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B FEtudier la réponse des SLCI pour un signal périodique quelconque
Tout signal périodique e(t) de période T', peut étre décomposé en une somme de
sinusoides de pulsations et d'amplitudes différentes appelée série de Fourier :

+oo
2kt 2kt
e()—a0+2akcos< T )—i—bksm( T )

k=1
avec :
1 (=
a = /__T e(t) dt
ay = %/__T e(t) cos w) dt
2
z
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B Exemple de décomposition en série de Fourier

/\ /\

Animation : créneau & triangle
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code/fourier.py

B Exemple de décomposition en série de Fourier
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Animation : créneau & triangle
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B Exemple de décomposition en série de Fourier

Animation : créneau & triangle
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code/fourier.py

B Exemple de décomposition en série de Fourier

----n =5

—n=15

—_— N — +00

Animation : créneau & triangle
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code/fourier.py

Objectif élémentaire

Définition (Réponse harmonique)

La réponse harmonique d'un systeme linéaire continu et invariant stable
correspond a sa réponse asymptotique forcée (en régime permanent),
lorsqu'il est sollicité par un signal d’'entrée harmonique du type

e(t) = eq sin (wt) u(t)

d'amplitude eg et de pulsation w.

e(t) s(t)?

— SLA —m
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Plan du cours

1 Introduction
2 Représentations harmoniques des transmittances
3 Application a I'étude de la stabilité des systemes
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1 JORE

Introduction
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Réponse harmonique

B Modéle de systeme dynamique
d'entrée e(t) et de sortie s(t) = équation différentielle linéaire a coefficients
constants :

de d™e ds d™s
ag e(t) +ar () + - Fam o (1) = bo s(8) + b1 (1) +- -+ bn 2 (8)

vérifiant le principe de causalité (m < n).

Fonction de transfert (en conditions de Heaviside) :

am [[ (- =)
H(p):S(p):a0+a1p+"'+ampm: i=1
E(p) bo+bip+---+byp" L

I
-

J

avec z; chacun des m zéros du numérateur et p; chacun des n péles du
dénominateur.
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Réponse harmonique

Définition (Réponse harmonique)

La réponse harmonique d'un systeme linéaire continu et invariant stable
correspond a sa réponse asymptotique forcée (en régime permanent),
lorsqu'il est sollicité par un signal d’'entrée harmonique du type

e(t) = eq sin (wt) u(t)

d'amplitude eg et de pulsation w.
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Réponse harmonique

Lorsqu'un systéme est soumis a une entrée de la forme :

e(t) = eo sin(wt) u(t) —2— E(p) = %
sa réponse dans le domaine de Laplace est : m
am [] (- 2)
S(p) = H(p) E(p) = eo w "
P> +w?) b [[ (0 —py)
j=1
admettant une décomposition en éléments simples de la forme :

multiplicité
i

S(p) =eow Z

poles réels

>

i=1 (p— pj)l

multiplicité

DYDY

paires de poles | =1 ((p — Rlp;))* + (C\\y’[pj])2>i

complexes

Bip+C; ap+
p2 +w2
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Stabilité asymptotique

D’apres le théoreme d'amortissement, qui s'écrit pour une fonction f(¢)

+oo
Lf(t) exp(—at)] (p) = / £(t) exp(~(p+a)t) dt = F(p+a)

on peut en déduire que :
o1 . 0 si §R[pj] <0
F(p—Rlp;])) —— f(t) expRlp;lt) — { f(o0) siR[p;] =0
[e%e] si §R[pj] >0

Définition (Stabilité asymptotique)

Un systeme linéaire continu et invariant est asymptotiquement stable si sa réponse
impulsionnelle tend vers 0 quand ¢t — +o0.

v

Théoréme (Systéeme asymptotiquement stable)

Un systéme linéaire continu et invariant est asymptotiquement stable si et
seulement si tous ses péles sont a partie réelle strictement négative.
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Stabilité & position des pdles

