓 admet 
au point de coordonnées (𝑎, 𝑓(𝑎)) une tangente d’équation 𝑦 = 𝑓(𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎). ∎

Remarque. Interprétation géométrique :

𝑎

•𝑓(𝑎)

𝑦 = 𝑓(𝑥)

𝑦 = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓 ′(𝑎)
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Définition 1.4 (Dérivée à droite ou à gauche en un point)

Soit 𝑎 ∈ 𝐼. On dit que 𝑓 est dérivable à droite (respectivement dérivable à gauche) en 𝑎 lorsque 
lim

𝑥→𝑎+

𝑓(𝑥)−𝑓(𝑎)
𝑥−𝑎  (resp. lim

𝑥→𝑎−

𝑓(𝑥)−𝑓(𝑎)
𝑥−𝑎 ) existe et est finie. On note alors cette limite 𝑓 ′

𝑑(𝑎) (resp. 𝑓 ′
𝑔(𝑎)).

Proposition 1.5 (Demi-tangente à la courbe)

Soit 𝑎 ∈ 𝐼. Si 𝑓 est dérivable à gauche en 𝑎, 𝒞𝑓 admet une demi-tangente d’équation 𝑦 = 𝑓(𝑎) + 𝑓 ′
𝑔(𝑎)(𝑥 − 𝑎), 

avec 𝑥 ⩽ 𝑎.
Si 𝑓 est dérivable à droite en 𝑎, 𝒞𝑓 admet une demi-tangente d’équation 𝑦 = 𝑓(𝑎) + 𝑓 ′

𝑑(𝑎)(𝑥 − 𝑎), avec 𝑥 ⩾ 𝑎.

Démonstration. Le raisonnement est le même que pour obtenir l’équation de la tangente à la courbe, mais on se 
contente d’étudier les limites à droite ou à gauche. ∎

Exemple. Soit 𝑓 la fonction définie sur ℝ par : 𝑥 ↦ |𝑥|. Elle est :

• dérivable à droite en 0, 𝑓 ′
𝑑(0) = lim

𝑥→0+
𝑥−0
𝑥−0 = 1.

• dérivable à gauche en 0, 𝑓 ′
𝑔(0) = lim

𝑥→0−
−𝑥−0
𝑥−0 = −1.

Proposition 1.6 (Lien entre dérivabilité, dérivabilité à droite et dérivabilité à gauche)

Soit 𝑎 ∈ 𝐼. Si 𝑓 est dérivable à droite et à gauche en 𝑎 et si 𝑓 ′
𝑑(𝑎) = 𝑓 ′

𝑔(𝑎) = ℓ ∈ ℝ, alors 𝑓 est dérivable en 𝑎
et 𝑓 ′(𝑎) = ℓ.

Démonstration. D’après le chapitre sur les limites de fonction, le taux d’accroissement de 𝑓 en 𝑎 admet une limite 
ℓ ∈ ℝ en 𝑎 si et seulement si il admet des limites à droite et à gauche égales à ℓ en 𝑎. D’où le résultat. ∎

1.2 Dérivabilité et continuité

Proposition 1.7 (Continuité d’une fonction dérivable)

Toute fonction 𝑓 dérivable en un point 𝑎 est continue en 𝑎.

Démonstration. Soit 𝑓 une fonction dérivable en 𝑎. Donc il existe une fonction 𝜀 telle que lim
ℎ→0

𝜀(ℎ) = 0 et qu’au 
voisinage de 0,

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ𝑓 ′(𝑎) + ℎ𝜀(ℎ) ⟶
ℎ→0

𝑓(𝑎).

Or lim
ℎ→0

𝑎+ℎ = 𝑎, donc une composition de limites donne lim
ℎ→0

𝑓(𝑎+ℎ) = lim
𝑥→𝑎

𝑓(𝑥). On obtient donc lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎), 
ce qui est la définition de la continuité en 𝑎. ∎

Remarque. Attention : La réciproque est FAUSSE, la continuité n’implique pas la dérivabilité.

Exemple. La fonction définie sur ℝ par 𝑥 ↦ |𝑥|, est continue, mais pas dérivable en 0.
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1.3 Dérivabilité sur un intervalle

Définition 1.8 (Dérivée sur un intervalle, fonction dérivée)

On dit que la fonction 𝑓 est dérivable sur 𝐼 lorsque 𝑓 est dérivable en tout point de 𝐼 (sauf pour les bornes 
de 𝐼, pour lesquelles on se restreint à la dérivabilité à droite ou à gauche).
On définit alors la fonction dérivée de 𝑓 notée 𝑓 ′, définie sur 𝐼 par 𝑓 ′ ∶ 𝑥 ↦ 𝑓 ′(𝑥).

Remarque. ATTENTION : Une fonction peut être dérivable sur [𝑎, 𝑏] et sur [𝑏, 𝑐] sans être dérivable sur [𝑎, 𝑐]. 
L’étude locale de la dérivabilité en 𝑏 est indispensable pour affirmer qu’elle est dérivable sur [𝑎, 𝑐].

Exercice 1. Soit 𝑓 la fonction définie sur ℝ par ∀𝑥 ⩾ 0, 𝑓(𝑥) = 𝑥2 et ∀𝑥 < 0, 𝑓(𝑥) = 0.
Étudier sa dérivabilité sur ℝ.
Solution : Il est immédiat que 𝑓 est dérivable sur ℝ∗

+ et sur ℝ∗
−, car elle coïncide sur ces intervalles avec des fonctions 

polynômes. Mais il faut étudier le raccord en 0 avant de conclure à la dérivabilité sur ℝ.

∀𝑥 < 0, 𝑓(𝑥) − 𝑓(0)
𝑥 − 0

= 0, ∀𝑥 > 0, 𝑓(𝑥) − 𝑓(0)
𝑥 − 0

= 𝑥2

𝑥
= 𝑥.

Donc 𝑓 est dérivable à droite et à gauche en 0, et 𝑓 ′
𝑑(0) = 0 = 𝑓 ′

𝑔(0). Donc 𝑓 est dérivable en 0 et 𝑓 est bien 
dérivable sur ℝ tout entier.

1.4 Opérations sur les fonctions dérivables

Proposition 1.9 (Linéarité)

Soient 𝑢 et 𝑣 deux fonctions dérivables sur un intervalle 𝐼 et 𝛼 un réel. Alors 𝛼𝑢 + 𝑣 est dérivable sur 𝐼 et 
(𝛼𝑢 + 𝑣)′ = 𝛼𝑢′ + 𝑣′.

Démonstration. Soit 𝑎 ∈ 𝐼. Au voisinage de 𝑎,

(𝛼𝑢 + 𝑣)(𝑥) − (𝛼𝑢 + 𝑣)(𝑎)
𝑥 − 𝑎

= (𝛼𝑢(𝑥) + 𝑣(𝑥)) − (𝛼𝑢(𝑎) + 𝑣(𝑎))
𝑥 − 𝑎

= 𝛼𝑢(𝑥) − 𝑢(𝑎)
𝑥 − 𝑎

+ 𝑣(𝑥) − 𝑣(𝑎)
𝑥 − 𝑎

⟶
𝑥→𝑎

𝛼𝑢′(𝑎) + 𝑣′(𝑎),

car 𝑢 et 𝑣 sont dérivables en 𝑎. Donc 𝛼𝑢 + 𝑣 est dérivable en 𝑎 et (𝛼𝑢 + 𝑣)′(𝑎) = 𝛼𝑢′(𝑎) + 𝑣′(𝑎). ∎

Proposition 1.10 (Dérivée d’un produit et d’un quotient)

Soient 𝑢 et 𝑣 deux fonctions dérivables sur un intervalle 𝐼. Alors 𝑢𝑣 est dérivable sur 𝐼 et (𝑢𝑣)′ = 𝑢′𝑣 + 𝑢𝑣′. 
Si de plus, la fonction 𝑣 ne s’annule sur 𝐼, alors 𝑢

𝑣  est dérivable sur 𝐼 et (𝑢
𝑣 )′ = 𝑢′𝑣−𝑢𝑣′

𝑣2 .

