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Objectifs

L’objectif de l’analyse harmonique est d’étudier, pour différentes fréquences
d’excitation, le comportement en régime permanent d’un système linéaire
continu et invariant asymptotiquement stable soumis à une entrée sinusoïdale
dont la réponse forcée sera une sinusoïde de même pulsation propre mais
d’amplitude différente et déphasée. Le tracé des lieux de transfert d’un système
permet de déterminer rapidement et graphiquement les modulations d’am-
plitude et de déphasage induites par les différentes fréquences d’excitation.
L’analyse des lieux de transfert permet de déterminer les caractéristiques de
stabilité d’un système asservi.
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1 Introduction

L’objectif de l’analyse harmonique (ou fréquentielle) est d’étudier, pour différentes
fréquences f (ou pulsations ω = 2πf) de sollicitations, le comportement en régime
permanent d’un système linéaire continu et invariant stable soumis à une entrée sinusoïdale.
Par définition, l’analyse harmonique est limitée aux systèmes asymptotiquement stables
pour lesquels la notion de régime permanent à un sens.

Définition 1.1 (Stabilité asymptotique)
Un système linéaire continu et invariant est asymptotiquement stable si sa réponse impul-
sionnelle tend vers 0 quand t → +∞.

Pour chaque fréquence, la réponse en régime permanent d’un système asymptotiquement
stable est obtenue lorsque tous les phénomènes transitoires ont été amortis (tendent vers
0). Ce régime permanent sera dit forcé puisqu’une entrée de forme sinusoïdale « force » la
sortie à être aussi de forme sinusoïdale, de même pulsation propre ω mais d’amplitude
différente et déphasée (figure 1).
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Figure 1 – Évolution temporelle de la réponse harmonique d’un SLCI stable.

Définition 1.2 (Réponse harmonique)
La réponse harmonique d’un système linéaire continu et invariant stable correspond à sa
réponse asymptotique forcée (en régime permanent), lorsqu’il est sollicité par un signal
d’entrée harmonique du type e(t) = e0 sin (ωt) u(t) d’amplitude e0 et de pulsation ω.

Définition 1.3 (Analyse harmonique)
L’analyse harmonique d’un système linéaire continu et invariant stable consiste à analyser
ses réponses harmoniques pour l’ensemble des pulsations propres ω ∈]0, +∞[ du signal
harmonique d’entrée.
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1.1 Réponse harmonique

Nous allons dans ce qui suit déterminer l’expression générale de la réponse harmonique
des systèmes linéaires continus et invariants régis par des équations différentielles à
coefficients constants du type :

a0 e(t) + a1
de

dt
(t) + · · · + am

dme

dtm
(t) = b0 s(t) + b1

ds

dt
(t) + · · · + bn

dns

dtn
(t)

et vérifiant le principe de causalité des systèmes (m ⩽ n). En supposant, sans pertes de
généralités, des conditions initiales nulles, la fonction de transfert des systèmes étudiés
s’écrira alors :

H(p) =
a0 + a1 p + · · · + am pm

b0 + b1 p + · · · + bn pn

En notant zi chacun des m zéros du numérateur et pj chacun des n pôles du dénominateur,
il est possible de récrire cette fonction de transfert sous la forme factorisée :

H(p) =

am

m∏

i=1

(p − zi)

bn

n∏

j=1

(p − pj)

Lorsqu’un système est soumis à une entrée de la forme :

e(t) = e0 sin(ωt) u(t)
L−−−−→ E(p) =

e0 ω

p2 + ω2

sa réponse dans le domaine de Laplace est :

S(p) = H(p) E(p) = e0 ω

am

m∏

i=1

(p − zi)

(

p2 + ω2
)

bn

n∏

j=1

(p − pj)

admettant une décomposition en éléments simples de la forme :

S(p) = e0 ω




∑

pôles réels





multiplicité
∑

i=1

Ai

(p − pj)
i





+
∑

paires de pôles
complexes






multiplicité
∑

i=1

Bi p + Ci
(

(p − ℜ[pj])
2 + (ℑ[pj])2

)i




+

α p + β

p2 + ω2







où ℜ[pj] et ℑ[pj] sont respectivement les parties réelles et imaginaires du pôle complexe pj.
On peut remarquer que dans chaque terme associé à un pôle de la fonction de transfert se
trouve une expression du type (p − ℜ[pj]) (avec ℜ[pj] = pj dans le cas des pôles réels). Or,
le théorème d’amortissement, qui s’écrit pour une fonction f(t)

L [f(t) exp(−at)] (p) =
∫ +∞

0
f(t) exp(−(p + a)t) dt = F (p + a)
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peut être utilisé ici pour en déduire que leur simple présence implique que la transformée
de Laplace inverse de la fonction dont chaque (p − ℜ[pj]) est l’argument sera multiplié
par une exponentielle tel que le comportement asymptotique quand t → +∞ puisse être
schématisé par :

F (p − ℜ[pj])
L −1

−−−−→ f(t) exp (ℜ[pj]t)
t→+∞−−−−−→







0 si ℜ[pj] < 0
f(∞) si ℜ[pj] = 0
∞ si ℜ[pj] > 0

À partir de cette analyse, on peut en déduire que chaque terme en (p − ℜ[pj]), avec
ℜ[pj] < 0, d’un système stable sera associé dans le domaine temporel à une exponentielle
décroissante qui tend vers 0 quand t → +∞. Ce qui se traduit par le théorème :

Théorème 1.1 (Système asymptotiquement stable)
Un système linéaire continu et invariant est asymptotiquement stable si et seulement si

tous ses pôles sont à partie réelle strictement négative.

Ainsi, si tous les pôles pj sont à parties réelles strictement négatives, il est possible de
décomposer la réponse du système sous la forme

S(p) = Slibre(p) + Sforcée(p)

avec une réponse dite « libre »

Slibre(p) = e0 ω







∑

pôles réels

[
mult.∑

i=1

Ai

(p − pj)
i

]

+
∑

paires de pôles
complexes






mult.∑

i=1

Bi p + Ci
(

(p − ℜ[pj])
2 + (ℑ[pj])2

)i












dont l’expression temporelle tend asymptotiquement vers 0 et une réponse dite « forcée »

Sforcée(p) = e0 ω

(

α p + β

p2 + ω2

)

= e0

(

α ω
p

p2 + ω2
+ β

ω

p2 + ω2

)

.

