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Objectif

■ Étudier la réponse des SLCI pour un signal périodique quelconque
Tout signal périodique e(t) de période T , peut être décomposé en une somme de
sinusoïdes de pulsations et d’amplitudes différentes appelée série de Fourier :

e(t) = a0 +

+∞∑

k=1

ak cos

(
2kπt

T

)

+ bk sin

(
2kπt

T

)

avec :

a0 =
1

T

∫ T

2

−T

2

e(t) dt

ak =
2

T

∫ T

2

−T

2

e(t) cos

(
2kπt

T

)

dt

bk =
2

T

∫ T

2

−T

2

e(t) sin

(
2kπt

T

)

dt
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Objectif

■ Exemple de décomposition en série de Fourier

n = 1

n = 5

n = 15

n → +∞
t

Animation : créneau & triangle
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Objectif élémentaire

Définition (Réponse harmonique)

La réponse harmonique d’un système linéaire continu et invariant stable
correspond à sa réponse asymptotique forcée (en régime permanent),
lorsqu’il est sollicité par un signal d’entrée harmonique du type

e(t) = e0 sin (ωt) u(t)

d’amplitude e0 et de pulsation ω.

SLCI
e(t) s(t) ?
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Réponse harmonique

t [s]

e(t)

s(t)

e0

−e0

s0

−s0

régime transitoire régime forcé

Écart d’amplitude

Déphasage
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Plan du cours

1 Introduction
2 Représentations harmoniques des transmittances
3 Application à l’étude de la stabilité des systèmes
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Introduction
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Réponse harmonique

■ Modèle de système dynamique
d’entrée e(t) et de sortie s(t) = équation différentielle linéaire à coefficients
constants :

a0 e(t) + a1
de

dt
(t) + · · · + am

dme

dtm
(t) = b0 s(t) + b1

ds

dt
(t) + · · · + bn

dns

dtn
(t)

vérifiant le principe de causalité (m ⩽ n).

Fonction de transfert (en conditions de Heaviside) :

H(p) =
S(p)

E(p)
=

a0 + a1 p + · · · + am pm

b0 + b1 p + · · · + bn pn
=

am

m∏

i=1

(p − zi)

bn

n∏

j=1

(p − pj)

avec zi chacun des m zéros du numérateur et pj chacun des n pôles du
dénominateur.
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Réponse harmonique

Définition (Réponse harmonique)
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Réponse harmonique

Lorsqu’un système est soumis à une entrée de la forme :

e(t) = e0 sin(ωt) u(t)
L−−−−−→ E(p) =

e0 ω

p2 + ω2

sa réponse dans le domaine de Laplace est :

S(p) = H(p) E(p) = e0 ω

am

m∏

i=1

(p − zi)

(
p2 + ω2

)
bn

n∏

j=1

(p − pj)

admettant une décomposition en éléments simples de la forme :

S(p) = e0 ω




∑

pôles réels

[
multiplicité
∑

i=1

Ai

(p − pj)
i

]

+
∑

paires de pôles
complexes






multiplicité
∑

i=1

Bi p + Ci
(

(p − ℜ[pj ])
2

+ (ℑ[pj ])2
)i




+

α p + β

p2 + ω2






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Stabilité asymptotique

D’après le théorème d’amortissement, qui s’écrit pour une fonction f(t)

L [f(t) exp(−at)] (p) =

∫ +∞

0

f(t) exp(−(p + a)t) dt = F (p + a)

on peut en déduire que :

F (p − ℜ[pj ])
L

−1

−−−−→ f(t) exp (ℜ[pj ]t)
t→+∞−−−−−−→







0 si ℜ[pj ] < 0
f(∞) si ℜ[pj ] = 0
∞ si ℜ[pj ] > 0

Définition (Stabilité asymptotique)

Un système linéaire continu et invariant est asymptotiquement stable si sa réponse
impulsionnelle tend vers 0 quand t → +∞.