Démonstration. Soit 𝑎 ∈ 𝐼. Au voisinage de 𝑎,

(𝑢𝑣)(𝑥) − (𝑢𝑣)(𝑎)
𝑥 − 𝑎

= 𝑢(𝑥)𝑣(𝑥) − 𝑢(𝑎)𝑣(𝑎)
𝑥 − 𝑎

= 𝑢(𝑥)𝑣(𝑥) − 𝑣(𝑎)
𝑥 − 𝑎

+ 𝑣(𝑎)𝑢(𝑥) − 𝑢(𝑎)
𝑥 − 𝑎

⟶
𝑥→𝑎

𝑢(𝑎)𝑣′(𝑎) + 𝑣(𝑎)𝑢′(𝑎),

car 𝑢 et 𝑣 sont dérivables en 𝑎 et 𝑢 est continue (car dérivable) en 𝑎. Donc 𝑢𝑣 est dérivable en 𝑎 et on obtient 
(𝑢𝑣)′(𝑎) = 𝑢(𝑎)𝑣′(𝑎) + 𝑣(𝑎)𝑢′(𝑎).
De plus, au voisinage de 𝑎,

1
𝑣(𝑥) − 1

𝑣(𝑎)
𝑥 − 𝑎

= − 1
𝑣(𝑥)𝑣(𝑎)

𝑣(𝑥) − 𝑣(𝑎)
𝑥 − 𝑎

⟶
𝑥→𝑎

− 1
𝑣(𝑎)2 𝑣′(𝑎),

car 𝑣 est dérivable et continue en 𝑎. Donc 1
𝑣  est dérivable en 𝑎 et (1

𝑣)′ (𝑎) = − 1
𝑣(𝑎)2 𝑣′(𝑎).

Le résultat sur le quotient découle ensuite directement de ceux sur le produit et l’inverse. ∎
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Proposition 1.11 (Dérivée d’une composée)

Soient 𝑓 une fonction dérivable sur un intervalle 𝐼 et 𝑔 une fonction dérivable sur 𝑓(𝐼). Alors 𝑔 ∘ 𝑓 est 
dérivable sur 𝐼, et (𝑔 ∘ 𝑓)′ = 𝑓 ′ ⋅ (𝑔′ ∘ 𝑓).

Démonstration. Soit 𝑎 ∈ 𝐼. Au voisinage de 𝑎, on aimerait écrire :

𝑔 ∘ 𝑓(𝑥) − 𝑔 ∘ 𝑓(𝑎)
𝑥 − 𝑎

= 𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑎))
𝑓(𝑥) − 𝑓(𝑎)

× 𝑓(𝑥) − 𝑓(𝑎)
𝑥 − 𝑎

,

pour faire apparaître les taux d’accroissement de 𝑓 et 𝑔. Mais rien ne garantit la non-annulation de 𝑓(𝑥) − 𝑓(𝑎). 
On utilise une fonction auxiliaire pour contourner ce problème. Soit 𝜑 la fonction définie au voisinage de 𝑓(𝑎) par :

𝜑(𝑦) = 𝑔(𝑦) − 𝑔(𝑓(𝑎))
𝑦 − 𝑓(𝑎)

 si 𝑦 ≠ 𝑓(𝑎)  et 𝜑(𝑓(𝑎)) = 𝑔′(𝑓(𝑎)).

Par définition de 𝑔′(𝑓(𝑎)), 𝜑 est continue au point 𝑓(𝑎). Et ∀𝑥 ≠ 𝑎, 𝑔 ∘ 𝑓(𝑥) − 𝑔 ∘ 𝑓(𝑎)
𝑥 − 𝑎

= 𝜑(𝑓(𝑥))𝑓(𝑥) − 𝑓(𝑎)
𝑥 − 𝑎

. 
Comme 𝑓 est dérivable en 𝑎, 𝑓 est continue en 𝑎 et 𝜑 est continue en 𝑓(𝑎), le membre de droite admet bien une 
limite en 𝑎. Donc 𝑔 ∘ 𝑓 est dérivable en 𝑎 et par passage à la limite :

(𝑔 ∘ 𝑓)′(𝑎) = lim
𝑥→𝑎

𝑔 ∘ 𝑓(𝑥) − 𝑔 ∘ 𝑓(𝑎)
𝑥 − 𝑎

= 𝜑(𝑓(𝑎))𝑓 ′(𝑎) = 𝑔′(𝑓(𝑎))𝑓 ′(𝑎).

∎

Proposition 1.12 (Dérivée de la fonction réciproque)

Soit 𝑓 une fonction dérivable et strictement monotone sur un intervalle 𝐼 et à valeurs dans 𝐽 = 𝑓(𝐼). Soit 
𝑎 ∈ 𝐼. La fonction réciproque 𝑓−1 est dérivable en 𝑏 = 𝑓(𝑎) si et seulement si 𝑓 ′(𝑎) ≠ 0 et lorsqu’elle est 
dérivable, (𝑓−1)′ (𝑏) = 1

𝑓′(𝑓−1(𝑏)) = 1
𝑓′(𝑎) .

Démonstration. La fonction 𝑓 est continue sur 𝐼 (car dérivable) et strictement monotone sur cet intervalle. D’après 
le théorème de la bijection, elle réalise donc bien une bijection de 𝐼 sur 𝐽 = 𝑓(𝐼) et 𝑓−1 existe et est continue (et 
strictement monotone) sur 𝐽.
Soit 𝑏 ∈ 𝐽 et 𝑎 son unique antécédent par 𝑓. On a 𝑏 = 𝑓(𝑎), donc 𝑎 = 𝑓−1(𝑏). Pour tout 𝑦 ∈ 𝐽 ∖ {𝑏},

𝑓−1(𝑦) − 𝑓−1(𝑏)
𝑦 − 𝑏

= 𝑓−1(𝑦) − 𝑎
𝑓(𝑓−1(𝑦)) − 𝑓(𝑎)

.

Or 𝑓−1 est continue sur 𝐽, donc en 𝑏. Donc lim𝑦↦𝑏 𝑓−1(𝑦) = 𝑓−1(𝑏) = 𝑎. Par continuité de 𝑓 sur 𝐼, composition de 
limites et dérivabilité de 𝑓 en 𝑎, on trouve alors :

lim
𝑦↦𝑏

𝑓(𝑓−1(𝑦)) − 𝑓(𝑎)
𝑓−1(𝑦) − 𝑎

= lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)
𝑥 − 𝑎

= 𝑓 ′(𝑎).

Si 𝑓 ′(𝑎) = 0, par passage à l’inverse 𝑓−1(𝑦)−𝑓−1(𝑏)
𝑦−𝑏  n’admet pas de limite finie en 𝑏, donc 𝑓−1 n’est pas dérivable en 𝑏. 

Si par contre 𝑓 ′(𝑎) ≠ 0, la limite de l’inverse est finie donc 𝑓−1 est dérivable en 𝑏 et on trouve :

(𝑓−1)′(𝑏) = lim
𝑦↦𝑏

𝑓−1(𝑦) − 𝑓−1(𝑏)
𝑦 − 𝑏

= 1
𝑓 ′(𝑎)

.

∎
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2 Principaux théorèmes

2.1 Caractérisation d’un extremum local

Définition 2.1 (Maximum/minimum local)

• On dit que 𝑓 admet un maximum local en 𝑎 ∈ 𝐼 lorsqu’au voisinage de 𝑎, 𝑓(𝑥) ⩽ 𝑓(𝑎).

• On dit que 𝑓 admet un minimum local en 𝑎 ∈ 𝐼 lorsqu’au voisinage de 𝑎, 𝑓(𝑥) ⩾ 𝑓(𝑎).

Exemple. Représentation graphique :

•••••
maximum global (et minimum local sur la partie constante)

•
minimum global

•maximum local

•
minimum local

•maximum local

Définition 2.2 (Point critique)

Soit 𝑓 une fonction dérivable sur 𝐼 et 𝑎 ∈ 𝐼. On dit que 𝑎 est un point critique de 𝑓 lorsque 𝑓 ′(𝑎) = 0.

Proposition 2.3 (Caractérisation d’un extremum par la dérivée)

Soit 𝑓 une fonction dérivable sur un intervalle 𝐼. Soit 𝑎 ∈ 𝐼 qui n’est pas une borne de 𝐼. Si 𝑓 admet un 
extremum local en 𝑎 alors 𝑓 ′(𝑎) = 0.

Démonstration. Supposons que 𝑓 possède un maximum local en 𝑎. Il existe alors 𝛼 ∈ ℝ∗
+ tel que ]𝑎 − 𝛼, 𝑎 + 𝛼[⊂ 𝐼

et ∀𝑥 ∈]𝑎 − 𝛼, 𝑎 + 𝛼[, 𝑓(𝑥) ⩽ 𝑓(𝑎).

Donc, pour tout 𝑥 ∈]𝑎, 𝑎 + 𝛼[, 𝑓(𝑥) − 𝑓(𝑎)
𝑥 − 𝑎

⩽ 0. Or 𝑓 est dérivable en 𝑎 par hypothèse. On peut donc passer à la 
limite dans cette inégalité et on trouve 𝑓 ′(𝑎) ⩽ 0.