Or, comme pour une analyse harmonique, on cherche la réponse d’un système à une entrée
sinusoïdale en régime permanent, le seul terme d’intérêt sera la réponse dite « forcée »,
admettant comme transformée de Laplace inverse :

sforcée(t) = e0 (α ω cos (ωt) + β sin (ωt)) u(t)

En notant tan(φ) = αω/β tel que

cos (φ) =
β√

α2 ω2 + β2
et sin (φ) =

α ω√
α2 ω2 + β2

on peut récrire l’expression temporelle de la réponse forcée comme :

sforcée(t) = e0

√

α2 ω2 + β2 (sin (φ) cos (ωt) + cos (φ) sin (ωt)) u(t)

= e0

√

α2 ω2 + β2 sin (ωt + φ) u(t)
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À ce stade, il est nécessaire de déterminer les deux coefficients α et β. En remarquant qu’il
est possible d’annuler le terme (p2 + ω2) avec p = ±jω, il vient le système :







−α jω + β = lim
p→−jω

(

p2 + ω2
) S(p)

e0 ω
= lim

p→−jω
H(p) = H(−jω)

α jω + β = lim
p→jω

(

p2 + ω2
) S(p)

e0 ω
= lim

p→jω
H(p) = H(jω)

où l’on reconnaît immédiatement que le terme pris en limite est la fonction de transfert
H(p) évaluée en p = ±jω. Dès lors, on peut remarquer que β et αω sont respectivement
associés à la partie réelle et à la partie imaginaire de la fonction de transfert H(jω)

αω = ℑ [H(jω)] et β = ℜ [H(jω)]

tel que les termes
√

α2ω2 + β2 et (αω/β) ne soient autres que le module et la tangente
de l’argument de H(jω). Finalement, l’expression de la réponse forcée d’un système
asymptotiquement stable soumis à une entrée sinusoïdale peut s’écrire sous la forme
générique :

sforcée(t) = e0 |H(jω)| sin (ω t + φ) u(t) avec φ = ∠H(jω)

où l’on voit que c’est aussi une sinusoïde de même pulsation ω que le signal d’entrée mais
d’amplitude différente car multipliée par le module |H(jω)| de H(jω) et déphasée d’un
angle φ = ∠H(jω), appelé l’argument de H(jω), par rapport à l’entrée. Ce qui nous
amène à formuler la proposition :

Théorème 1.2 (Réponse harmonique)
La réponse asymptotique forcée d’un système linéaire, continu et invariant asymptotique-

ment stable, de fonction de transfert H(p) à une entrée sinusoïdale e(t) = e0 sin(ωt)u(t)
est une sinusoïde d’expression :

sforcée(t) = e0 |H(jω)| sin(ωt + φ)u(t)

de même pulsation ω, d’amplitude multipliée par le module |H(jω)| et déphasée par

l’argument φ = ∠H(jω) de la fonction de transfert complexe H(jω).

Nous venons de montrer, dans le cas général comprenant toutes les classes de systèmes
asymptotiquement stables, que la réponse forcée d’un système asymptotiquement stable
soumis à une entrée sinusoïdale est un signal sinusoïdal de même pulsation que le signal
d’entrée, mais d’amplitude différente et déphasé par rapport à l’entrée. En particulier,
nous avons montré que l’amplitude et le déphasage ne dépendent que de la fonction de
transfert du système et qu’il est donc possible de prédire le comportement harmonique
d’un système à partir de la seule connaissance de sa fonction de transfert. Bien que la
démonstration soit générale, nous allons refaire à titre d’exemple la démonstration dans le
cas d’un système du premier ordre.

6



Exemple 1.1 (Réponse harmonique d’un système du premier ordre)
Un système du premier ordre est caractérisé par une fonction de transfert du type :

H(p) =
K

1 + τ p

Lorsqu’il est soumis à une entrée de la forme :

e(t) = e0 sin(ωt) u(t)
L−−−−→ E(p) =

e0 ω

p2 + ω2

sa réponse dans le domaine de Laplace s’écrit :

S(p) = H(p) E(p) =
K e0 ω

(p2 + ω2) (1 + τ p)

En décomposant en éléments simples, on obtient :

S(p) =
A p + B

p2 + ω2
+

C

1 + τ p

avec les coefficients :

A =
1

2jω

[

lim
p→jω

(

p2 + ω2
)

S(p) − lim
p→−jω

(

p2 + ω2
)

S(p)
]

= −K E0 ω τ

1 + τ 2 ω2

B =
1

2

[

lim
p→jω

(

p2 + ω2
)

S(p) + lim
p→−jω

(

p2 + ω2
)

S(p)
]

=
K E0 ω

1 + τ 2 ω2

C = lim
p→−1/τ

(1 + τ p) S(p) =
K E0 ω τ 2

1 + τ 2 ω2

tels que la réponse s’écrive :

S(p) =
K E0 ω

1 + τ 2 ω2

(

1 − τ p

p2 + ω2
+

τ 2

1 + τ p

)

que l’on peut mettre sous la forme :

S(p) =
K e0 ω

1 + τ 2 ω2

(

τ

p + 1/τ
+

1

ω

ω

p2 + ω2
− τ

p

p2 + ω2

)

En appliquant la transformée de Laplace inverse, on obtient l’expression de la réponse
temporelle du système :

s(t) =
K e0 ω

1 + τ 2 ω2








τ e−t/τ
︸ ︷︷ ︸

régime transitoire

+
1

ω
sin (ω t) − τ cos (ω t)

︸ ︷︷ ︸

régime forcé








u(t)
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Cette réponse est composée de deux parties :

— une réponse dite « libre » associée au régime transitoire et dont l’influence opère
tant que t est de l’ordre de la constante de temps τ du système et qui disparaît
lorsque t → +∞ car limt→+∞ e−t/τ = 0 ;

— une réponse dite « forcée » associée au régime permanent forcé quand t ≫ τ (en
pratique dès que t ⩾ 5τ) :

sforcée(t) =
K e0

1 + τ 2 ω2
(sin (ω t) − τ ω cos (ω t)) u(t)

En posant tan(φ) = −τ ω, où φ = ∠H(jω) est l’argument de la fonction de transfert
complexe H(jω), tel que cos(φ) = 1/

√
1 + τ 2 ω2 ⩾ 0 et sin(φ) = −τ ω/

√
1 + τ 2 ω2 ⩽ 0,

l’expression de la réponse en régime forcé peut se récrire sous la forme :

sforcée(t) =
K e0√

1 + τ 2 ω2
sin (ω t + φ) u(t)

En notant que le module de la fonction de transfert complexe H(jω) s’écrit :

|H(jω)| =
K√

1 + τ 2 ω2

il vient l’expression de la réponse en régime forcé :

sforcée(t) = e0 |H(jω)| sin (ω t + φ) u(t)

1.2 Analyse harmonique

Dans ce qui précède, nous avons montré que la réponse harmonique d’un système
linéaire, continu et invariant asymptotiquement stable est une fonction harmonique de
même pulsation propre ω que le signal d’entrée, simplement amplifiée ou atténuée et
déphasée. Or, dans le cas de signaux sinusoïdaux, la variable de Laplace se limite à un
imaginaire pur p = jω, où ω est la pulsation propre du signal sinusoïdal appliqué. La
transformée de Laplace devient alors la transformée de Fourier

H(jω) =
∫ +∞

0
h(t) e−jωt dt

et la fonction de transfert H(p), correspondant à la réponse impulsionnelle h(t) d’un
système, se limite à la fonction de transfert complexe H(jω).