Théorème (Système asymptotiquement stable)

Un système linéaire continu et invariant est asymptotiquement stable si et

seulement si tous ses pôles sont à partie réelle strictement négative.
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Stabilité & position des pôles

ℜ

ℑ

Instable

pôles complexes à
partie réelle positive

pôles imaginaires
doubles

pôles imaginaires
simples

pôle réel négatif

pôle réel positif

pôle nul
multiplepôle nul simple

pôles complexes à
partie réelle négative
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Réponse harmonique

Si Re[pj ] < 0, ∀j ∈ J1; nK, on peut décomposer la réponse du système :

S(p) = Slibre(p) + Sforcée(p)

avec une réponse dite « libre »

Slibre(p) = e0 ω






∑

pôles R

[
mult.∑

i=1

Ai

(p − pj)i

]

+
∑

paires de
pôles C

[
mult.∑

i=1

Bi p + Ci
(
(p − ℜ[pj ])2 + (ℑ[pj ])2

)i

]





dont l’expression temporelle tend asymptotiquement vers 0

lim
t→+∞

slibre(t) = 0

et une réponse dite « forcée »

Sforcée(p) = e0 ω

(
α p + β

p2 + ω2

)

= e0

(

α ω
p

p2 + ω2
+ β

ω

p2 + ω2

)

.
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Réponse harmonique

Régime permanent ⇐⇒ réponse « forcée » :

sforcée(t) = e0 (α ω cos (ωt) + β sin (ωt)) u(t)

En notant tan(φ) = αω/β tel que

cos (φ) =
β

√

α2 ω2 + β2
et sin (φ) =

α ω
√

α2 ω2 + β2

on obtient :

sforcée(t) = e0

√

α2 ω2 + β2 (sin (φ) cos (ωt) + cos (φ) sin (ωt)) u(t)

= e0

√

α2 ω2 + β2 sin (ωt + φ) u(t)
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Réponse harmonique

En remarquant qu’il est possible d’annuler le terme
(
p2 + ω2

)
avec p = ±jω, il

vient le système :







−α jω + β = lim
p→−jω

(
p2 + ω2

) S(p)

e0 ω
= lim

p→−jω
H(p) = H(−jω)

α jω + β = lim
p→jω

(
p2 + ω2

) S(p)

e0 ω
= lim

p→jω
H(p) = H(jω)

permettant de déterminer α et β

αω = ℑ [H(jω)] et β = ℜ [H(jω)]

tels que :

sforcée(t) = e0 |H(jω)| sin (ω t + φ) u(t) avec φ ≡ ∠H(jω) [2π]

avec
|H(jω)| =

√

α2ω2 + β2 et tan(∠H(jω)) =
αω

β
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Réponse harmonique

Théorème (Réponse harmonique)

La réponse asymptotique forcée d’un système linéaire, continu et invariant

asymptotiquement stable, de fonction de transfert H(p) à une entrée sinusoïdale

e(t) = e0 sin(ωt)u(t) est une sinusoïde d’expression :

sforcé(t) = e0 |H(jω)| sin(ωt + φ)u(t)

de même pulsation ω, d’amplitude multipliée par le module |H(jω)| et déphasée

par l’argument φ = ∠H(jω) de la fonction de transfert complexe H(jω).
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Exemple de réponse harmonique

■ Réponse harmonique d’un système du 1er ordre

Fonction de transfert :

H(p) =
K

1 + τ p
, K > 0

Signal d’entrée :

e(t) = e0 sin(ωt) u(t)
L−−−−−→ E(p) =

e0 ω

p2 + ω2

Réponse dans le domaine de Laplace :

S(p) = H(p) E(p) =
K e0 ω

(p2 + ω2) (1 + τ p)
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Exemple de réponse harmonique

Décomposition en éléments simples :

S(p) =
A p + B

p2 + ω2
+

C

1 + τ p

Détermination des coefficients :

A =
1

2jω

[

lim
p→jω

(
p2 + ω2

)
S(p) − lim

p→−jω

(
p2 + ω2

)
S(p)

]

= −K E0 ω τ

1 + τ2 ω2

B =
1

2

[

lim
p→jω

(
p2 + ω2

)
S(p) + lim

p→−jω

(
p2 + ω2

)
S(p)

]

=
K E0 ω

1 + τ2 ω2

C = lim
p→−1/τ

(1 + τ p) S(p) =
K E0 ω τ2

1 + τ2 ω2

Réponse dans le domaine de Laplace :

S(p) =
K E0 ω

1 + τ2 ω2

(
1 − τ p

p2 + ω2
+

τ2

1 + τ p

)
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Exemple de réponse harmonique

Réponse dans le domaine de Laplace :

S(p) =
K e0 ω

1 + τ2 ω2

(
τ

p + 1/τ
+

1

ω

ω

p2 + ω2
− τ

p

p2 + ω2

)