De même, pour tout 𝑥 ∈]𝑎 − 𝛼, 𝑎[, 𝑓(𝑥) − 𝑓(𝑎)
𝑥 − 𝑎

⩾ 0, ce qui donne 𝑓 ′(𝑎) ⩾ 0. Donc 𝑓 ′(𝑎) = 0. ∎

Remarque. ATTENTION : la réciproque est fausse ! Il se peut que 𝑓 ′(𝑎) = 0 sans que 𝑓 n’admette d’extremum 
en 𝑎. Par exemple, la fonction définie sur ℝ par 𝑥 ↦ 𝑥3 a une dérivée nulle en 0, mais n’atteint ni un maximum ni 
un minimum en ce point.

Exercice 2. Sans utiliser de tableau de variations, trouver les extremums locaux de la fonction 𝑓 définie sur ℝ par 
∀𝑥 ∈ ℝ, 𝑓(𝑥) = 𝑥4 + 𝑥.
Solution : Comme l’intervalle ℝ ne contient pas ses bornes et comme 𝑓 est dérivable partout sur ℝ, il suffit d’étudier 
les points critiques. La fonction est dérivable sur ℝ, et ∀𝑥 ∈ ℝ, 𝑓 ′(𝑥) = 4𝑥3 + 1.
Cette dérivée s’annule si et seulement si 𝑥3 = −1

4
. Il y a une seule solution réelle, − 1

3
√

4
, et la dérivée est négative 

avant et positive après. Donc la fonction est décroissante avant − 1
3
√

4
, et croissante ensuite. On en conclut que la 

fonction admet un minimum local en − 1
3
√

4
. Comme la dérivée ne s’annule pas ailleurs, et qu’il n’y a pas de borne 

ou de point où la fonction n’est pas dérivable, cela signifie que la fonction n’admet pas de maximum.

Remarque. Cette technique sera surtout utile dans les cas où le tableau de variations de la fonction est compliqué 
à obtenir. On verra plus tard d’autres stratégies d’étude locale.
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2.2 Théorème de Rolle et égalité des accroissements finis

Proposition 2.4 (Théorème de Rolle)

Soit 𝑎 < 𝑏. Si 𝑓 est une fonction continue sur [𝑎, 𝑏], dérivable sur ]𝑎, 𝑏[ et qui vérifie 𝑓(𝑎) = 𝑓(𝑏), alors il 
existe 𝑐 ∈]𝑎, 𝑏[ tel que 𝑓 ′(𝑐) = 0.

Démonstration. La fonction 𝑓 est continue sur le segment [𝑎, 𝑏] donc par le théorème des bornes atteintes elle y est 
bornée et atteint ses bornes. On note 𝑚 le minimum global et 𝑀 le maximum global.

• Si 𝑚 = 𝑀, la fonction est constante sur [𝑎, 𝑏], et donc 𝑓 ′ est nulle sur ]𝑎, 𝑏[. Dans ce cas, on peut choisir 
n’importe quel 𝑐 ∈]𝑎, 𝑏[ qui conviendra.

• Si 𝑚 ≠ 𝑀, l’une de ces valeurs au moins n’est atteinte ni en 𝑎 ni en 𝑏 (puisque 𝑓(𝑎) = 𝑓(𝑏)). Supposons qu’il 
s’agit de 𝑀 (un raisonnement analogue se fait avec 𝑚). Il existe alors 𝑐 ∈]𝑎, 𝑏[ tel que 𝑓(𝑐) = 𝑀. Comme la 
fonction admet un maximum en 𝑐 et qu’elle est dérivable en ce point, sa dérivée s’annule par le théorème 
précédent. D’où le résultat.

∎

Remarque. Le réel 𝑐 n’est pas forcément unique.

Remarque. Interprétation graphique : il existe donc un point de la courbe admettant une tangente parallèle à 
l’axe des abscisses.

•𝑓(𝑎) •𝑓(𝑏)

Proposition 2.5 (Égalité des Accroissements Finis)

Soit 𝑎 < 𝑏. Si 𝑓 est une fonction continue sur [𝑎, 𝑏] et dérivable sur ]𝑎, 𝑏[ alors il existe 𝑐 ∈]𝑎, 𝑏[ tel que 
𝑓 ′(𝑐) = 𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎 .

Démonstration. On se ramène aux hypothèses du théorème de Rolle. Pour tout 𝑥 ∈ [𝑎, 𝑏], on pose :

𝑔(𝑥) = 𝑓(𝑥) − 𝑓(𝑏) − 𝑓(𝑎)
𝑏 − 𝑎

(𝑥 − 𝑎).

La fonction 𝑔 est continue sur [𝑎, 𝑏] comme somme de fonctions continues, et elle est dérivable sur ]𝑎, 𝑏[ comme 

somme de fonctions dérivables. Et pour tout 𝑥 ∈]𝑎, 𝑏[, 𝑔′(𝑥) = 𝑓 ′(𝑥) − 𝑓(𝑏) − 𝑓(𝑎)
𝑏 − 𝑎

.
On remarque que 𝑔(𝑏) = 𝑔(𝑎) = 𝑓(𝑎). Donc 𝑔 vérifie les hypothèses du théorème de Rolle, et il existe 𝑐 ∈]𝑎, 𝑏[ tel 

que 𝑔′(𝑐) = 0. Et donc tel que 𝑓 ′(𝑐) = 𝑓(𝑏) − 𝑓(𝑎)
𝑏 − 𝑎

. ∎

Remarque. 𝑓(𝑏)−𝑓(𝑎)
𝑏−𝑎  est le coefficient directeur du segment [𝐴𝐵], donc il existe un point de 𝒞𝑓 admettant une 

tangente parallèle à ce segment.

•

•
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2.3 Inégalité des accroissements finis

Définition 2.6 (Fonction lipschitzienne)

Soit 𝑀 ⩾ 0. On dit qu’une fonction 𝑓 définie sur un intervalle 𝐼 est 𝑀-lipschitzienne si ∀(𝑥, 𝑦) ∈ 𝐼2,

|𝑓(𝑥) − 𝑓(𝑦)| ⩽ 𝑀 |𝑥 − 𝑦| .

Remarque. Cela signifie que pour tout (𝑥, 𝑦) ∈ 𝐼2, la distance entre 𝑓(𝑥) et 𝑓(𝑦) (qui se lit sur l’axe des ordonnées) 
peut être majorée proportionnellement à la distance entre 𝑥 et 𝑦 (qui se lit sur l’axe des abscisses).

Remarque. C’est équivalent à dire que pour tous 𝑥 ≠ 𝑦, |𝑓(𝑥)−𝑓(𝑦)
𝑥−𝑦 | ⩽ 𝑀. Autrement dit, une fonction est 

𝑀-lipschitzienne si et seulement si ses accroissements sont bornés par 𝑀.

Exercice 3. Montrer que la fonction 𝑓 ∶ 𝑥 ↦ 1
𝑥  est lipschitzienne sur [1, +∞[, mais pas sur ℝ∗

+.

Solution : Soit (𝑥, 𝑦) ∈ [1, +∞[2, |𝑓(𝑦) − 𝑓(𝑥)| = |1
𝑦

− 1
𝑥

| = |𝑥 − 𝑦
𝑥𝑦

| = |𝑦 − 𝑥|
𝑥𝑦

⩽ |𝑦 − 𝑥|.

Donc 𝑓 est 1-lipschitzienne sur [1, +∞[.
Supposons qu’elle l’est aussi sur ℝ∗

+. Alors ∃𝐾 ∈ ℝ tel que ∀(𝑥, 𝑦) ∈ ℝ∗
+, |𝑓(𝑦) − 𝑓(𝑥)| ⩽ 𝐾 |𝑦 − 𝑥|. En particulier, 

pour 𝑥 = 1, ∀𝑦 ∈ ℝ∗
+, |1

𝑦 − 1| ⩽ |𝑦 − 1|. Faire tendre 𝑦 vers 0 donnerait alors +∞ ⩽ 1 : absurde. Donc 𝑓 n’est pas 
lipschitzienne sur ℝ∗

+.
On peut illustrer tout cela graphiquement, en observant les pentes de la courbe :

𝑦 = 𝑓(𝑥)
−1

|
1

Proposition 2.7 (Continuité d’une fonction lipschitzienne)

Soit 𝑀 ⩾ 0. Si 𝑓 est 𝑀-lipschitzienne sur 𝐼, alors 𝑓 est continue sur 𝐼.