Définition 1.4 (Fonction de transfert complexe)
On appelle fonction de transfert complexe ou transmittance isochrone l’expression H(jω)
d’une fonction de transfert H(p) dans le cas où la variable complexe de Laplace p = jω
est un imaginaire pur. On la notera :

H(jω) = |H(jω)| exp (jφ(ω))
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avec |H(jω)| le module et φ(ω) = ∠H(jω) l’argument, respectivement définis à partir des
parties réelle et imaginaire comme :

Module : |H(jω)| =
√

ℜ [H(jω)]2 + ℑ [H(jω)]2

Argument : ∠H(jω) tel que







cos (∠H(jω)) =
ℜ [H(jω)]

|H(jω)|

sin (∠H(jω)) =
ℑ [H(jω)]

|H(jω)|

Pour une pulsation propre d’excitation ω donnée, le point H(jω) peut être repré-
senté dans le plan complexe par ses coordonnées polaires |H(jω)| et ∠H(jω) qui sont
respectivement son rayon et son angle (figure 2).

ℜ

ℑ

|H(jω
)|

∗

∠H(jω)

ℜ [H(jω)]

ℑ [H(jω)]

Figure 2 – Représentation dans le plan complexe d’un point associé à une fonction de
transfert complexe H(jω) pour une pulsation donnée.

Remarque 1.1 (Calcul de l’argument)
Pour calculer l’argument d’une fonction de transfert complexe, il est indispensable de
déterminer le quadrant du plan complexe dans lequel se situe chaque point de H(jω)
associé à une pulsation propre d’excitation donnée (figure 2). La détermination du
quadrant se fait à partir des signes des parties réelle et imaginaire respectivement
associés à ceux du cosinus et du sinus de l’argument recherché. Une fois le quadrant
déterminé, il est possible d’utiliser la fonction arctangente

∠H(jω) ≡ Arctan

(

ℑ [H(jω)]

ℜ [H(jω)]

)

[π]

en veillant au modulo π dans la détermination de l’angle.
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Exemple 1.2 (Réponse harmonique d’un système du premier ordre)
La réponse forcée d’un système du premier ordre de fonction de transfert :

H(p) =
4

1 + 0, 2 p

soumis à une entrée sinusoïdale d’amplitude 3 et de pulsation 2 rad·s−1 de la forme :

e(t) = 3 sin(2t) u(t)

s’écrit :
sforcée(t) = 3 × |H(2j)| × sin (2t + ∠H(2j))

Avec la valeur du module :

|H(2j)| =
|4|

|1 + 0, 2 × 2j| =
4√

1 + 0, 42
=

20√
29

≈ 3, 7

et celle de l’argument :

∠H(2j) = ∠4 − ∠ (1 + 0, 2 × 2j) ≡ − Arctan(0, 4) [2π] ≈ −0, 38 [2π]

on trouve l’expression du signal de la réponse forcée :

sforcée(t) = 3 · 3, 7 sin (2t − 0, 38) = 11, 1 sin (2 [t − 0, 19])

qui correspond à un sinus de pulsation 2 rad·s−1, d’amplitude 11, 1, c’est-à-dire
|H(2j)| = 3, 7 fois celle de e(t), et en retard de 0, 19 s sur le signal d’entrée car
−π < ∠H(2j) < 0. L’entrée e(t) et la réponse forcée sforcée(t) sont tracées sur la
figure 3.

-10

-5

0

5

10

t

e(t)

sforcée(t)
0,19 s

3,14 s

3

11,1

Figure 3 – Exemple de réponse forcée d’un système du premier ordre.

Partant de la réponse forcée d’un système, il est possible de déterminer, à partir de

la période du signal T , sa pulsation ω =
2π

T
; ici ω =

2π

π
= 2 rad·s−1. Le décalage

temporel de la réponse par rapport à l’entrée d, permet de déterminer l’argument
φ = ωd ; ici φ = 2 × −0, 19 = −0, 38 rad avec d < 0 car la sortie est « en retard » sur
l’entrée. Enfin, le rapport entre l’amplitude de la sortie et celle de l’entrée permet de

déterminer le module ; ici |H(2j)| =
11, 1

3
= 3, 7.
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Remarque 1.2 (Module et argument d’une fraction rationnelle)

Le module et l’argument de H(jω) =
N(jω)

D(jω)
peuvent être simplement déterminés à

partir de :

|H(jω)| =
|N(jω)|
|D(jω)| et ∠H(jω) ≡ ∠N(jω) − ∠D(jω) [2π]

L’analyse harmonique d’un système linéaire continu et invariant asymptotiquement
stable consiste à étudier l’évolution du module et de l’argument de sa fonction de trans-
fert complexe H(jω) en fonction de la pulsation propre du signal d’entrée ω ∈]0, +∞[.
Cette étude permet de connaître le comportement d’un système pour chaque fréquence
d’excitation (d’entrée) et ainsi de prédire sa réponse harmonique pour une entrée donnée.

1.3 Lieux de transfert

Pour étudier la façon dont la fonction de transfert complexe d’un système intervient
dans le déphasage et la modification d’amplitude du signal de sortie pour différentes
pulsations propres du signal d’entrée ω ∈]0, +∞[, il est habituel d’utiliser une représentation
graphique.

Définition 1.5 (Lieux de transfert)
On appelle lieux de transfert, le tracé des différentes représentations graphiques de la
fonction de transfert complexe H(jω) d’un système pour toutes les pulsations d’excitation
possibles.

Sont principalement utilisé en ingénierie :

— les diagrammes de Bode ;
— le diagramme de Black (courbe paramétrée en ω dans le plan (φ(ω), |H(jω)|dB), hors

programme) ;
— le diagramme de Nyquist (courbe paramétrée en ω dans le plan complexe, hors

programme).

1.3.1 Diagrammes de Bode

La représentation des lieux de transfert dans les diagrammes de Bode est constituée de
deux graphes respectivement associés au gain |H(jω)|dB exprimé en décibel (dB) et à la
phase φ(ω) exprimée en degrés ou en radians :







|H(jω)|dB = 20 log (|H(jω)|)
φ(ω) ≡ ∠H(jω) [2π]

tracés en fonction de la pulsation propre du signal d’entrée ω ∈]0; +∞[ sur une échelle
logarithmique.
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Figure 4 – Exemple de diagrammes de Bode.

Remarque 1.3 (Module en décibel)
La représentation du module en décibel, appelé le gain, a été introduite dans les années
1920 par les laboratoires Bell pour caractériser l’atténuation des signaux dans les câbles.
L’intérêt majeur qu’elle présente dans le cadre de l’étude des réponses harmoniques est
qu’un gain positif (>0 dB) caractérisera toujours une amplification du signal d’entrée
par le système alors qu’un gain négatif témoignera d’une atténuation.