R
pdle nul
p6le nul simple multiple

pOles complexes a

partie réelle négative / i pble réel positif

INSTABLE

pble r%;gatif W /\ Mﬁvﬁﬁ M

péles imaginaires | péles imaginaires PSles complexes a
simples doubles partie réelle positive
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Réponse harmonique

Si Re[p;] < 0, Vj € [1;n], on peut décomposer la réponse du systéme :

S(p) = Slibre(p) + Sforcée(p)

avec une réponse dite « libre »

mult. mult. B; P+ C,L
Slibre( ) =€y W + 7
! pgne [Zl (p—pi) 1 pagde [; (0 = RlpsD)* + (Sps])?) ]

pbles C

dont I'expression temporelle tend asymptotiquement vers 0

lim Slibre(t) = O

t—+oo

et une réponse dite « forcée »

ap+p P w
Sforcée(p):eow (m) = Co <aw p2+w2 +’3 p2+w2) !
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Réponse harmonique

Régime permanent <= réponse « forcée » :
Storcee(t) = g (aw cos (wt) + B sin (wt)) u(t)
En notant tan(yp) = aw/S tel que

aw
ﬁ et

sl = e ¢ MW e

on obtient :

Storcee(t) = €g Va2 w? 4+ 52 (sin (¢) cos (wt) + cos (v) sin (wt)) u(t)
=eg Va?w?+ 52 sin (wt + @) u(t)
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Réponse harmonique

En remarquant qu'il est possible d’annuler le terme (p? + w?) avec p = tjw, il
vient le systéme :

S
cajwtB = lim (P +e?) 2P hm Hp) = H(—jw)
pP——jw Seow P —Jw
ajw+ B = lim (p2 +w2) () = lim H(p) = H(jw)
pP—jw €o w p—rjw

permettant de déterminer « et §
ow =S [H(jw)] et f=R[H(jw)]
tels que :
Storcée (t) = €o |H (jw)| sin (wt+ @) u(t) avec ¢ = ZH(jw) [27]
avec

|H(jw)| = Vo?w? + 52 et tan(ZH(jw)) = %
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Réponse harmonique

Théoréme (Réponse harmonique)

La réponse asymptotique forcée d’un systéme linéaire, continu et invariant
asymptotiquement stable, de fonction de transfert H(p) a une entrée sinusoidale
e(t) = eg sin(wt)u(t) est une sinusoide d'expression :

Storcé(t) = eo |H(jw)| sin(wt + p)u(t)

de méme pulsation w, d’amplitude multipliée par le module |H (jw)| et déphasée
par 'argument ¢ = ZH (jw) de la fonction de transfert complexe H (jw).
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Exemple de réponse harmonique

B Réponse harmonique d'un systéeme du 1 ordre

Fonction de transfert :

Signal d’entrée :

e(t) = ep sin(wt) u(t) _Z E(p) = %

Réponse dans le domaine de Laplace :

Keyw
(p* +w?) (1 +7p)

S(p)=H(p) E(p) =
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Exemple de réponse harmonique

Décomposition en éléments simples :

_Ap+B C
S pP+w?  1+7p

S(p)

Détermination des coefficients :

1 . 9 9 . 9 9 _ KFEywr
A_2jw [plig'lw(p T )S(p)—pl}l_njw(p +w’) 5() T 147202
_1 : 2 2 . 2 2 o KEow
B_Q[plﬂ?w(p W) S)+ tm (7 +0) S)| = T
K Ey wt?
= i 1 =
c p_)l{r;/r( +7p)S0) =T 5.

Réponse dans le domaine de Laplace :

K Eyw <1—Tp T2 )

S p—
(p) 14+72w2 \p24+w?2 1+7p
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Exemple de réponse harmonique

Réponse dans le domaine de Laplace :

S(p) Keyw T _|_1 w p
= — -7
P 1+72w2 \p+1/7 w p?+w? p? + w?