Transformée de Laplace inverse −→ réponse temporelle :

s(t) =
K e0 ω

1 + τ2 ω2







τ e−t/τ
︸ ︷︷ ︸

régime transitoire

+
1

ω
sin (ω t) − τ cos (ω t)

︸ ︷︷ ︸

régime forcé







u(t)

comme :
lim

t→+∞
e−t/τ = 0

en régime permanent (t → +∞) :

sforcée(t) =
K e0

1 + τ2 ω2
(sin (ω t) − τ ω cos (ω t)) u(t)
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Exemple de réponse harmonique

En posant :

cos(φ) =
1√

1 + τ2 ω2
⩾ 0 et sin(φ) =

−τ ω√
1 + τ2 ω2

⩽ 0

il vient :

sforcée(t) =
K e0√

1 + τ2 ω2
sin (ω t + φ) u(t)

À partir de la fonction de transfert complexe H(jω) :






|H(jω)| =
K√

1 + τ2 ω2
Module

∠H(jω) ≡ − Arctan(τ ω) [2π] Argument

⇒ Réponse en régime forcé :

sforcée(t) = e0 |H(jω)| sin (ω t + φ) u(t)
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Exemple de réponse harmonique II

4

1 + 0, 2 p

e(t)

3 sin(2t)

sforcée(t)

11, 1 sin (2 [t − 0, 19])

-10

-5

0

5

10

t

e(t)

sforcée(t)
0,19 s

3,14 s

3

11,1
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Analyse harmonique

Définition (Analyse harmonique)

L’analyse harmonique d’un système linéaire continu et invariant stable consiste à
analyser ses réponses harmoniques pour l’ensemble des pulsations propres
ω ∈]0, +∞[ du signal harmonique d’entrée.

■ Objectif : prédire la réponse en régime permanent (forcée) d’un système
soumis à une somme d’entrées du type e(t) = e0 sin(ωt) u(t).

■ Besoins : pour chaque pulsation d’excitation ω,

module |H(jω)|
argument φ = ∠H(jω)

de la fonction de transfert complexe H(jω).
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Analyse harmonique

Définition (Fonction de transfert complexe)

On appelle fonction de transfert complexe ou transmittance isochrone l’expression
H(jω) d’une fonction de transfert H(p) dans le cas où la variable complexe de
Laplace p = jω est un imaginaire pur. On la notera :

H(jω) = |H(jω)| exp (jφ(ω))

avec |H(jω)| le module et φ(ω) = ∠H(jω) l’argument.

Transformée de Fourier (= transformée de Laplace avec p = jω) :

H(jω) =

∫ +∞

0

h(t) e−jωt dt

h(t) : réponse impulsionnelle du système
H : fonction de transfert complexe.
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Analyse harmonique

i Module & argument

ℜ

ℑ

|H(jω
)|

∗

∠H(jω)

ℜ [H(jω)]

ℑ [H(jω)]

Module : |H(jω)| =

√

ℜ [H(jω)]
2

+ ℑ [H(jω)]
2

Argument : ∠H(jω) tel que







cos (∠H(jω)) =
ℜ [H(jω)]

|H(jω)|

sin (∠H(jω)) =
ℑ [H(jω)]

|H(jω)|
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Analyse harmonique

i Module & argument II

Pour toute FT de la forme :

H(jω) =
N(jω)

D(jω)

Module :

|H(jω)| =
|N(jω)|
|D(jω)|

Argument :
∠H(jω) ≡ ∠N(jω) − ∠D(jω) [2π]
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Lieux de transfert

Définition (Lieux de transfert)

On appelle lieux de transfert, le tracé des différentes représentations graphiques de
la fonction de transfert complexe H(jω) d’un système pour toutes les pulsations
d’excitation possibles.

Représentations graphiques utilisées en ingénierie :

les diagrammes de Bode ;

le diagramme de Black (courbe paramétrée en ω dans le plan
(φ(ω), |H(jω)|dB), hors programme) ;

le diagramme de Nyquist (courbe paramétrée en ω dans le plan complexe,
hors programme).
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Diagrammes de Bode

Diagrammes de bode = deux graphes :
1 gain en décibel (dB) :

log(ω) 7→ |H(jω)|dB = 20 log (|H(jω)|)

2 phase en degrés :
log(ω) 7→ φ(ω) = ∠H(jω)

tracés en fonction de la pulsation propre du signal d’entrée ω ∈]0; +∞[
sur une échelle logarithmique.