Table 1 – Équivalences entre module et gain en décibel.

|H| 1/100 1/10 1/2 1/
√

2 1
√

2 2 10 100

|H|dB −40 −20 −6 −3 0 3 6 20 40
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Tracé expérimental Si un système est asymptotiquement stable, ses diagrammes de
Bode peuvent s’obtenir expérimentalement (jusqu’à une certaine fréquence au-delà de
laquelle les instruments sont inutilisables). À chaque essai doit correspondre une pulsation
(ou fréquence) propre d’excitation ω qui permettra de placer un point sur le tracé du gain
et un point sur le tracé de la phase. Le gain sera déterminé en faisant « 20 log » du rapport
des amplitudes du signal de sortie en régime forcé sforcée(t) et du signal d’entrée e(t) et la
phase sera déterminée à partir du décalage temporel observé (temps en s) multiplié par la
pulsation d’excitation (en rad·s−1) de sorte à obtenir une mesure d’angle comprise entre
−π et π (voir figures 1 et 3). Pour obtenir les diagrammes de Bode d’un système, il faudra
répéter cette procédure pour différentes pulsations d’excitation. On obtiendra ainsi autant
de points (gain et phase) que d’essais réalisés.
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Figure 5 – Exemple de tracé expérimental des diagrammes de Bode.

Propriétés des diagrammes de Bode Si un système linéaire est décrit par le produit
de deux fonctions de transfert

H(p) = H1(p) × H2(p)

alors la représentation graphique des diagrammes de Bode de l’expression de la fonction
de transfert complexe H(jω) sera la superposition des tracés des deux fonctions car :






|H(jω)|dB = 20 log (|H1(jω)| × |H2(jω)|) = 20 log (|H1(jω)|) + 20 log (|H2(jω)|)
∠H(jω) ≡ ∠ (H1(jω) × H2(jω)) ≡ ∠H1(jω) + ∠H2(jω) [2π]
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Graphiquement, il suffit donc d’ajouter les diagrammes de Bode des fonctions H1(jω) et
H2(jω) aussi bien pour le diagramme de gain que pour le diagramme de phase.

Tracé asymptotique On superpose en général au tracé exact le tracé asymptotique.
Ce tracé est souvent suffisant pour analyser la fonction.

Définition 1.6 (Pulsation de cassure)
On appelle pulsation de cassure toute pulsation propre d’excitation pour laquelle les
asymptotes du tracé du gain se croisent (la cassure étant un changement de pente).

Analyse des diagrammes de Bode L’étude des lieux de Bode d’un système permet
de caractériser son comportement global (passe bas, passe bande, résonance, etc.). Pour ce
faire, on définit plusieurs notions.

Définition 1.7 (Pulsation de coupure)
On appelle pulsation de coupure toute pulsation propre d’excitation pour laquelle le module
est unitaire (|H(jωc)| = 1) ou le gain nul ; soit :

ωc telle que |H(jωc)|dB = 0 dB

Lorsqu’un système est excité à une de ses pulsations de coupure, l’amplitude de sa
réponse est identique à celle du signal d’entrée.

Définition 1.8 (Bande passante)
On appelle bande passante à 0 dB l’ensemble des pulsations d’excitation pour lesquelles la
réponse harmonique du système est amplifiée, c’est-à-dire telle que |H(jω)| ⩾ 1.

{

ω
∣
∣
∣ |H(jω)|dB ⩾ 0 dB

}

Une bande passante peut être délimitée par une ou deux pulsations de coupure. Un
système complexe peut posséder plusieurs bandes passantes. Si un système ne possède
qu’une bande passante (à 0 dB), comme c’est le cas de la plupart des systèmes rencontrés
en sciences industrielles de l’ingénieur, alors on qualifiera son comportement – par analogie
avec le traitement analogique des signaux en sciences physiques – de filtre passe-bas,
passe-bande ou passe-haut (figure 6).

log(ω)ωc

Filtre passe-bas

log(ω)

ωc1 ωc2

Filtre passe-bande

log(ω)

ωc

Filtre passe-haut

Figure 6 – Diagrammes de gain des filtres élémentaires.
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Définition 1.9 (Bande passante à −3 dB)
On appelle bande passante à −3 dB l’ensemble des pulsations d’excitation

{

ω
∣
∣
∣ |H(jω)|dB ⩾ max (|H(jω)|dB) − 3 dB

}

telles que le gain soit supérieur au gain maximum (hors résonance) moins trois décibels.

2 Représentations harmoniques des transmittances

Dans tout ce qui suit, K > 0 désignera un gain pur.

2.1 Gain pur

La fonction de transfert d’un gain pur s’écrit :

H(p) = K =⇒ H(jω) = K

avec une expression complexe de partie imaginaire nulle. On en déduit, pour toute pulsation
propre d’excitation ω ∈ ]0; +∞[, l’expression du module (ou du gain) et de la phase :







|H(jω)| = K

∠H(jω) ≡ 0 [2π]
⇐⇒







|H(jω)|dB = 20 log (K)

∠H(jω) ≡ 0 [2π]

Les diagrammes de Bode d’un gain pur sont constitués d’un graphe de gain constant et
d’un graphe de phase nulle (figure 7).
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Figure 7 – Diagrammes de Bode d’un gain pur.
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2.2 Intégrateur

La fonction de transfert d’un intégrateur s’écrit :

H(p) =
1

p
=⇒ H(jω) =

1

jω
=

−j

ω

avec une expression complexe de partie réelle nulle et de partie imaginaire négative. On en
déduit, pour toute pulsation propre d’excitation ω ∈ ]0; +∞[, l’expression du module (ou
du gain) et de la phase :







|H(jω)| =
1

ω
sin (∠H(jω)) = −1

⇐⇒







|H(jω)|dB = −20 log (ω)

∠H(jω) ≡ −π

2
[2π]

Les diagrammes de Bode d’un intégrateur sont constitués d’un graphe de gain de pente :

|H(j10ω)|dB − |H(jω)|dB = −20 log (10ω) + 20 log (ω) = −20 log (10) = −20 dB/décade

et d’un graphe de phase constante à −90° (figure 8).
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Figure 8 – Diagrammes de Bode d’un intégrateur.
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2.3 Dérivateur

La fonction de transfert d’un dérivateur s’écrit :

H(p) = p =⇒ H(jω) = jω

avec une expression complexe de partie réelle nulle et de partie imaginaire positive. On en
déduit, pour toute pulsation propre d’excitation ω ∈ ]0; +∞[, l’expression du module (ou
du gain) et de la phase :







|H(jω)| = ω

sin (∠H(jω)) = 1
⇐⇒







|H(jω)|dB = 20 log (ω)

∠H(jω) ≡ π

2
[2π]

Les diagrammes de Bode d’un dérivateur sont constitués d’un graphe de gain de pente

|H(j10ω)|dB − |H(jω)|dB = 20 log (10ω) − 20 log (ω) = 20 log (10) = 20 dB/décade

et d’un graphe de phase constante à +90° (figure 9).
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Figure 9 – Diagrammes de Bode d’un dérivateur.
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2.4 Premier ordre

La fonction de transfert d’un premier ordre s’écrit :

H(p) =
K

1 + τ p
=⇒ H(jω) =

K

1 + τ jω
= K

1 − jτ ω

1 + τ 2 ω2

telle que son expression complexe soit constituée des parties réelle et imaginaire :

ℜ [H(jω)] =
K

1 + τ 2 ω2
> 0 et ℑ [H(jω)] =

−K τ ω

1 + τ 2 ω2
< 0 .