Transformée de Laplace inverse — réponse temporelle :

Ke(]w —t/T
S(t):1+T2w2 &,i/

régime transitoire

+ 5 sin (wt) — 7cos (wt) | u(t)

régime forcé

comme .

lim e %7 =0
t——4o00

en régime permanent (¢ — +00) :

Keo

=g (sin(wt) — Tw cos (wt)) u(t)

Sforcée (t)
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Exemple de réponse harmonique

En posant :
- L >0 et in(p) = ——— <0
cos(p) = \/ﬁ Z € sin() = ﬁ =
il vient : K
€0

sin (wt + @) u(t)

Sforcée(t) = \/ﬁ

A partir de la fonction de transfert complexe H (jw) :

. K
|H(]w>| = \/ﬁ Module

ZH(jw) = — Arctan(tw) [27r] Argument

= Réponse en régime forcé :

| stocte(t) = €o [H(jw)| sin (wi +¢)u(t) |
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Exemple de réponse harmonique |l

e(t) 4 Sforcée (t)
3 sin(2t) 1+0.2p| 11,1 sin(2[t—0,19)])
11,1

| / \\ 019 s / \ / \ [ sralt)
| LR g

| e
T
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Analyse harmonique

Définition (Analyse harmonique)

L'analyse harmonique d'un systéme linéaire continu et invariant stable consiste a
analyser ses réponses harmoniques pour |'ensemble des pulsations propres
w €]0, +o00[ du signal harmonique d'entrée.

B Objectif : prédire la réponse en régime permanent (forcée) d'un systéme
soumis a une somme d'entrées du type e(t) = eg sin(wt) u(t).

M Besoins : pour chaque pulsation d'excitation w,
e module |H (jw)]
@ argument ¢ = ZH (jw)

de la fonction de transfert complexe H (jw).
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Analyse harmonique

Définition (Fonction de transfert complexe)

On appelle fonction de transfert complexe ou transmittance isochrone |'expression
H (jw) d'une fonction de transfert H(p) dans le cas ou la variable complexe de
Laplace p = jw est un imaginaire pur. On la notera :

H(jw) = [H(jw)| exp (jp(w))

avec |H (jw)| le module et p(w) = ZH (jw) I'argument.

Transformée de Fourier (= transformée de Laplace avec p = jw) :

+oo
H(jw) = /0 h(t) e 7%t dt

h(t) : réponse impulsionnelle du systéme
H : fonction de transfert complexe.
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Analyse harmonique

[#) Module & argument g

A J "
\g\'%”’ 7 H(jw)

________________ S[H (jw)]

R [H (jw)]

Module : |1 (juo)| = /R [H(je)|* + 3 [H(juo)

cos (LH(jw)) = %I[{H(]w)]

Argument :  ZH(jw) tel que
sin (ZH (jw)) = d
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Analyse harmonique

[#) Module & argument |l

Pour toute FT de la forme :

.
Module : (o)

) = 5
Argument :

ZH(jw) = LN(jw) — £LD(jw) [27]
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Lieux de transfert

Définition (Lieux de transfert)

On appelle lieux de transfert, le tracé des différentes représentations graphiques de
la fonction de transfert complexe H(jw) d'un systéme pour toutes les pulsations
d'excitation possibles.

Représentations graphiques utilisées en ingénierie :
@ les diagrammes de Bode;
o le diagramme de Black (courbe paramétrée en w dans le plan
(p(w),|H(jw)|yg), hors programme) ;
o le diagramme de Nyquist (courbe paramétrée en w dans le plan complexe,
hors programme).
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Diagrammes de Bode

Diagrammes de bode = deux graphes :
@ gain en décibel (dB) :

log(w) = [H(jw)lgg = 20 log (|H (jw)])

@ phase en degrés :
log(w) — p(w) = £LH (jw)
tracés en fonction de la pulsation propre du signal d’entrée w €]0; +oo|
sur une échelle logarithmique.