1 seule valeur à connaître :
log(2) ≈ 0,3
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Diagrammes de Bode

10
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−10
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ω
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ωc
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3 dB
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10
−1
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2
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3
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4
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−20

0

ω
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Diagrammes de Bode expérimentaux

10
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0
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1
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3
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−30

−20
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⃝

Essai à 10 rad·s−1
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2

10
3

10
4
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∠H(jω)

⃝

Vidéo : Control’X

SII – PCSI | Analyse harmonique des SLCI 29

videos/controlX.mp4


Diagrammes de Bode

■ Propriétés
Si H(p) = H1(p) × H2(p) alors :







|H(jω)|dB = 20 log (|H1(jω)| × |H2(jω)|)
= 20 log (|H1(jω)|) + 20 log (|H2(jω)|)

∠H(jω) ≡ ∠ (H1(jω) × H2(jω)) [2π]
≡ ∠H1(jω) + ∠H2(jω) [2π]

Graphiquement : ajout les diagrammes de Bode des fonctions H1(jω) et H2(jω).

■ Vocabulaire :
octave ω 7→ 2 × ω

décade ω 7→ 10 × ω

Équivalences entre module et gain en décibel :

|H| 1

100

1

10

1

2

1√
2

1
√

2 2 10 100

|H|dB −40 −20 −6 −3 0 3 6 20 40
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1 2 32

Représentations harmoniques
des transmittances
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Gain pur

Fonction de transfert :

H(p) = K =⇒ H(jω) = K

Module (gain) & argument : ∀ω ∈ ]0; +∞[

{

|H(jω)| = K

∠H(jω) ≡ 0 [2π]
⇐⇒

{

|H(jω)|dB = 20 log (K)

∠H(jω) ≡ 0 [2π]
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Gain pur : diagrammes de Bode

10
−2

10
−1

10
0

10
1

10
2

−15

−5

5

15

ω

|H(jω)|dB

20 log (K)
si K > 1

si K < 1

10
−2
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−1

10
0

10
1

10
2

−20

−10

0

10

20

ω

∠H(jω)

0°
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Intégrateur

Fonction de transfert :

H(p) =
1

p
=⇒ H(jω) =

1

jω
=

−j

ω

Module (gain) & argument : ∀ω ∈ ]0; +∞[

{

|H(jω)| =
1

ω
sin (∠H(jω)) = −1

⇐⇒







|H(jω)|dB = −20 log (ω)

∠H(jω) ≡ −π

2
[2π]
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Intégrateur : diagrammes de Bode
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Dérivateur

Fonction de transfert :

H(p) = p =⇒ H(jω) = jω

Module (gain) & argument : ∀ω ∈ ]0; +∞[

{

|H(jω)| = ω

sin (∠H(jω)) = 1
⇐⇒







|H(jω)|dB = 20 log (ω)

∠H(jω) ≡ π

2
[2π]
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Dérivateur : diagrammes de Bode
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Premier ordre

Fonction de transfert :

H(p) =
K

1 + τ p
=⇒ H(jω) =

K

1 + τ jω
= K

1 − jτ ω

1 + τ2 ω2

avec :

ℜ [H(jω)] =
K

1 + τ2 ω2
> 0 et ℑ [H(jω)] =

−K τ ω

1 + τ2 ω2
< 0

Module (gain) & argument : ∀ω ∈ ]0; +∞[







|H(jω)| =
K√

1 + τ2 ω2

⇐⇒ |H(jω)|dB = 20 log(K) − 20 log
(√

1 + τ2 ω2
)

∠H(jω) ≡ − Arctan(τ ω) [2π]
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Premier ordre

■ Comportement basse fréquence (ω → 0)






lim
ω→0

|H(jω)|dB = 20 log(K)

lim
ω→0

∠H(jω) ≡ 0 [2π]

■ Comportement haute fréquence (ω → +∞)
Comme lim

ω→+∞

√

1 + τ2ω2 ≃ lim
ω→+∞

τω, on a :







lim
ω→+∞

|H(jω)|dB ≃ lim
ω→+∞

20 log

(
K

τ

)

− 20 log (ω)

lim
ω→+∞

∠H(jω) ≡ −π

2
[2π]

■ Comportement moyenne fréquence (ω ∼ 1/τ)
ω |H (jω) | |H (jω) |dB ∠H (jω) ∠H (jω) (°)