Comme la partie réelle est positive et la partie imaginaire est négative, l’argument sera
compris entre −π/2 et 0. Il est donc possible d’utiliser directement la fonction arc tangente
pour déterminer l’argument. On en déduit, pour toute pulsation propre d’excitation
ω ∈ ]0; +∞[, l’expression du module (ou du gain) et de la phase :







|H(jω)| =
K√

1 + τ 2 ω2
⇐⇒ |H(jω)|dB = 20 log(K) − 20 log

(√
1 + τ 2 ω2

)

∠H(jω) ≡ − Arctan(τ ω) [2π]

D’après l’expression du gain, on peut remarquer que le comportement harmonique d’un
système du premier ordre dépend de trois gammes de pulsations :
Comportement basse fréquence (ω → 0)

On parle de comportement basse fréquence d’un premier ordre lorsque la pulsa-
tion propre d’excitation tend vers zéro. Ainsi, pour les très basses fréquences, les
expressions du module (ou du gain) et de la phase se limitent à :







lim
ω→0

|H(jω)| = K ⇐⇒ lim
ω→0

|H(jω)|dB = 20 log(K)

lim
ω→0

∠H(jω) ≡ 0 [2π]

Comportement haute fréquence (ω → +∞)
On parle de comportement haute fréquence d’un premier ordre lorsque la pulsation
propre d’excitation tend vers +∞. Dans ce cas on a

lim
ω→+∞

√
1 + τ 2ω2 ≃ lim

ω→+∞
τω

telle que l’on puisse approcher les expressions du module (ou du gain) et de la phase
à haute fréquence par :






lim
ω→+∞

|H(jω)| ≃ lim
ω→+∞

K

τ ω
⇐⇒ lim

ω→+∞
|H(jω)|dB ≃ lim

ω→+∞
20 log

(
K

τ

)

− 20 log (ω)

lim
ω→+∞

∠H(jω) ≡ −π

2
[2π]

Comportement moyenne fréquence (ω ∼ 1/τ)
Les asymptotes à basses et à hautes fréquences du module ou du gain se coupent à
la pulsation ωk = 1/τ , dite de cassure. On parle alors de comportement moyenne
fréquence d’un premier ordre lorsque la pulsation propre d’excitation est de l’ordre
de grandeur de la pulsation de cassure 1/τ , que l’on note ω ∼ 1/τ . On retiendra
deux points particuliers autour de la pulsation de cassure :
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ω |H (jω) | |H (jω) |dB ∠H (jω) ∠H (jω) (°)

1/2τ 2K/
√

5 20 log(K) − 1 dB Arctan(−1/2) −26, 56°

1/τ K/
√

2 20 log(K) − 3 dB Arctan(−1) = −π/4 −45°

2/τ K/
√

5 20 log(K) − 7 dB Arctan(−2) −63, 43°

Diagrammes de Bode Les diagrammes de Bode d’un premier ordre sont constitués
d’un graphe de gain et d’un graphe de phase, tous deux variables. D’après les trois gammes
de fréquences mises en avant, il est possible de réaliser le tracé asymptotique du gain et
de la phase. À basse fréquence (ω → 0), le gain et la phase sont constants et admettent
chacun une asymptote horizontale d’équation







lim
ω→0

|H(jω)|dB = 20 log(K)

lim
ω→0

∠H(jω) ≡ 0 [2π]

À haute fréquence (ω → +∞), le gain ne cesse de décroître, suivant une asymptote oblique
à partir du point de cassure (de pulsation 1/τ et de gain 20 log(K)) et avec une pente de :

|H(j10ω)|dB − |H(jω)|dB = −20 log (10ω) + 20 log (ω) = −20 dB/décade

La phase correspondante atteint une asymptote horizontale à −90°. Entre ces deux gammes
de fréquences, on retiendra qu’à la pulsation de cassure ωk = 1/τ , la courbe du gain passe
3 dB en dessous du tracé asymptotique et que la phase vaut −45°. Les caractéristiques
nécessaires au tracé des diagrammes de Bode de la figure 10 sont données dans la table 2.

Table 2 – Caractéristiques des diagrammes de Bode d’un système du premier ordre.

ω |H (jω) |dB ∠H (jω)

ω → 0 asymptote horizontale : 20 log(K) asymptote horizontale : 0°

1/τ 20 log(K) − 3 dB −45°

ω → +∞ asymptote oblique : 20 log

(
K

τ

)

− 20 log (ω) asymptote horizontale : −90°
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Figure 10 – Diagrammes de Bode d’un système du premier ordre avec K = 10 et
τ = 0, 2 s.
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2.5 Numérateur d’ordre 1

La fonction de transfert d’un numérateur d’ordre 1 s’écrit :

H(p) = 1 + τ p ⇒ H(jω) = 1 + τ jω

où les parties réelle et imaginaire de l’expression complexe sont évidentes et toutes deux
positives. Elles permettent d’utiliser la fonction arc tangente pour déterminer l’argument,
compris entre 0 et π/2. Ainsi, pour toute pulsation propre d’excitation ω ∈ ]0; +∞[, le
module (ou le gain) et l’argument s’écrivent :







|H(jω)| =
√

1 + τ 2 ω2 ⇐⇒ |H(jω)|dB = 20 log
(√

1 + τ 2 ω2
)

∠H(jω) ≡ Arctan(τ ω) [2π]

Comme pour un système du premier ordre, on peut remarquer que le comportement
harmonique d’un numérateur d’ordre 1 dépend de trois gammes de pulsations :

Comportement basse fréquence (ω → 0)
Lorsque la pulsation propre de l’entrée vérifie ω → 0, on a lim

ω→0
(τ ω) = 0 telle que la

partie imaginaire soit nulle et que les expressions du module (ou du gain) et de la
phase se limitent à :







lim
ω→0

|H(jω)| = 1 ⇐⇒ lim
ω→0

|H(jω)|dB = 0 dB

lim
ω→0

∠H(jω) ≡ 0 [2π]

Comportement haute fréquence (ω → +∞)
Lorsque la pulsation propre de l’entrée vérifie ω → +∞, on a (τ ω) ≫ 1 telle que la
partie réelle tende vers 0 et permette d’approcher les expressions du module et de la
phase par :






lim
ω→+∞

|H(jω)| ≃ lim
ω→+∞

τ ω ⇐⇒ lim
ω→+∞

|H(jω)|dB ≃ lim
ω→+∞

20 log (τ) + 20 log (ω)

lim
ω→+∞

∠H(jω) ≡ π

2
[2π]