1 seule valeur a connattre :
log(2) = 0,3
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Diagrammes de Bode

[H(jw)lde
0 Bande passante 3 —3 dB e ‘
3 dB

20

4 N We
i N

o Bande passante a 0 dB ‘

20
—30

—40 }
50 ‘ \
—60

10—t 100 10t 102 103 104
ZH(jw),

—20 ‘ w

—40
60

\

—80 ‘
—100 ‘
—120 ‘
—140 |
\

\

160
—~180
101 100 101 102 102 10
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Diagrammes de Bode expérimentaux

10— 1 100 10! 102 102 104
ZH (jw) Essai a 10 rad-s™!
0 S - -
—20 hd v w
—40
—60
80 |
—~100 ! ° L
—120 } . 7 L
—140 ‘ .
~160
180 ‘
101 100 101 102 103 104

Vidéo : Control'X
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Diagrammes de Bode

B Propriétés
Si H(p) = Hi(p) x Ha(p) alors :

[H(jw)|gg = 20log (| H:(jw)| x [Ha(jw)])
= 20log ([H; (jw)|) + 201og (| Ha(jw)])
ZH(jw) = Z(Hi(jw) x Hy(jw)) [2]
= 4H1(]L«)) + ZHQ(]LU) [271’]

Graphiquement : ajout les diagrammes de Bode des fonctions H (jw) et Ha(jw).

M Vocabulaire :

@ octave w — 2 X w
@ décade w— 10 X w

Equivalences entre module et gain en décibel :

1 T [ 1] 1
H | — | = | = | —=1]1]+v2]2]10]100
Al 155 | 10 | 2 V2 V2

[Hlgs | —40 | —20 | =6 | —3 |0 | 3 | 6 |20 | 40
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Représentations harmoniques
des transmittances
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Fonction de transfert :
Hp)=K = H(jw)=K
Module (gain) & argument : Yw € ]0; +o00[

{ [H(jw)| = K — { |H (jw)lds = 201og (K)
ZH(jw) =0 [27] ZH(jw) =0 [27]
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Gain pur : diagrammes de Bode

. A
|H (jw)lds
v siK>1 \
\ 20 log (K)
w
. si K[ <1
102 10— 1 100 10! 102
ZH(jw) !
T T
. | |
—10 ‘ ‘ Oo Y
—20 ‘ ‘

10—2 10—t 100 101 102
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Intégrateur

Fonction de transfert :

1 . 1 —J
Hp) = = H(jw) ==~

Module (gain) & argument : Vw € ]0; +o0|

{ \H(jw)| :5 . | H (jw)|ae :_;201og (@)
sin (£H (ju) = -1 (o) = T for
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Intégrateur : diagrammes de Bode

|H (jw)|as

40 ‘
30 \ ‘
20 ‘

1072 10~

ZH (jw)

—80 —90°

—110
10-2 101 100 101 102
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Dérivateur

Fonction de transfert :
H(p)=p = H(jw) = jw
Module (gain) & argument : Yw € ]0; 00|

{ \H(jw)| = w { |H (jw)|¢s = 20 log (w)
<~

sin (ZH(jw)) = 1 ZH(jw) = g [27]
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Dérivateur : diagrammes de Bode

|H (jw)|aB 4

2

\
20 )(?’0 6%\ :+20 dB

10 -—— -

1 décade

20 ‘
—30 / ‘
—40
10~ 2 10— 1 109 10t 102

ZH(jw)

110
100
90
80 90°
70
60
50
40
30
20
10
0
10-2 101 100 10
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Premier ordre

Fonction de transfert :

K K 1-jruw
H(p) = — H(jw) = =
P =177, Uw) = 1775 1+ 72 w2
avec .
K “K7Tw
H(jw) = —— S[H(jw) = — T
RI()) = 1y >0 et S[HGW)] = gy

Module (gain) & argument : Vw € ]0; +o0|

|H (jo)] = ——

W) = ——————

’ V14 72w?