1/2τ 2K/
√

5 20 log(K) − 1 dB Arctan(−1/2) −26, 56°

1/τ K/
√

2 20 log(K) − 3 dB Arctan(−1) −45°

2/τ K/
√

5 20 log(K) − 7 dB Arctan(−2) −63, 43°
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Premier ordre : diagrammes de Bode
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Premier ordre : diagrammes de Bode
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Numérateur d’ordre 1

Fonction de transfert :

H(p) = 1 + τ p =⇒ H(jω) = 1 + τ jω

Module (gain) & argument :
{

|H(jω)| =
√

1 + τ2 ω2 ⇐⇒ |H(jω)|dB = 20 log
(√

1 + τ2 ω2
)

∠H(jω) ≡ Arctan(τ ω) [2π]

Analyse (même démarche que 1er ordre) :
basses fréquences (ω → 0)







lim
ω→0

|H(jω)|dB = 0 dB

lim
ω→0

∠H(jω) ≡ 0 [2π]

hautes fréquences (ω → +∞)






lim
ω→+∞

|H(jω)|dB ≃ lim
ω→+∞

20 log (τ) + 20 log (ω)

lim
ω→+∞

∠H(jω) ≡ π

2
[2π]
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Numérateur d’ordre 1 : diagrammes de Bode
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Second ordre sous-amorti (ξ ⩽ 1)

Fonction de transfert :

H(p) =
K

1 +
2ξ

ω0
p +

p2

ω2
0

=⇒ H(jω) =
K

(

1 − ω2

ω2
0

)

+ j

(
2ξ ω

ω0

)

avec :

ℜ [H(jω)] =

K

(

1 − ω2

ω2
0

)

(

1 − ω2

ω2
0

)2

+

(
2ξω

ω0

)2







> 0 si ω < ω0

= 0 si ω = ω0

< 0 si ω > ω0

ℑ [H(jω)] =

−K

(
2ξω

ω0

)

(

1 − ω2

ω2
0

)2

+

(
2ξω

ω0

)2
< 0
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Second ordre sous-amorti (ξ ⩽ 1)

Module & argument :







|H(jω)| =
K

√
(

1 − ω2

ω2
0

)2

+

(
2ξω

ω0

)2

∠H(jω) ≡ −π

2
+ Arctan

(
ω2

0 − ω2

2ξωω0

)

[2π]

Gain (en dB) :

|H(jω)|dB = 20 log(K) − 20 log





√
(

1 − ω2

ω2
0

)2

+

(
2ξ ω

ω0

)2



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Second ordre sous-amorti (ξ ⩽ 1)

■ Extrema du gain :
En posant u = ω/ω0, il vient :

d
[(

1 − u2
)2

+ (2ξu)
2
]

du
= 4u

(
u2 − 1 + 2ξ2

)
= 0

⇐⇒
{

u = 0

u = ±
√

1 − 2ξ2 si ξ ⩽ 1√
2

≈ 0, 7

Le cas u = 0 correspond à la tangente horizontale quand ω → 0 (BF).

Si ξ ⩽ 1/
√

2 ≈ 0, 7 ⇒ maximum d’amplitude appelé résonance
pour la pulsation :

ωr = ω0

√

1 − 2ξ2 < ω0

Amplitude :

|H(jωr)|dB = 20 log (K) − 20 log
(

2ξ
√

1 − ξ2
)

si ξ ⩽
1√
2

Résonance marquée si ξ < 0, 2 ⇒ permet de déterminer ξ.
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Second ordre sous-amorti (ξ ⩽ 1)

■ Comportement basse fréquence (ω → 0)
{

lim
ω→0

|H(jω)|dB = 20 log(K)

lim
ω→0

∠H(jω) ≡ 0 [2π]

■ Comportement haute fréquence (ω → +∞)






lim
ω→+∞

|H(jω)|dB ≃ lim
ω→+∞

20 log
(
Kω2

0

)
− 40 log (ω)

lim
ω→+∞

∠H(jω) ≡ −π [2π]

■ Comportement moyenne fréquence (ω ∼ ω0)






|H(jω0)|dB = 20 log(K) − 20 log(2ξ) = 20 log(KQ)

∠H(jω0) ≡ −π

2
[2π]

Q = 1/(2ξ) : facteur de qualité.
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Second ordre sous-amorti : diag. de Bode
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Second ordre sous-amorti : diag. de Bode
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Cas général

■ Factorisation de la fonction de transfert (pôles pi et zéros zj)