Démonstration. Soit 𝑎 ∈ 𝐼, ∀𝑥 ∈ 𝐼, |𝑓(𝑥) − 𝑓(𝑎)| ⩽ 𝑀 |𝑥 − 𝑎| ⟶
𝑥→𝑎

0. Donc par théorème d’encadrement, lim
𝑥→𝑎

𝑓(𝑥) =
𝑓(𝑎). Donc 𝑓 est continue au point 𝑎. Donc 𝑓 est continue sur 𝐼. ∎

Proposition 2.8 (Inégalité des Accroissements Finis)

Soit 𝑓 une fonction dérivable sur un intervalle 𝐼 de ℝ et telle que |𝑓 ′| est majorée par un réel 𝐾, alors 𝑓 est 
𝐾-lipschitzienne.

Démonstration. Soit (𝑥, 𝑦) ∈ 𝐼2. Si 𝑥 = 𝑦, alors |𝑓(𝑥) − 𝑓(𝑦)| = 0 ⩽ 0 = 𝐾 |𝑥 − 𝑦|.
Si 𝑥 < 𝑦 (le cas 𝑦 < 𝑥 se traite de la même façon), on applique l’égalité des accroissements finis à la fonction 𝑓, 
continue et dérivable sur [𝑥, 𝑦]. Donc il existe 𝑐 ∈]𝑥, 𝑦[ tel que 𝑓(𝑥)−𝑓(𝑦)

𝑥−𝑦 = 𝑓 ′(𝑐). Comme 𝑐 ∈ 𝐼, on obtient |𝑓 ′(𝑐)| ⩽ 𝐾
et donc |𝑓(𝑥)−𝑓(𝑦)

𝑥−𝑦 | ⩽ 𝐾. Il suffit alors de multiplier par |𝑥 − 𝑦| > 0 pour conclure que 𝑓 est 𝐾-lipschitzienne. ∎

Exercice 4. Montrer que ∀𝑥 ∈ ℝ, |cos(𝑥) − 1| ⩽ |𝑥|.
Solution : La fonction cosinus est dérivable sur ℝ et ∀𝑥 ∈ ℝ, |cos′(𝑥)| = |− sin(𝑥)| ⩽ 1. Donc par inégalité des 
accroissements finis, cos est 1-lipschitienne sur ℝ. Donc ∀𝑥 ∈ ℝ, |cos(𝑥) − cos(0)| ⩽ |𝑥 − 0|. D’où le résultat 
annoncé.
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Remarque. Les accroissements finis (égalité et inégalité) permettent en particulier de récupérer des informations 
sur une fonction 𝑓 à partir d’informations sur sa dérivée 𝑓 ′.

Proposition 2.9 (Application des accroissements finis aux suites récurrentes)

Soit 𝑢 une suite d’éléments de 𝐼 définie par la relation de récurrence ∀𝑛 ∈ ℕ, 𝑢𝑛+1 = 𝑓(𝑢𝑛). On suppose 
qu’il existe un intervalle 𝐽 tel que :

• 𝐽 est stable par 𝑓 et contient au moins un terme de la suite.

• 𝑓 admet un unique point fixe ℓ sur 𝐽.

• ∃𝑘 ∈ [0, 1[ tel que 𝑓 est 𝑘-lipschitzienne sur 𝐽.

Alors 𝑢 converge vers ℓ.

Démonstration. Puisqu’il existe un rang 𝑛0 tel que 𝑢𝑛0
∈ 𝐽 et que 𝐽 est stable par 𝑓, tous les termes de 𝑢 à partir 

de ce rang sont bien définis et appartiennent à 𝐽.
Soit 𝑛 ⩾ 𝑛0, nos hypothèses donnent |𝑢𝑛+1 − ℓ| = |𝑓(𝑢𝑛) − 𝑓(ℓ)| ⩽ 𝑘 |𝑢𝑛 − ℓ|.
Soit 𝑛 ⩾ 𝑛0, on pose 𝑃(𝑛) ∶ « |𝑢𝑛 − ℓ| ⩽ 𝑘𝑛−𝑛0 |𝑢𝑛0

− ℓ| ».

• |𝑢𝑛0
− ℓ| ⩽ 𝑘0 |𝑢𝑛0

− ℓ| donc 𝑃(𝑛0) est vraie.

• Soit 𝑛 ⩾ 𝑛0, on suppose que 𝑃(𝑛) est vraie. La relation de récurrence obtenue précédemment donne alors :

|𝑢𝑛+1 − ℓ| ⩽ 𝑘 |𝑢𝑛 − ℓ| ⩽ 𝑘𝑛+1−𝑛0 |𝑢𝑛0
− ℓ| .

Donc 𝑃(𝑛 + 1) est vraie.

Donc ∀𝑛 ⩾ 𝑛0, |𝑢𝑛 − ℓ| ⩽ 𝑘𝑛−𝑛0 |𝑢𝑛0
− ℓ|. Comme 𝑘 ∈ [0, 1[, on a 𝑘𝑛 ⟶

𝑛→+∞
0. Donc par théorème d’encadrement, 

|𝑢𝑛 − ℓ| ⟶
𝑛→+∞

0, c’est-à-dire 𝑢𝑛 ⟶
𝑛→+∞

ℓ. ∎

Remarque. L’un des gros intérêts de cette méthode est qu’elle montre au passage ∀𝑛 ⩾ 𝑛0, |𝑢𝑛 − ℓ| ⩽
𝑘𝑛−𝑛0 |𝑢𝑛0

− ℓ|. Cela permet de déterminer la vitesse de convergence (au moins géométrique), ce qui donne 
des approximations numériques de la valeur de la limite.

Exercice 5. Soit 𝑢 ∈ ℝℕ une suite définie par 𝑢0 > −2 et la relation ∀𝑛 ∈ ℕ, 𝑢𝑛+1 = 1
2+𝑢𝑛

. Après avoir démontré 
que cette suite était bien définie, étudier son comportement en +∞.
Solution : On pose 𝑓  ∶ 𝑥 ↦ 1

2+𝑥 . On commence par tracer la courbe sur ] − 2, +∞[, la droite d’équation 𝑦 = 𝑥 et 
les premiers termes de la suite pour conjecturer son comportement :

𝑦 = 𝑓(𝑥)

𝑦 = 𝑥

Choisissons 𝐽. On constate que 𝑓 est positive, et comme on aura besoin de montrer qu’elle est lipschitzienne sur 
l’intervalle 𝐽, on choisit d’écarter le voisinage de −2 de l’étude (c’est là que les tangentes sont les plus pentues, et il 
nous faut des tangentes de pentes inférieures à 1). On pose donc 𝐽 = ℝ+.
Soit 𝑥 ∈ ℝ+, 2 + 𝑥 > 0, donc 𝑓(𝑥) ⩾ 0. Donc ℝ+ est stable par 𝑓, ce qui comme 𝑢1 = 1

2+𝑢0
⩾ 0 garantit la bonne 

définition de la suite. La suite 𝑢 est donc à valeurs dans ℝ+ (sauf éventuellement 𝑢0).
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Cherchons les points fixes de 𝑓. Soit 𝑥 ∈ ℝ+,

𝑓(𝑥) = 𝑥 ⟺ 1
2 + 𝑥

= 𝑥 ⟺ 1 = 2𝑥 + 𝑥2 ⟺ 𝑥2 + 2𝑥 − 1 = 0 ⟺ 𝑥 = −1 ±
√

2 ⟺ 𝑥 = −1 +
√

2,

où on a utilisé le calcul de discriminant Δ = 4 + 4 = 8 > 0, puis éliminé la valeur −1 −
√

2 < 0. Donc −1 +
√

2 est 
l’unique point fixe de 𝑓 sur ℝ+.
Montrons maintenant que 𝑓 est lipschitzienne sur ℝ+. La fonction 𝑓 est dérivable sur ℝ+ comme quotient de 
fonctions dérivables, et ∀𝑥 ∈ ℝ+, |𝑓 ′(𝑥)| = | −1

(2+𝑥)2 | = 1
(2+𝑥)2 . Or si 𝑥 ⩾ 0, 2 + 𝑥 ⩾ 2, donc (2 + 𝑥)2 ⩾ 4 > 0 par 

croissance du carré sur ℝ+. Donc par passage à l’inverse, |𝑓 ′(𝑥)| ⩽ 1
4 . Donc par inégalité des accroissements finis, 𝑓

est 1
4 -lipschitzienne sur ℝ+.

Comme 0 ⩽ 1
4 < 1, on en déduit que la suite 𝑢 converge vers −1 +

√
2.