Comportement moyenne fréquence (ω ∼ 1/τ)
Lorsque la pulsation propre de l’entrée est de l’ordre de grandeur de la pulsation de
cassure ωk = 1/τ , on retiendra là encore deux points particuliers :

ω |H (jω) | |H (jω) |dB ∠H (jω) ∠H (jω) (°)

1/2τ
√

5/2 1 dB Arctan(1/2) 26, 56°

1/τ
√

2 3 dB Arctan(1) = π/4 45°

2/τ
√

5 7 dB Arctan(2) 63, 43°
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Diagrammes de Bode La construction des diagrammes de Bode d’un numérateur
d’ordre 1 reprend la démarche vue pour un système du premier ordre, en particulier en ce
qui concerne le tracé asymptotique du gain et de la phase. À basse fréquence (ω → 0),
le gain et la phase sont constants et admettent chacun une asymptote horizontale. À
haute fréquence (ω → +∞), le gain, à la différence d’un premier ordre, ne cesse de croître,
suivant une asymptote oblique à partir du point de cassure (de pulsation 1/τ et de gain
nul) et avec une pente de :

|H(j10ω)|dB − |H(jω)|dB = 20 log (10ω) − 20 log (ω) = +20 dB/décade

La phase correspondante atteint une asymptote horizontale à +90°. Entre ces deux gammes
de fréquences, on retiendra qu’à la pulsation de cassure ωk = 1/τ , la courbe du gain passe
3 dB au-dessus du tracé asymptotique et que la phase vaut +45°.
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Figure 11 – Diagrammes de Bode d’un numérateur d’ordre 1 avec τ = 0, 2 s.
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2.6 Second ordre sous-amorti (ξ ⩽ 1)

Dans ce qui suit, nous nous intéressons seulement aux réponses harmoniques des
systèmes du second ordre sous-amortis (ξ ⩽ 1). En effet, nous verrons juste après (cf. § 2.7)
que, comme la fonction de transfert d’un second ordre sur-amorti peut s’exprimer comme
le produit de deux fonctions du premier ordre, le tracé des diagrammes de Bode peut
être obtenu par simple superposition. Pour les systèmes du second ordre sous-amortis, la
fonction de transfert s’écrit :

H(p) =
K

1 +
2ξ

ω0

p +
p2

ω2
0

=⇒ H(jω) =
K

(

1 − ω2

ω2
0

)

+ j

(

2ξ ω

ω0

)

telle que son expression complexe soit constituée des parties réelle et imaginaire :

ℜ [H(jω)] =

K

(

1 − ω2

ω2
0

)

(

1 − ω2

ω2
0

)2

+

(

2ξω

ω0

)2







> 0 si ω < ω0

= 0 si ω = ω0

< 0 si ω > ω0

ℑ [H(jω)] =

−K

(

2ξω

ω0

)

(

1 − ω2

ω2
0

)2

+

(

2ξω

ω0

)2 < 0

Si la partie imaginaire est négative pour toute pulsation propre d’excitation ω ∈ ]0; +∞[, le
signe de la partie réelle dépend du rapport ω/ω0 : la partie réelle est positive si ω < ω0, nulle
si ω = ω0 et négative sinon. On en déduit que, pour toute pulsation propre d’excitation
ω ∈ ]0; +∞[, l’argument sera compris entre −π et 0. Pour utiliser la fonction arc tangente
afin d’avoir une mesure d’angle à 2π près sans ségréger les cas ω < ω0, ω = ω0 et ω > ω0, il
est nécessaire d’appliquer une rotation de +π/2, ce qui revient au changement de variable
(ℜ, ℑ) → (−ℑ, ℜ) puis d’appliquer après la rotation inverse. Il vient ainsi les expressions
du module et de l’argument :







|H(jω)| =
K

√
√
√
√

(

1 − ω2

ω2
0

)2

+

(

2ξω

ω0

)2

∠H(jω) ≡ −π

2
+ Arctan

(

ω2
0 − ω2

2ξωω0

)

[2π]

ainsi que l’expression du gain en décibels

|H(jω)|dB = 20 log(K) − 20 log






√
√
√
√

(

1 − ω2

ω2
0

)2

+

(

2ξ ω

ω0

)2





23



On peut remarquer que le comportement harmonique d’un système du second ordre
dépend de trois gammes de pulsations :

Comportement basse fréquence (ω → 0)
On parle de comportement basse fréquence d’un second ordre lorsque la pulsation
propre d’excitation tend vers zéro. Dans ce cas on a ω ≪ ω0 tel que lim

ω→0
(ω/ω0) = 0,

de sorte que les expressions du module (ou du gain) et de l’argument se limitent à :






lim
ω→0

|H(jω)| = K ⇐⇒ lim
ω→0

|H(jω)|dB = 20 log(K)

lim
ω→0

∠H(jω) ≡ 0 [2π]

Comportement haute fréquence (ω → +∞)
On parle de comportement haute fréquence d’un second ordre lorsque la pulsation
propre d’excitation tend vers +∞. Dans ce cas on a ω ≫ ω0, tel que (ω/ω0) → +∞,
de sorte que le rapport des parties imaginaire et réelle tende vers 0 et permette donc
d’approcher les expressions du module et de la phase par :






lim
ω→+∞

|H(jω)| ≃ lim
ω→+∞

Kω2
0

ω2
⇐⇒ lim

ω→+∞
|H(jω)|dB ≃ lim

ω→+∞
20 log

(

Kω2
0

)

− 40 log (ω)

lim
ω→+∞

∠H(jω) ≡ −π [2π]

Comportement moyenne fréquence (ω ∼ ω0)
Les asymptotes à basses et à hautes fréquences du module ou du gain se coupent à
la pulsation de cassure ωk = ω0, égale à la pulsation propre du système non amorti.
On parle alors de comportement moyenne fréquence d’un second ordre sous-amorti
lorsque la pulsation propre d’excitation est de l’ordre de grandeur de ω0. Dans cette
gamme de fréquences, l’expression du module n’est pas forcément monotone et peut
présenter un maximum. En effet, on peut remarquer que la dérivée du dénominateur
s’annule pour deux valeurs. En posant u = ω/ω0, il vient :

d
[

(1 − u2)
2

+ (2ξu)2
]

du
= 4u

(

u2 − 1 + 2ξ2
)

= 0 ⇐⇒






u = 0

u = ±
√

1 − 2ξ2 si ξ ⩽ 1√
2

Le cas u = 0 correspond à la tangente horizontale quand ω → 0 (comportement basse
fréquence). La seconde racine n’est accessible que si ξ ⩽ 1/

√
2 ≈ 0, 7 et correspond

à la présence d’un maximum d’amplitude appelé résonance :

si ξ ⩽
1√
2

,







|H(jωr)|dB = 20 log (K) − 20 log
(

2ξ
√

1 − ξ2
)

ωr = ω0

√
1 − 2ξ2 < ω0

pour la pulsation de résonance ωr toujours plus faible que la pulsation propre du
système non-amorti ω0. Il faut noter que dès que la résonance est marquée (ξ < 0, 2
environ), la pulsation de résonance est très proche de la valeur de ω0. Or la valeur en
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ω0 se détermine très facilement en fonction de ξ. Au point de cassure, quand ω = ω0,
le gain et l’argument s’écrivent respectivement :







|H(jω0)| =
K

2ξ
= K Q ⇐⇒ |H(jω0)|dB = 20 log(K) − 20 log(2ξ)

∠H(jω0) ≡ −π

2
[2π]

où Q = 1/(2ξ) est le facteur de qualité. Il permet notamment d’identifier le coefficient
d’amortissement sur un tracé expérimental.