< |H(jw)|gs = 20 log(K) — 20 log (V1 + 72 w?)

/H(jw) = — Arctan(tw) [27]
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Premier ordre

B Comportement basse fréquence (w — 0)
lim |H(jw)|d5 =20 log(K)
w—0
‘})1_>Ir}] ZH(jw) =0 [27]

B Comportement haute fréquence (w — +00)

Comme lim V14 72w?2~ lim 7w, ona:
w—r

+oo w—+o00

K
lim |H(jw)|as =~ wgrfoo 20 log <7> —20 log (w)

w—+400
1 ] = _z
Jlim ZH(jw) = -7 (2]
B Comportement moyenne fréquence (w ~ 1/7)
w |H (jw) | |H (jw) |as ZH (jw) ZH (jw) (°)

1/21 | 2K/v/5 | 20 log(K)—1dB | Arctan(—1/2) —26,56°
1/ K/vV2 | 201log(K)—3dB | Arctan(—1) —45°
2/T K/V5 | 201log(K)—7dB | Arctan(—2) —63,43°
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Premier ordre : diagrammes de Bode

|H (jw)l|ds

|20 log(K) Bt |
) \ 1 décade

)ll H1

—70 i

—80 _900

—90
10— 1 100 10t 102 103
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Premier ordre : diagrammes de Bode

‘ |H (jw)lds
30
20 ‘
|20 log(K) ‘
1 décade
0
—10
—20
—30
10— 1 AH(']W)I
0
—10 \
20
o= —26,56° - -~
—40
50 —— _450 LTOT
OO _63,43° T+ :
—70
—80 \=‘
—90

10— 1 100 10t 102 103
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Numérateur d’ordre 1

Fonction de transfert :
Hp)=147p = H(jw)=1+71jw
Module (gain) & argument :
|H(jw)| = V14 12w? < |H(jw)|ss = 20 log (\/ 1+172 w2)
ZH(jw) = Arctan(r w) [27]

Analyse (méme démarche que 1* ordre) :
@ basses fréquences (w — 0)

lim [H(jw)|ss = 0 dB
il_)mo ZH (jw) =0 [27]
@ hautes fréquences (w — +00)

lim |H(jw)|as =~ wli)rfoo 20 log (1) 4+ 20 log (w)

w—>+00
. o
wgrfw ZH(jw) = 5 [27]
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Numérateur d'ordre 1 : diagrammes de Bode

|H (jw)|dB 4

0 dB

. ( 10* 102 103
ZH(jw)y

90

80

70 .

6o === 03,43°% —rol--o-oon 7
50 F——— ABe <o

10

- 26,56° -~ -

20

L /

0

101 100 1/27- ]_/7- 2/7- 102 10° W
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Second ordre sous-amorti (£ < 1)

Fonction de transfert :

K K
Hp)=——5 H(jw) =
(p) 2% pz = (]W) 2 (2w
1+w—p+—2 1——2 +7(—
0 Wy (h) wWo
avec :
w2
K<1——2) >0siw<wy
, w )
R[H(jw)] = N 02 54 =0siw=uwo
<l_w_2> _,_(&) < 0siw > w
Wy wo
K <2§_W>
S [H(jw)] = Nl <0
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Second ordre sous-amorti (£ < 1)
Module & argument :

|H (jw)| =

_ 2 _ 2
ZH(jw) = Tﬂ + Arctan (Ufgogw:; ) [27]

Gain (en dB) :

|H(jw)|as = 20 log(K) — 20log (\/(1 B :_(;)2 N <2§_:)2)
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Second ordre sous-amorti (£ < 1)
B Extrema du gain :

En posant u = w/wy, il vient :

a[(1-u)"+ ¢w)’]
du

=du(u®—1+2%) =0

— =Y
u==+4/1-28si €< —~0 7
Le cas u = 0 correspond a la tangente horizontale quand w — 0 (BF).