2.4 Caractérisation des fonctions constantes et monotones

Proposition 2.10 (Variations de fonctions dérivables)

Soit 𝑓 une fonction dérivable sur un intervalle 𝐼. Alors :

• 𝑓 est croissante sur 𝐼 si et seulement si : ∀𝑥 ∈ 𝐼, 𝑓 ′(𝑥) ⩾ 0.

• 𝑓 est décroissante sur 𝐼 si et seulement si : ∀𝑥 ∈ 𝐼, 𝑓 ′(𝑥) ⩽ 0.

• 𝑓 est constante sur 𝐼 si et seulement si : ∀𝑥 ∈ 𝐼, 𝑓 ′(𝑥) = 0.

Démonstration. On va montrer le premier point. Le deuxième point s’obtient en appliquant le premier point à −𝑓, 
et le troisième point s’obtient avec la réunion des deux premiers points.

• Supposons que 𝑓 est croissante sur 𝐼. Soit 𝑎 ∈ 𝐼, si 𝑥 ⩾ 𝑎, 𝑓(𝑥) ⩾ 𝑓(𝑎). De même, si 𝑥 ⩽ 𝑎, 𝑓(𝑥) ⩽ 𝑓(𝑎). 

Donc pour tout 𝑥 ∈ 𝐼 ∖ {𝑎}, on a 𝑓(𝑥) − 𝑓(𝑎)
𝑥 − 𝑎

⩾ 0.

Par passage à la limite (ce qui est possible puisque 𝑓 est dérivable en 𝑎), on obtient 𝑓 ′(𝑎) ⩾ 0. Ceci étant 
vrai pour tout 𝑎 ∈ 𝐼, cela donne la positivité de 𝑓 ′ sur 𝐼.

• Supposons que ∀𝑥 ∈ 𝐼, 𝑓 ′(𝑥) ⩾ 0. On revient à la définition de la croissance : soit 𝑥 et 𝑦 dans 𝐼 tels que 
𝑥 ⩽ 𝑦. Si 𝑥 = 𝑦, il est immédiat que 𝑓(𝑥) = 𝑓(𝑦). Si 𝑥 < 𝑦, la fonction 𝑓 étant dérivable (et continue) sur 𝐼, 

donc sur [𝑥, 𝑦], l’égalité des accroissements finis donne : ∃𝑐 ∈]𝑥, 𝑦[ tel que 𝑓 ′(𝑐) = 𝑓(𝑦) − 𝑓(𝑥)
𝑦 − 𝑥

. Or 𝑓 ′(𝑐) ⩾ 0

puisque 𝑓 ′ est positive. D’où 𝑓(𝑥) ⩽ 𝑓(𝑦). Donc la fonction 𝑓 est croissante sur 𝐼.

∎

Proposition 2.11 (Cas particulier de la stricte monotonie)

Soit 𝑓 une fonction dérivable sur un intervalle 𝐼 de ℝ, et soit 𝐽 un ensemble obtenu en retirant un nombre 
fini de points à 𝐼. Si ∀𝑥 ∈ 𝐽, 𝑓 ′(𝑥) > 0 (resp. 𝑓 ′(𝑥) < 0) et ∀𝑥 ∈ 𝐼 ∖ 𝐽, 𝑓 ′(𝑥) = 0, alors 𝑓 est strictement 
croissante (resp. strictement décroissante) sur 𝐼.

Remarque. L’annulation en un nombre fini de points n’empêche donc pas la stricte croissance de la fonction.

Démonstration. Quitte à considérer la fonction −𝑓 plutôt que 𝑓, on peut ne considérer que le cas où 𝑓 ′ est 
strictement positive sur 𝐽. Soit 𝑎 < 𝑏 deux points de 𝐼, on va chercher à montrer que 𝑓(𝑎) < 𝑓(𝑏).
On note 𝑥1 < … < 𝑥𝑛 les points de (𝐼 ∖ 𝐽)∩]𝑎, 𝑏[ (c’est-à-dire les points de ]𝑎, 𝑏[ où il n’y a pas stricte positivité de 
la dérivée), et on pose 𝑥0 = 𝑎 et 𝑥𝑛+1 = 𝑏. On a alors :

𝑎 = 𝑥0 < 𝑥1 < … < 𝑥𝑛 < 𝑥𝑛+1 = 𝑏.

10



Or 𝑓 ′ est positive sur 𝐼 (puisqu’elle est soit strictement positive, soit nulle), donc 𝑓 est croissante sur 𝐼 et on a :

𝑓(𝑎) = 𝑓(𝑥0) ⩽ 𝑓(𝑥1) ⩽ … ⩽ 𝑓(𝑥𝑛) ⩽ 𝑓(𝑥𝑛+1) = 𝑓(𝑏). (∗)

Soit 𝑖 ∈ [[0, 𝑛]], 𝑓 est dérivable (et continue) sur [𝑥𝑖, 𝑥𝑖+1], donc on peut y appliquer l’égalité des accroissements 
finis : il existe 𝑐𝑖 ∈]𝑥𝑖, 𝑥𝑖+1[ tel que 𝑓(𝑥𝑖+1)−𝑓(𝑥𝑖)

𝑥𝑖+1−𝑥𝑖
= 𝑓 ′(𝑐𝑖).

Comme 𝑐𝑖 ne vaut aucun des 𝑥𝑘, 𝑐𝑖 ∈ 𝐽 et on a 𝑓 ′(𝑐𝑖) > 0. Donc 𝑓(𝑥𝑖+1)−𝑓(𝑥𝑖)
𝑥𝑖+1−𝑥𝑖

> 0, ce qui signifie que 𝑓(𝑥𝑖) < 𝑓(𝑥𝑖+1). 
Les inégalités dans (∗) sont donc strictes, donc 𝑓(𝑎) < 𝑓(𝑏).
La fonction 𝑓 est donc strictement croissante sur 𝐼. ∎

2.5 Théorème de la limite de la dérivée

Proposition 2.12 (Limite de la dérivée)

Soit 𝑎 ∈ 𝐼. Soit 𝑓 une fonction continue sur 𝐼, dérivable sur 𝐼 ∖ {𝑎} et telle que lim
𝑥→𝑎
𝑥≠𝑎

𝑓 ′(𝑥) = ℓ ∈ ℝ.

Alors 𝑓 est dérivable en 𝑎 et 𝑓 ′(𝑎) = ℓ.

Démonstration. Soit 𝑥 ∈ 𝐼∩]𝑎, +∞[. La fonction 𝑓 est continue sur [𝑎, 𝑥], dérivable sur ]𝑎, 𝑥[, l’égalité des accrois­
sements finis donne donc qu’il existe 𝑐𝑥 ∈]𝑎, 𝑥[ tel que 𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎 = 𝑓 ′(𝑐𝑥). On procède de même si 𝑥 ∈ 𝐼∩] − ∞, 𝑎[, 
ce qui donne 𝑐𝑥 ∈]𝑥, 𝑎[.
On construit ainsi une fonction 𝑐  ∶ 𝑥 ↦ 𝑐𝑥, définie de 𝐼 ∖{𝑎} dans lui-même, et qui vérifie par construction (comme 
𝑐𝑥 ∈]𝑎, 𝑥[ ou 𝑐𝑥 ∈]𝑥, 𝑎[),

∀𝑥 ∈ 𝐼 ∖ {𝑎}, |𝑐𝑥 − 𝑎| < |𝑥 − 𝑎| .

Or lim
𝑥→𝑎

|𝑥 − 𝑎| = 0, un théorème d’encadrement donne donc lim
𝑥→𝑎

𝑐𝑥 = 𝑎. On sait par ailleurs que lim
𝑥→𝑎
𝑥≠𝑎

𝑓 ′(𝑥) = ℓ. 

Donc par composition, lim
𝑥→𝑎

𝑓 ′(𝑐𝑥) = ℓ. Or 𝑓(𝑥)−𝑓(𝑎)
𝑥−𝑎 = 𝑓 ′(𝑐𝑥) par définition de 𝑐𝑥. Donc lim

𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)
𝑥 − 𝑎

= ℓ. Donc 
𝑓 est dérivable en 𝑎, de dérivée 𝑓 ′(𝑎) = ℓ. ∎

Remarque. On montre au passage que la fonction 𝑓 ′ est continue en 𝑎.

Exercice 6. Soit 𝑓 la fonction définie sur ℝ par ∀𝑥 ⩾ 0, 𝑓(𝑥) = 𝑥2 et ∀𝑥 < 0, 𝑓(𝑥) = 0. Étudier sa dérivabilité 
sur ℝ, cette fois-ci en utilisant le théorème de limite de la dérivée.
Solution : Il est immédiat que 𝑓 est dérivable sur ℝ∗

+ et sur ℝ∗
−, car elle coïncide sur ces intervalles avec des fonctions 

polynômes. Mais il faut étudier le raccord en 0 avant de conclure à la dérivabilité sur ℝ.