Diagrammes de Bode Les diagrammes de Bode d’un second ordre sous-amorti sont
constitués d’un graphe de gain et d’un graphe de phase, tous deux variables. D’après les
trois gammes de fréquences mises en avant, il est possible de réaliser le tracé asymptotique
du gain et de la phase. À basse fréquence (ω → 0), le gain et la phase sont constants et
admettent chacun une asymptote horizontale, d’équations respectives







lim
ω→0

|H(jω)|dB = 20 log(K)

lim
ω→0

∠H(jω) ≡ 0 [2π]

À haute fréquence (ω → +∞), le gain ne cesse de décroître, suivant une asymptote oblique
à partir du point de cassure (de pulsation ω0 et de gain 20 log(K)) et avec une pente de :

|H(j10ω)|dB − |H(jω)|dB = −40 log (10ω) + 40 log (ω) = −40 dB/décade

La phase correspondante atteint une asymptote horizontale à −180°. Entre ces deux
gammes de fréquences, c’est-à-dire autour de la pulsation de cassure ω0, il est indispensable
de connaître la valeur du coefficient d’amortissement ξ pour savoir s’il va y avoir ou non
une résonance et si oui, de quelle amplitude. Les caractéristiques nécessaires aux tracés
des diagrammes de Bode de la figure 12 sont données dans la table 3.

Table 3 – Caractéristiques des diagrammes de Bode d’un système du 2cd ordre sous-
amorti.

ω |H (jω) |dB ∠H (jω)

ω → 0 asymptote horizontale : 20 log(K) asymptote horiz. : 0°

ωr = ω0

√

1 − 2ξ2 20 log (K) − 20 log
(

2ξ
√

1 − ξ2
)

si ξ ⩽
1√
2

> −90°

ω0 20 log(K) − 20 log(2ξ) −90°

ω → +∞ asymptote oblique : 20 log
(
Kω2

0

)
− 40 log (ω) asymptote horiz. : −180°
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Figure 12 – Diagrammes de Bode d’un système du second ordre sous-amorti (ξ ⩽ 1)
avec K = 10, ω0 = 5 rad·s−1 et pour différentes valeurs de ξ comprises entre 0,1 et 1.

Pour les systèmes du second ordre sous-amortis non résonnant, le tracé réel du gain
autour de la pulsation de cassure ω0 passera entre 3 et 6 dB en dessous du tracé asymp-
totique. En effet, dans le cas critique, c’est-à-dire lorsque ξ = 1, le tracé du gain ne
présentera pas de pic résonance et le tracé réel passera 20 log(2) = 6 dB en dessous du
tracé asymptotique. Le graphe du gain qui restera le plus proche du tracé asymptotique
sera celui pour ξ = 1/

√
2 avec un tracé réel passant 20 log(

√
2) = 3 dB en dessous du tracé

asymptotique.
Dans le cas des systèmes du second ordre sous-amortis résonnants, c’est-à-dire avec

ξ ∈
]

0, 1/
√

2
[

, le tracé réel du gain autour de la pulsation de cassure ω0 passera toujours
au-dessus du tracé asymptotique.
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2.7 Cas général

Dans ce qui précède nous avons défini les lieux de transfert des fonctions de transfert
élémentaires, caractéristiques des systèmes réels étudiés. Or toute fonction de transfert
peut être décomposée sous la forme d’un produit de fonctions élémentaires associées à ses
pôles et ses zéros :

H(p) = K ×
pα ×

∏

β

(1 + τβ p) ×
∏

δ

(

1 +
2ξδ

ω0δ

p +
p2

ω2
0δ

)

pγ ×
∏

κ

(1 + τκ p) ×
∏

µ

(

1 +
2ξµ

ω0µ

p +
p2

ω2
0µ

)

Gain pur

Dérivateur
(zéro nul)

Numérateur d’ordre 1
(zéro réel négatif)

Numérateur d’ordre 2 sous-amorti
(paire de zéros complexes conjugués)

Intégrateur
(pôle nul)

Premier ordre
(pôle réel négatif)

Second ordre sous-amorti
(paire de pôles complexes conjugués)

que l’on peut écrire sous la forme générique

H(p) =
∏

i

Hi(p) = H1(p) · H2(p) · · ·

et conduisant à l’expression du gain et de l’argument

|H(jω)|dB =
∑

i

20 log (|Hi(jω)|) et ∠H(jω) ≡
∑

i

∠Hi(jω) [2π]

où la multiplication des fonctions de transfert élémentaires se traduit par une somme des
gains et des arguments de chacune. De cette propriété de décomposition, on en déduit
que pour tracer les diagrammes de Bode d’une fonction de transfert quelconque, il suffit
d’ajouter chacune des contributions des fonctions de transfert élémentaires Hi(jω) la
constituant, aussi bien pour le diagramme de gain que pour le diagramme de phase.

Tracé des diagrammes de Bode À l’exception des résonances, le tracé asymptotique
des diagrammes de Bode d’une fonction de transfert met en évidence la plupart de ses
caractéristiques (bande passante, comportement de type passe-bas, passe-haut, etc.). Aussi,
pour réaliser le tracé des diagrammes de Bode d’une fonction de transfert quelconque, il
s’agira toujours de :

1. factoriser la fonction de transfert de façon à faire apparaître les fonctions élémentaires
(pas de second ordre sur-amorti !) ;

2. réaliser le tracé asymptotique de chacune des fonctions de transfert élémentaires
(donnés dans la table 4) en spécifiant les caractéristiques (pentes, pulsations de
cassures) ;

3. tracer l’allure du diagramme asymptotique final en sommant toutes les contributions ;
4. tracer l’allure réelle des lieux de transfert dans l’ordre croissant des pulsations en

tenant compte de chaque influence et, si besoin, calculer des valeurs particulières
pour avoir une allure plus précise des lieux de transferts d’un système.
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Table 4 – Tracés asymptotiques des diagrammes de Bode des fonctions de transfert
élémentaires.