Si€< 1/\/§ ~ 0,7 = maximum d'amplitude appelé résonance

pour la pulsation :
wyr =wg V1 =262 < wy
Amplitude :

|H(joor)lag = 20 log (K) — 20 log (26/T—€7)  si € <

SI

Résonance marquée si £ < 0,2 = permet de déterminer &.
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Second ordre sous-amorti (£ < 1)

B Comportement basse fréquence (w — 0)

{ lim [H (jw)|as = 20 log(K)
w—
51_% ZH(jw) =0 [27]

B Comportement haute fréquence (w — +00)

w—+00

{ lim | H(jw)les ~ lim 20 log (Kwd) — 40 log (w)

UJEIEOO ZH(jw) = —7 [27]
B Comportement moyenne fréquence (w ~ wy)

{ |H (jwo)as = 20 log(K) — 20 log(2¢) = 20 log(K Q)

£H(juwo) = 5 [2r]

Q = 1/(2¢) : facteur de qualité.
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Second ordre sous-amorti : diag. de Bode

“ |H (jw)lds

10— 20 log(K)

10~ 1 100
ZH (jw)

10
—20 0°

10— 1 100 10! 102 103
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Second ordre sous-amorti : diag. de Bode
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Cas géneéral

M Factorisation de la fonction de transfert (péles p; et zéros z;)

Numérateur d’ordre 1 Numérateur d’ordre 2
Gain (zéro réel négatif) (paire de zéros complexes conjugués)

: ¥ 285 p?
KXH(1+TBP)XH<1+—p+—
B )

2
wos Wos

H(p) = % 5
p* X H(l—kfﬁp) X H <1+w—”p+57
Op Op
K 7
7 T
Intégrateur Premier ordre Second ordre

(péle nul) (pole réel négatif) (paire de péles complexes conjugués)
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Tracés asymptotiques élémentaires (1/3)

FT &léme. H(p) 1H (jw) |as ZH (jw)
K>1
. 0°
Gain pur K
log(cw log(w)
K<1
\T IOg(w) log(w)
Intégrateur 1 1 ’\
P 20 -
2% —90
g .
w +90
Dérivateur p 1
4 log(w) log(w)
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Tracés asymptotiques élémentaires (2/3)

FT &iéme. HQ®) 1H (o) s ZH ()
Premier 1 1/Tlog(w)\ T 1/T log(w)
ordre 1+Tp \% _g0° __;
/déC.
/%
Numérateur l4r )r‘lg/\ 90° -~ |
d'ordre 1 p 1/7.10g(w)l 1/7-10g(w)
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Tracés asymptotiques élémentaires (3/3)

FT éléme. H(p) |H (jw) |dB ZH (jw)
Second . T Wo log(w) T wo log(w)
\ >
souZ—r:rr:orti 14 %, il VOO'X {
wo T A o —180° b - - b
C
1O
¥ 180° 7 - - -
Numérateur ) I y +180 T
) ) Q
d'ordre 2 1+_5p+p_2 5> N
sous-amorti Wo - Wo wo log(w) Wo log(w)
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Fonction de transfert :

5(1+5p)
H =
() p(1+0,5p+0,25p2)

Fonctions de transfert élémentaires :
Q Gain pur: Hi(p) =5
1
Q Intégrateur : Ho(p) = —
p

© Numérateur d'ordre 1 : H3(p) =1+ 5p

@ Second ordre :
(i Attention pdles réels ou complexes ? = factorisation

. 1 .
icitwp=2rad/s = £ = 3 = résonance

1
H4(P):W
122
+2+4
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|H(jw)|as
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|H(jw)|as