∀𝑥 ∈ ℝ∗
−, 𝑓 ′(𝑥) = 0 ⟶

𝑥→0
0, ∀𝑥 ∈ ℝ∗

+, 𝑓 ′(𝑥) = 2𝑥 ⟶
𝑥→0

0.

Donc lim
𝑥→0
𝑥≠0

𝑓 ′(𝑥) = 0. Or 𝑓 est continue sur ℝ. Donc par le théorème de la limite de la dérivée 𝑓 est dérivable en 0

(et 𝑓 ′(0) = 0).

Remarque. Si lim
𝑥→𝑎
𝑥≠𝑎

𝑓 ′(𝑥) = +∞ ou −∞, on peut adapter ce raisonnement pour montrer que 𝑓 n’est pas dérivable 

en 𝑎. Son graphe admet alors une tangente verticale en ce point.

3 Dérivées successives

3.1 Définitions et rappels

Définition 3.1 (Classe 𝐶1)

On dit que 𝑓 est de classe 𝐶1 sur 𝐼 lorsque 𝑓 est dérivable sur 𝐼 et que 𝑓 ′ est continue sur 𝐼. On note alors 
𝑓 ∈ 𝐶1(𝐼, ℝ).
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Définition 3.2 (Fonction deux fois dérivable, classe 𝐶2)

On dit que 𝑓 est deux fois dérivable sur 𝐼 lorsque 𝑓 est de classe 𝐶1 sur 𝐼 et que 𝑓 ′ est dérivable sur 𝐼. 
On note alors (𝑓 ′)′ = 𝑓 (2).
On dit que 𝑓 est de classe 𝐶2 sur 𝐼 lorsque 𝑓 est deux fois dérivable sur 𝐼 et que 𝑓 (2) est continue sur 𝐼. On 
note alors 𝑓 ∈ 𝐶2(𝐼, ℝ).

Remarque. On peut ensuite définir récursivement toutes les dérivées suivantes : soit 𝑝 un entier naturel non nul, 
si 𝑓 (𝑝) est dérivable sur 𝐼 alors 𝑓 est (𝑝 + 1) fois dérivable sur 𝐼, avec pour tout 𝑥 ∈ 𝐼, 𝑓 (𝑝+1)(𝑥) = (𝑓 (𝑝))′ (𝑥). Si, de 
plus, 𝑓 (𝑝+1) est continue sur 𝐼 alors 𝑓 est de classe 𝐶𝑝+1 sur 𝐼.

Définition 3.3 (Classe 𝐶∞)

On dit que 𝑓 est de classe 𝐶∞ sur 𝐼 lorsque 𝑓 est indéfiniment dérivable, c’est à dire dérivable à tout ordre. 
On note alors 𝑓 ∈ 𝐶∞(𝐼, ℝ).

Remarque. Si 𝑓 est continue sur 𝐼, on notera par convention 𝑓 ∈ 𝐶0(𝐼, ℝ) et 𝑓 (0) = 𝑓.

3.2 Formulaire

La plupart des fonctions usuelles sont de classe 𝐶∞ sur tout intervalle inclus dans leur domaine de dérivabilité. Les 
formules suivantes sont à connaître et se montrent par récurrence (n’hésitez pas à écrire explicitement la récurrence 
dans le cas où la formule ne vous paraît pas évidente).

𝑓(𝑥) 𝐷𝑓′ 𝑓 (𝑛)(𝑥)

𝑒𝑥 ℝ 𝑒𝑥

𝑥𝑝 (𝑝 ∈ ℕ∗) ℝ 𝑝!
(𝑝 − 𝑛)!

𝑥𝑝−𝑛 si 𝑛 ⩽ 𝑝

0 si 𝑛 > 𝑝

𝑥𝛼 (𝛼 ∈ ℝ ∖ ℕ) ℝ∗
+ 𝛼(𝛼 − 1) … (𝛼 − 𝑛 + 1)𝑥𝛼−𝑛

= (
𝑛−1
∏
𝑖=0

(𝛼 − 𝑖))𝑥𝛼−𝑛

𝑓(𝑥) 𝐷𝑓′ 𝑓 (𝑛)(𝑥)

cos(𝑥) ℝ cos(𝑥 + 𝑛𝜋
2 )

sin(𝑥) ℝ sin(𝑥 + 𝑛𝜋
2 )

1
𝑎 + 𝑥

ℝ ∖ {−𝑎} (−1)𝑛𝑛!
(𝑎 + 𝑥)𝑛+1

1
𝑎 − 𝑥

ℝ ∖ {𝑎} 𝑛!
(𝑎 − 𝑥)𝑛+1

3.3 Opérations sur les dérivées

Proposition 3.4 (Linéarité des dérivées successives)

Soit 𝑝 ∈ ℕ, 𝛼 ∈ ℝ, et soient 𝑓 et 𝑔 des fonctions de classe 𝐶𝑝 sur l’intervalle 𝐼. Alors :

• 𝑓 + 𝑔 est de classe 𝐶𝑝 sur 𝐼 et (𝑓 + 𝑔)(𝑝) = 𝑓 (𝑝) + 𝑔(𝑝).

• 𝛼𝑓 est de classe 𝐶𝑝 sur 𝐼 et (𝛼𝑓)(𝑝) = 𝛼𝑓 (𝑝).

Démonstration. On montre le résultat par récurrence sur 𝑝 ∈ ℕ en utilisant pour l’hérédité la linéarité de la 
dérivée. ∎

Remarque. Ce résultat reste vrai si on remplace « de classe 𝐶𝑝 » par « 𝑝 fois dérivable » ou « de classe 𝐶∞ ».

Exercice 7.
Soit 𝑘 ∈ ℕ∗, déterminer la dérivée 𝑘-ième sur ]1, +∞[ de 𝑓 ∶ 𝑥 ↦ 𝑥3+3𝑥+1

𝑥2−1 .
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Solution : On montre (cf chapitre sur les polynômes) que ∀𝑥 ∈]1, +∞[, 𝑓(𝑥) = 𝑥+ 5
2(𝑥−1) +

3
2(𝑥+1) = 𝑥+ 5

2
1

𝑥−1 + 3
2

1
𝑥+1 , 

la fonction 𝑓 est donc de classe 𝐶∞ sur ]1, +∞[ et les formules de dérivées usuelles donnent :

∀𝑥 ∈]1, +∞[, 𝑓 ′(𝑥) = 1 − 5
2

1
(𝑥 − 1)2 − 3

2
1

(𝑥 + 1)2 ,

∀𝑘 ⩾ 2, ∀𝑥 ∈]1, +∞[, 𝑓 (𝑘)(𝑥) = 5
2

(−1)𝑘𝑘!
(𝑥 − 1)𝑘+1 + 3

2
(−1)𝑘𝑘!

(𝑥 + 1)𝑘+1 .

Proposition 3.5 (Formule de Leibniz : dérivées successives du produit)

Soit 𝑛 ∈ ℕ et soient 𝑓 et 𝑔 des fonctions de classe 𝐶𝑛 sur l’intervalle 𝐼. Alors 𝑓𝑔 est de classe 𝐶𝑛 sur 𝐼 et

(𝑓𝑔)(𝑛) =
𝑛

∑
𝑘=0

(𝑛
𝑘
)𝑓 (𝑘)𝑔(𝑛−𝑘).

Remarque. Attention à ne pas se laisser induire en erreur par la notation en exposant : cette formule porte sur 
des dérivées, pas sur des puissances !

Démonstration. Soit 𝑛 ∈ ℕ, on pose 𝑃(𝑛) = « ∀(𝑓, 𝑔) ∈ 𝐶𝑛(𝐼)2, 𝑓𝑔 ∈ 𝐶𝑛(𝐼) et (𝑓𝑔)(𝑛) = ∑𝑛
𝑘=0 (𝑛

𝑘)𝑓
(𝑘)𝑔(𝑛−𝑘) ».

• Soit 𝑛 = 0, le produit de deux fonctions continues sur 𝐼 est continu et (𝑓𝑔)(0) = 𝑓𝑔 = ∑0
𝑘=0 (0

𝑘)𝑓
(𝑘)𝑔(0−𝑘). 

Donc 𝑃(0) est vraie.

• Soit 𝑛 ∈ ℕ, supposons que 𝑃(𝑛) est vraie. Soient 𝑓 et 𝑔 des fonctions de classe 𝐶𝑛+1 sur 𝐼. Alors 𝑓 et 𝑔 sont 
aussi de classe 𝐶𝑛, et l’hypothèse de récurrence nous donne : 𝑓𝑔 est de classe 𝐶𝑛, et :

(𝑓𝑔)(𝑛) =
𝑛

∑
𝑘=0

(𝑛
𝑘
)𝑓 (𝑘)𝑔(𝑛−𝑘).