Fonction
élémentaire

H(p) |H (jω) |dB ∠H (jω)

Gain pur K
log(ω)

K > 1

K < 1

log(ω)

0°

Intégrateur
1

p

log(ω)

1 −20 dB/déc.

log(ω)

−90°

Dérivateur p
log(ω)

1
+20 dB/déc.

log(ω)

+90°

Premier ordre
1

1 + τ p

log(ω)1/τ

−20 dB/déc.

log(ω)1/τ

−90°

Numérateur
d’ordre 1

1 + τ p
log(ω)1/τ

+20 dB/déc.

log(ω)1/τ

90°

Second ordre
sous-amorti

1

1 +
2ξ

ω0
p +

p2

ω2
0

log(ω)ω0

−40 dB/déc.

log(ω)ω0

−180°

Numérateur
d’ordre 2

sous-amorti
1 +

2ξ

ω0
p +

p2

ω2
0 log(ω)ω0

+40
dB/d

éc
.

log(ω)ω0

+180°
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Exemple 2.1
Soit la fonction de transfert :

H(p) =
5 (1 + 5 p)

p (1 + 0, 5 p + 0, 25 p2)

déjà exprimée sous forme factorisée car ω0 = 2 rad·s−1 et donc ξ = 0,5 < 1 pour le
second ordre du dénominateur. On peut donc simplement récrire cette fonction de
transfert sous la forme de produit de fonctions élémentaires :

H(p) = 5 × 1

p
× (1 + 5 p) × 1

1 + 0, 5 p + 0, 25 p2

avec la pulsation de cassure du numérateur d’ordre 1 à 1/5 = 0,2 rad·s−1 et celle du
second ordre sous-amorti (ξ = 0,5) à 2 rad·s−1. Les tracés asymptotiques et réels des
diagrammes de Bode de cette fonction de transfert sont donnés sur la figure 13.

À basse fréquence, c’est-à-dire pour ω ≪ 0,2 rad·s−1, les seules influences sont
celles du gain pur et de l’intégrateur. Le gain présente une asymptote oblique de pente
−20 dB/décade passant à 20 log(5) ≈ 13,98 dB à la pulsation de 1 rad·s−1. La phase
suit une asymptote horizontale à −90°. À partir de la pulsation ω ∼ 0,2 rad·s−1, le
numérateur d’ordre 1 tend à atténuer l’effet de l’intégrateur. La pente de +20 dB/décade
du numérateur d’ordre 1 annule celle de l’intégrateur et le gain reste constant à la
valeur de 20 log(5). De façon analogue, la somme des tracés asymptotiques des phases
montre que le numérateur d’ordre 1 tend à annuler le déphasage et le tracé réel atteint
presque −45° au niveau de la pulsation de cassure 0,2 rad·s−1 et continue à évoluer
progressivement vers 0° jusqu’à ce que l’effet du second ordre sous-amorti influe sur la
réponse.

Si le tracé asymptotique ne montre qu’une modification des lieux de transfert à
partir de la pulsation de cassure ω0 = 2 rad·s−1, le tracé réel montre une modification
de la phase pour des pulsations d’excitation bien plus faibles. En effet, le déphasage
cesse son atténuation pour une pulsation de 0,5 rad·s−1 puis atteint presque −90° au
niveau de la pulsation de cassure ω0 = 2 rad·s−1. Concernant le tracé du gain, comme
ξ = 0, 5 < 1/

√
2, le système présente une résonance de 3 dB pour la pulsation propre

d’excitation ωr =
√

2rad·s−1.
Enfin, à haute fréquence, pour ω ≫ 2 rad·s−1, la seule influence est celle du second

ordre sous-amorti. Le gain présente une asymptote oblique de pente −40 dB/décade et
la phase atteint une asymptote horizontale à −180°.
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3 Application à l’étude de la stabilité des systèmes

Le tracé de lieux de transfert des fonctions de transfert complexes permet d’obtenir des
informations importantes sur le comportement harmonique des systèmes linéaires continus
et invariants. En particulier, le tracé des lieux de transferts d’une fonction de transfert en
boucle ouverte (FTBO) permet d’obtenir des informations sur le comportement bouclé.
En effet, en considérant le schéma-blocs minimal d’un système asservi :

−+
E(p)

H(p)
S(p)

G(p)

la fonction de transfert complexe en boucle fermée s’écrit :

FTBF(jω) =
H(jω)

1 + FTBO(jω)
avec FTBO(jω) = H(jω)G(jω)

Dès lors, on remarque que si la FTBO s’approche du point −1 dans une certaine gamme
de fréquences, le dénominateur de la FTBF tend vers zéro et donc le module de la FTBF
devient très grand : on parle de résonance de la FTBF. En particulier, lorsque le module
de la FTBO vaut −1, le système en boucle fermée devient instable. Ainsi, pour évaluer
la stabilité d’un système, il est nécessaire de rechercher si les lieux de transfert passent
près ou non du point complexe −1 appelé point critique et caractérisé par un module
unitaire (ou un gain nul) et une phase de −180°.

Plus les lieux de transfert de la boucle ouverte d’un système passent loin du point
critique, plus le système sera stable. Or mesurer la distance des lieux de transfert au point
critique n’est pas possible directement dans le lieu de Bode, car les axes n’ont pas les
mêmes unités. Pour quantifier la proximité des lieux de transfert du point critique, il est
nécessaire de mesurer les distances algébriques parallèlement aux axes qui seront appelées
marge de gain et marge de phase.

Définition 3.1 (Marge de gain)
La marge de gain MG est la distance algébrique en dB mesurée entre la courbe de gain et
l’axe des abscisses pour une pulsation ω−π telle que la phase soit de −180° :

MG = −|H(jω−π)|dB avec ∠H(jω−π) = −180°

Définition 3.2 (Marge de phase)
La marge de phase Mφ est la distance algébrique en degré mesurée entre −180° et la
courbe de phase pour une pulsation de coupure ωc telle que le gain soit nul :

Mφ = 180° + ∠H(jωc) avec |H(jωc)|dB = 0 dB
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La caractérisation des marges de stabilité est l’une des motivations principales de
l’analyse harmonique des SLCI. Les ordres de grandeur usuels sont de 45° à 60° pour la
marge de phase et d’environ 10 dB pour la marge de gain. Ces marges peuvent facilement
être mesurées sur les diagrammes de Bode.

Sur les diagrammes de Bode (figure 14), une fois identifié le point de coupure, il suffit
de tracer un axe vertical jusqu’à l’intersection avec le tracé de phase. La marge de phase
correspond à la distance algébrique entre l’ordonnée −180° et la courbe de phase. Pour
déterminer la marge de gain, il faut tracer un axe horizontal à −180° sur le diagramme
de phase puis remonter jusqu’à la courbe de gain une fois la pulsation ω−π identifiée. La
marge de gain correspond à la distance algébrique entre la courbe de gain et l’axe des
abscisses à 0 dB.
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Figure 14 – Marges de stabilité sur les diagrammes de Bode.

* *
*
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