60
50

40

30

20

—10

—20

—30

—40

—50 - 1/P

—60 —1+5p g

|

[ARRRRRRN
e

1072 10—t 100
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|H(jw)|as

60 P
| paec-| L
50 0 B/ =
40 +2 T
30 S = !
20 B 20 log(5)
10 —— n!
o — 2
o 0,2
—20 ‘:\
—30 —5 —~—
—40 T~ =20 d87~?'
—50 — 1/p \qod deC.
*610072 —1+5p 100 10t | 8/0,60 2
- ! ZH(jw) '
. 2
0 p P
0 14+=4=—
g; 2 * 4
§§ 0,2 F
- 1072 101 100 10t 102
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|H(jw)|as

60 : P
50 L “20 B[4~
40 T & —

30 SoN T ~—_ - 1
20 ™ 20 log(5)
lg — 2 N
1 0,2
—20 ‘:\ ~_
—30 ~
—40 =5 \ \203§7:?‘
_5 — 1 ~ €c.
50 /p K%
76100*2 —1+5p . \100 10t /déc. 2
! ZH (jw)
2
0 p P
0 14+ =4+ —
g; 2 * 4
%5 0,2
- 1072 101 109 10t 102
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|H (jw)|as

60 e TTT
| p/dec
5 B/ =
42 \\ — +20 T
" — -
30 - = 1
20 T 20 log(5)
12 — 2 N
1 0,2 <
—20 ‘:\ ~
—30 N
—40 =5 \ \2OE§~=?‘
_50 —_— 1/p \40 B /deC.
-~ ‘ >
610072 — L+5p . \100 101 /dec. 2
- ! ZH (jw)
2
0 p P
0 14+ =4+ —
%; 2 4
S 0,2
= 0 ™
i N
- 102 101 109 10t 102
SIl — PCSI | Analyse harmonique des SLCI O

55



299

Application a I'étude de la

stabilité des systemes
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Etude de la stabilité des systemes

Objectif d’un asservissement : faire en sorte que la sortie du systéme suive le
plus fidelement possible un signal d'entrée.

Condition nécessaire : systéme stable.
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Etude de la stabilité des systemes

Objectif d’un asservissement : faire en sorte que la sortie du systéme suive le
plus fidelement possible un signal d'entrée.

Condition nécessaire : systéme stable.

E(p) @ Hp) S(p)
1 G(p)
FTBF(jw) = — U9 iec FTBO(jw) = H(jw)G(jw)

1+ FTBO(jw)
Si FTBO(jw) — —1 = le systéme devient instable = résonance de la FTBF.
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Etude de la stabilité des systemes

Objectif d’un asservissement : faire en sorte que la sortie du systéme suive le
plus fidelement possible un signal d'entrée.

Condition nécessaire : systéme stable.

E(p) @ Hp) S(p)
1 G(p)
FTBF(jw) = — U9 iec FTBO(jw) = H(jw)G(jw)

1+ FTBO(jw)
Si FTBO(jw) — —1 = le systéme devient instable = résonance de la FTBF.

Systéme stable ?
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Marges de stabilité

Définition (Marge de gain)

La marge de gain Mg est la distance algébrique en dB mesurée entre la courbe de
gain et I'axe des abscisses pour une pulsation w_ telle que la phase soit de
—180° :

MG = —|H(jw_77)|d|3 avec ZH(jw_ﬂ) = —180°

Définition (Marge de phase)

La marge de phase M, est la distance algébrique en degré mesurée entre —180°
et la courbe de phase pour une pulsation de coupure w, telle que le gain soit nul :

M, =180°+ ZH (jw.) avec |H(jwc)lag =0 dB
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Marges de stabilité dans Bode

|H (jw)lag
1 wc
: \\/— Mg

20

—50

ZH(jw),

—10

—50
—70
—90
110
—130
—150
—170
190
—210
—230
—250
270
101 100 101 102 102
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