Pour tout 𝑘 ∈ [[0, 𝑛]], 𝑓 (𝑘) est de classe 𝐶𝑛+1−𝑘, et donc au moins de classe 𝐶1. De même, 𝑔(𝑛−𝑘) est de classe 
𝐶𝑛+1−𝑛+𝑘, et donc au moins de classe 𝐶1. Donc par produit et somme de fonctions de classe 𝐶1, (𝑓𝑔)(𝑛) est 
de classe 𝐶1. Ce qui signifie que 𝑓𝑔 est de classe 𝐶𝑛+1. On obtient alors en dérivant la relation précédente :

(𝑓𝑔)(𝑛+1) =
𝑛

∑
𝑘=0

(𝑛
𝑘
) (𝑓 (𝑘+1)𝑔(𝑛−𝑘) + 𝑓 (𝑘)𝑔(𝑛+1−𝑘))

=
𝑛

∑
𝑘=0

(𝑛
𝑘
)𝑓 (𝑘+1)𝑔(𝑛−𝑘) +

𝑛
∑
𝑘=0

(𝑛
𝑘
)𝑓 (𝑘)𝑔(𝑛+1−𝑘)

=
𝑛+1

∑
𝑘=1

( 𝑛
𝑘 − 1

)𝑓 (𝑘)𝑔(𝑛+1−𝑘) +
𝑛

∑
𝑘=0

(𝑛
𝑘
)𝑓 (𝑘)𝑔(𝑛+1−𝑘)

= 𝑓𝑔(𝑛+1) +
𝑛

∑
𝑘=1

(( 𝑛
𝑘 − 1

) + (𝑛
𝑘
)) 𝑓 (𝑘)𝑔(𝑛+1−𝑘) + 𝑔𝑓 (𝑛+1)

=
𝑛+1

∑
𝑘=0

(𝑛 + 1
𝑘

)𝑓 (𝑘)𝑔(𝑛+1−𝑘) par la formule de Pascal

Donc 𝑃(𝑛 + 1) est vraie, ce qui termine la preuve.

∎

Exercice 8. Étudier la dérivabilité de la fonction définie sur ℝ par : ∀𝑥 ∈ ℝ, 𝑓(𝑥) = 𝑥2𝑒𝑥, et calculer ses dérivées.
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Solution : On applique la formule de Leibniz à 𝑥 ↦ 𝑒𝑥 et 𝑔 ∶ 𝑥 ↦ 𝑥2 qui sont de classe 𝐶∞ sur ℝ. Donc 𝑓 est de 

classe 𝐶∞ sur ℝ, et pour tout entier 𝑛 ∈ ℕ et pour tout réel 𝑥, 𝑓 (𝑛)(𝑥) =
𝑛

∑
𝑘=0

(𝑛
𝑘
)𝑒𝑥𝑔(𝑘)(𝑥).

Or on sait par propriété des polynômes que ∀𝑥 ∈ ℝ, 𝑔′(𝑥) = 2𝑥, 𝑔″(𝑥) = 2 et si 𝑘 > 2, 𝑔(𝑘)(𝑥) = 0. On en déduit 
que si 𝑛 ⩾ 2 (condition nécessaire pour avoir le droit de sortir les premiers termes de la somme) :

𝑓 (𝑛)(𝑥) = (𝑛
0
)𝑒𝑥𝑔(0)(𝑥)+(𝑛

1
)𝑒𝑥𝑔(1)(𝑥)+(𝑛

2
)𝑒𝑥𝑔(2)(𝑥)+0 = 𝑒𝑥𝑥2+𝑛𝑒𝑥2𝑥+𝑛(𝑛 − 1)

2
𝑒𝑥2 = 𝑒𝑥 (𝑥2 + 2𝑛𝑥 + 𝑛(𝑛 − 1)) .

On vérifie ensuite que la formule s’applique aussi pour 𝑛 = 0 et 𝑛 = 1, ce qui est bien le cas ici : elle est donc vraie 
pour tout 𝑛 ∈ ℕ.

Proposition 3.6 (Formule de composition)

Soit 𝑛 ∈ ℕ. Soit 𝐼 et 𝐽 deux intervalles de ℝ, 𝑓 une application définie sur 𝐼 et 𝑔 une application définie sur 
𝐽 avec 𝑓(𝐼) ⊂ 𝐽. Alors :

• Si 𝑓 est dérivable 𝑛 fois sur 𝐼 et 𝑔 est dérivable 𝑛 fois sur 𝐽, alors 𝑔 ∘ 𝑓 est dérivable 𝑛 fois sur 𝐼.

• Si 𝑓 et 𝑔 sont de classe 𝐶𝑛 respectivement sur 𝐼 et 𝐽 alors 𝑔 ∘ 𝑓 est de classe 𝐶𝑛 sur 𝐼.

• Si 𝑓 et 𝑔 sont de classe 𝐶∞ respectivement sur 𝐼 et 𝐽 alors 𝑔 ∘ 𝑓 est de classe 𝐶∞ sur 𝐼.

Démonstration. On montre le premier point, les autres se montrent avec une démarche similaire. Soit 𝑛 ∈ ℕ, on 
pose 𝑃(𝑛) = « si 𝑓 est dérivable 𝑛 fois sur 𝐼 et 𝑔 est dérivable 𝑛 fois sur 𝐽, alors 𝑔 ∘ 𝑓 est dérivable 𝑛 fois sur 𝐼 ».

• Soit 𝑛 = 0, et 𝑓 et 𝑔 deux fonctions dérivables 0 fois sur 𝐼 et 𝐽 respectivement. Alors 𝑔 ∘ 𝑓 est dérivable 0 fois 
sur 𝐼 et 𝑃(0) est vraie.

• Soit 𝑛 ∈ ℕ, on suppose que 𝑃(𝑛) est vraie. Soit 𝑓 et 𝑔 deux fonctions 𝑛 + 1 fois dérivables sur 𝐼 et 𝐽
respectivement. Elles sont en particulier dérivables, et par théorème de dérivation des fonctions composées, 
𝑔 ∘ 𝑓 est dérivable sur 𝐼, avec (𝑔 ∘ 𝑓)′ = (𝑔′ ∘ 𝑓) × 𝑓 ′. Par hypothèse, les fonctions 𝑔′ et 𝑓 sont 𝑛 fois dérivables 
sur 𝐽 et 𝐼 respectivement, et donc par 𝑃(𝑛) (𝑔′ ∘ 𝑓) est 𝑛 fois dérivable sur 𝐼. Comme de plus 𝑓 ′ est 𝑛 fois 
dérivable sur 𝐼, par produit (𝑔 ∘ 𝑓)′ est 𝑛 fois dérivable. Donc 𝑔 ∘ 𝑓 est 𝑛 + 1 fois dérivable, et 𝑃(𝑛 + 1) est 
vraie.

D’où le résultat. ∎

Proposition 3.7 (Formule de réciproque)

Soit 𝑛 ∈ ℕ∗. Soit 𝑓 une application bijective de 𝐼 dans 𝐽 = 𝑓(𝐼). Alors :

• Si 𝑓 est dérivable 𝑛 fois sur 𝐼 et 𝑓 ′ ne s’annule pas sur 𝐼, alors 𝑓−1 est dérivable 𝑛 fois sur 𝐽.

• Si 𝑓 est de classe 𝐶𝑛 sur 𝐼 et 𝑓 ′ ne s’annule pas sur 𝐼, alors 𝑓−1 est de classe 𝐶𝑛 sur 𝐽.

• Si 𝑓 est de classe 𝐶∞ sur 𝐼 et 𝑓 ′ ne s’annule pas sur 𝐼, alors 𝑓−1 est de classe 𝐶∞ sur 𝐽.

Remarque. Attention à ne pas oublier l’hypothèse de non-annulation de la dérivée !

Démonstration. Ce résultat se démontre par récurrence, en adaptant la démonstration du résultat précédent. ∎
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4 Fonctions convexes

4.1 Définition

Définition 4.1 (Fonction convexe, concave)

Soit 𝑓 une fonction définie sur un intervalle 𝐼.

• 𝑓 est convexe sur 𝐼 lorsque ∀(𝑥1, 𝑥2) ∈ 𝐼2, ∀𝑡 ∈ [0, 1], 𝑓 (𝑡𝑥1 + (1 − 𝑡)𝑥2) ⩽ 𝑡𝑓(𝑥1) + (1 − 𝑡)𝑓(𝑥2).