H(p) =

K ×
∏

β

(1 + τβ p) ×
∏

δ

(

1 +
2ξδ

ω0δ
p +

p2

ω2
0δ

)

pα ×
∏

κ

(1 + τκ p) ×
∏

µ

(

1 +
2ξµ

ω0µ
p +

p2

ω2
0µ

)

Gain

Numérateur d’ordre 1
(zéro réel négatif)

Numérateur d’ordre 2
(paire de zéros complexes conjugués)

Intégrateur
(pôle nul)

Premier ordre
(pôle réel négatif)

Second ordre
(paire de pôles complexes conjugués)
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Tracés asymptotiques élémentaires (1/3)

FT éléme. H(p) |H (jω) |dB ∠H (jω)

Gain pur K
log(ω)

K > 1

K < 1

log(ω)

0°

Intégrateur 1

p

log(ω)

1 −20 dB/déc.

log(ω)

−90°

Dérivateur p
log(ω)

1 +20 dB/déc.

log(ω)

+90°
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Tracés asymptotiques élémentaires (2/3)

FT éléme. H(p) |H (jω) |dB ∠H (jω)

Premier
ordre

1

1 + τ p

log(ω)1/τ

−20 dB/déc.

log(ω)1/τ

−90°

Numérateur
d’ordre 1

1 + τ p
log(ω)1/τ

+20 dB/déc.

log(ω)1/τ

90°
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Tracés asymptotiques élémentaires (3/3)

FT éléme. H(p) |H (jω) |dB ∠H (jω)

Second
ordre

sous-amorti

1

1 +
2ξ

ω0

p +
p2

ω2

0

log(ω)ω0
−

40
dB/déc.

log(ω)ω0

−180°

Numérateur
d’ordre 2

sous-amorti
1+

2ξ

ω0

p+
p2

ω2

0 log(ω)ω0

+
40

dB
/d

éc
.

log(ω)ω0

+180°
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Exemple

Fonction de transfert :

H(p) =
5 (1 + 5 p)

p (1 + 0, 5 p + 0, 25 p2)

Fonctions de transfert élémentaires :
1 Gain pur : H1(p) = 5

2 Intégrateur : H2(p) =
1

p
3 Numérateur d’ordre 1 : H3(p) = 1 + 5p

4 Second ordre :
i Attention pôles réels ou complexes ? ⇒ factorisation

ici : ω0 = 2 rad/s ⇒ ξ =
1

2
⇒ résonance

H4(p) =
1

1 +
p

2
+

p2

4
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1 2 33

Application à l’étude de la
stabilité des systèmes
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Étude de la stabilité des systèmes

Objectif d’un asservissement : faire en sorte que la sortie du système suive le
plus fidèlement possible un signal d’entrée.

Condition nécessaire : système stable.
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Étude de la stabilité des systèmes

Objectif d’un asservissement : faire en sorte que la sortie du système suive le
plus fidèlement possible un signal d’entrée.

Condition nécessaire : système stable.

−+
E(p)

H(p)
S(p)

G(p)

FTBF(jω) =
H(jω)

1 + FTBO(jω)
avec FTBO(jω) = H(jω)G(jω)

Si FTBO(jω) → −1 ⇒ le système devient instable = résonance de la FTBF.
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Étude de la stabilité des systèmes

Objectif d’un asservissement : faire en sorte que la sortie du système suive le
plus fidèlement possible un signal d’entrée.

Condition nécessaire : système stable.

−+
E(p)

H(p)
S(p)

G(p)

FTBF(jω) =
H(jω)

1 + FTBO(jω)
avec FTBO(jω) = H(jω)G(jω)

Si FTBO(jω) → −1 ⇒ le système devient instable = résonance de la FTBF.

Système stable ?
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Marges de stabilité

Définition (Marge de gain)

La marge de gain MG est la distance algébrique en dB mesurée entre la courbe de
gain et l’axe des abscisses pour une pulsation ω−π telle que la phase soit de
−180° :

MG = −|H(jω−π)|dB avec ∠H(jω−π) = −180°

Définition (Marge de phase)

La marge de phase Mφ est la distance algébrique en degré mesurée entre −180°

et la courbe de phase pour une pulsation de coupure ωc telle que le gain soit nul :

Mφ = 180° + ∠H(jωc) avec |H(jωc)|dB = 0 dB
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Marges de stabilité dans Bode
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