• 𝑓 est concave sur 𝐼 lorsque ∀(𝑥1, 𝑥2) ∈ 𝐼2, ∀𝑡 ∈ [0, 1], 𝑓 (𝑡𝑥1 + (1 − 𝑡)𝑥2) ⩾ 𝑡𝑓(𝑥1) + (1 − 𝑡)𝑓(𝑥2).

Remarque. Interprétation géométrique : pour 𝑡 ∈ [0, 1], 𝑦 = 𝑡𝑓(𝑥1)+(1−𝑡)𝑓(𝑥2) parcourt le segment d’extrémités 
𝑓(𝑥1) et 𝑓(𝑥2), tandis que 𝑦 = 𝑓 (𝑡𝑥1 + (1 − 𝑡)𝑥2) parcourt l’arc de courbe de 𝑓 situé entre ces mêmes points. Donc 
la courbe représentative d’une fonction convexe (respectivement concave) est en dessous (respectivement au dessus) 
de ses cordes.

Convexe

     
Concave

Exercice 9. On admet que le le logarithme est concave sur ℝ∗
+. Montrer que ∀𝑢 ∈ [1, 𝑒], 𝑢 − 1 ⩽ (𝑒 − 1) ln(𝑢).

Solution : On étudie la corde d’extrémités 1 et 𝑒 : ∃(𝑎, 𝑏) ∈ ℝ2 tels que cette corde a une équation du type 𝑦 = 𝑎𝑢+𝑏. 
Or : ln(1) = 0 et ln(𝑒) = 1, donc 0 = 𝑎 + 𝑏 et 1 = 𝑎𝑒 + 𝑏. D’où 𝑦 = 𝑢−1

𝑒−1 . La concavité donne alors : pour tout 
𝑢 ∈ [1, 𝑒], 𝑢−1

𝑒−1 ⩽ ln(𝑢) et donc 𝑢 − 1 ⩽ (𝑒 − 1) ln(𝑢).

Proposition 4.2 (Lien entre convexité et concavité)

Une fonction 𝑓 est concave sur un intervalle 𝐼 si et seulement si −𝑓 est convexe sur 𝐼.

Démonstration. On montre que 𝑓 concave ⇒ −𝑓 convexe, la réciproque se montre par la même méthode.
Soit 𝑓 une fonction concave sur un intervalle 𝐼.
Soit (𝑥1, 𝑥2) ∈ 𝐼2 et 𝑡 ∈ [0, 1], alors 𝑓 (𝑡𝑥1 + (1 − 𝑡)𝑥2) ⩾ 𝑡𝑓(𝑥1) + (1 − 𝑡)𝑓(𝑥2), d’où en multipliant par −1, 
(−𝑓) (𝑡𝑥1 + (1 − 𝑡)𝑥2) ⩽ 𝑡(−𝑓)(𝑥1) + (1 − 𝑡)(−𝑓)(𝑥2). Donc −𝑓 est convexe sur 𝐼. ∎

4.2 Convexité et dérivabilité

Proposition 4.3 (Convexité d’une fonction dérivable)

Soit 𝑓 une fonction dérivable sur un intervalle 𝐼. Les propriétés suivantes sont équivalentes :

• 𝑓 est convexe sur 𝐼,

• En tout point de 𝐼, la courbe de 𝑓 est au dessus de ses tangentes,

• 𝑓 ′ est croissante sur 𝐼.

Démonstration. Admis (nécessite les inégalités des pentes qui n’ont pas été énoncées). ∎

Interprétation géométrique :

Convexe

     
Concave
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Exercice 10. Montrer que pour tout 𝑥 ∈ ℝ, 𝑒𝑥 ⩾ 𝑥 + 1.
Solution : La fonction 𝑥 ↦ 𝑒𝑥 est dérivable sur ℝ et sa dérivée 𝑥 ↦ 𝑒𝑥 est croissante sur ℝ, donc 𝑥 ↦ 𝑒𝑥 est convexe 
sur ℝ. Donc elle est au-dessus de sa tangente en 0, d’équation 𝑦 = 𝑒0(𝑥 − 0) + 𝑒0, c’est-à-dire 𝑦 = 𝑥 + 1. Donc 
∀𝑥 ∈ ℝ, 𝑒𝑥 ⩾ 𝑥 + 1.

Exercice 11. Montrer que pour tout 𝑥 ∈] − 1, +∞[, 𝑥 ⩾ ln(𝑥 + 1).
Solution : La fonction 𝑥 ↦ ln(𝑥 + 1) est dérivable sur ] − 1, +∞[ et sa dérivée 𝑥 ↦ 1

𝑥+1  est décroissante sur 
]−1, +∞[, donc 𝑥 ↦ ln(𝑥+1) est concave sur cet intervalle. Donc elle est en dessous de sa tangente en 0, d’équation 
𝑦 = 1

0+1(𝑥 − 0) + ln(1 + 0), c’est-à-dire 𝑦 = 𝑥. Donc ∀𝑥 ∈] − 1, +∞[, 𝑥 ⩾ ln(𝑥 + 1).

Proposition 4.4 (Convexité d’une fonction deux fois dérivable)

Soit 𝑓 une fonction deux fois dérivable sur un intervalle 𝐼. Alors 𝑓 est convexe sur 𝐼 si et seulement si pour 
tout 𝑥 ∈ 𝐼, 𝑓″(𝑥) ⩾ 0.

Démonstration. Découle directement de la caractérisation par la croissance : 𝑓 ′ est croissante sur 𝐼 si et seulement 
si 𝑓″ est positive sur cet intervalle. ∎

Remarque. De même, 𝑓 est concave sur 𝐼 si et seulement si pour tout 𝑥 ∈ 𝐼, 𝑓″(𝑥) ⩽ 0.

5 Fonctions à valeurs complexes
Dans cette section, on considère une fonction 𝑓 définie sur un intervalle 𝐼 ⊂ ℝ et à valeurs dans ℂ.

Définition 5.1 (Dérivabilité)

Soit 𝑎 ∈ 𝐼. On dit que 𝑓 est dérivable en 𝑎 si lim
𝑥→𝑎

𝑓(𝑥)−𝑓(𝑎)
𝑥−𝑎 ∈ ℂ. On note alors 𝑓 ′(𝑎) la valeur de la limite.

Proposition 5.2 (Lien avec la dérivabilité des parties réelle et imaginaire)

Soit 𝑎 ∈ 𝐼. 𝑓 est dérivable en 𝑎 si et seulement si Re(𝑓) et Im(𝑓) sont dérivables en 𝑎. On a alors :

𝑓 ′(𝑎) = (Re(𝑓))′(𝑎) + 𝑖(Im(𝑓))′(𝑎).

Démonstration. Découle du résultat analogue sur les limites de fonctions, appliqué à la fonction taux d’accroissement.
∎

Remarque. Si 𝑘 ∈ ℕ∗, on note 𝐶𝑘(𝐼, ℂ) l’ensemble des fonctions 𝐼 → ℂ qui sont 𝑘 fois dérivables et dont la 
dérivée 𝑘-ième est continue. La fonction dérivée 𝑘-ième de 𝑓 est notée 𝑓 (𝑘), et par convention, 𝑓 (0) = 𝑓.

Remarque. Les formules usuelles de dérivée (combinaison linéaire, produit, formule de Leibniz) se généralisent 
sans difficulté au cas complexe. Ce n’est pas contre pas le cas des résultats évoquant une monotonie, des résultats 
de convexité, du théorème de Rolle ou de l’égalité des accroissements finis.

Exemple. La fonction 𝑡 ↦ 𝑒𝑖𝑡 est continue et dérivable sur [0, 2𝜋], vérifie 𝑒𝑖0 = 1 = 𝑒𝑖2𝜋, mais sa dérivée 𝑡 ↦ 𝑖𝑒𝑖𝑡

ne s’annule pas sur [0, 2𝜋].

Proposition 5.3 (Inégalité des accroissements finis, cas complexe)

Soit 𝑓 une fonction de classe 𝐶1 sur 𝐼. On suppose qu’il existe un réel 𝑀 tel que ∀𝑡 ∈ 𝐼, |𝑓 ′(𝑡)| ⩽ 𝑀. Alors 
∀(𝑥, 𝑦) ∈ 𝐼2, |𝑓(𝑥) − 𝑓(𝑦)| ⩽ 𝑀 |𝑥 − 𝑦|.

Démonstration. Admis à ce stade de l’année, nécessite une majoration d’intégrale que l’on justifiera dans le cours 
d’intégration. ∎
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