
Informatique — MPSI/PCSI

Correction du TP no 8

Exercice 8.1 (Tri à bulles)
1. En partant de la fin, on compare tous les couples

def TriBulles(L):
n = len(L)
for a in range(n-1):

for k in range (1,n-a):
if L[n-k] < L[n-k-1]:

L[n-k], L[n-k-1] = L[n-k-1], L[n-k]

2. Dans le meilleur des cas, c’est-à-dire lorsque la séquence est triée, il faut O(n) opérations. Dans le
pire des cas, c’est-à-dire lorsque la liste est triée en sens inverse, il faut

(n − 1) + (n − 2) + · · · + 1 =
n−1∑
k=1

= n(n − 1)
2

décalages, soit O(n2) opérations.

Exercice 8.2 (Tri par insertion)
1. À partir de la description du tri donnée, il vient l’implémentation suivante.

def TriInsertion(L):
for k in range(1,len(L)):

c=L[k]
j=k
while j>0 and c<L[j-1]:

L[j]=L[j-1]
j-=1

L[j]=c

2. La complexité au pire est obtenue lorsque la séquence, supposée de longueur n, est initialement en
ordre décroissant et que le k-ième élément (0 ⩽ k ⩽ n − 1) nécessite k décalages. Il vient alors :

n−1∑
k=1

k = n (n − 1)
2

d’où une complexité au pire en O(n2). La complexité au mieux est obtenue pour une séquence triée
et donc (n − 1) tests d’où une complexité au mieux en O(n).

3. L’invariant de boucle utilisé est que la séquence Lk = {a0, a1, . . . , ak} est triée.
Initialisation Quand k = 1, L0 se compose d’un unique élément a0 et est donc triée.
Conservation Au cours de la k-ième insertion, 1 ⩽ k ⩽ n − 1, on a au début de l’itération Lk−1

triée. On insère ak dans cette séquence triée de sorte que l’on ait en fin d’itération Lk triée.
Terminaison La boucle for prend fin lorsque k dépasse n−1 et donc vaut n. Ainsi, Ln−1 correspond

à la version intégralement triée de la séquence initiale.
4. Pour permuter deux éléments d’une séquence, il suffit de sauvegarder de façon temporaire un des

deux objets pour réaliser la permutation. Tenant compte du fait que l’on agit sur la liste elle-même
(pointeur), il n’est pas nécessaire de renvoyer quoi que ce soit.

def Permuter(L,i,j):
tmp=L[i]
L[i]=L[j]
L[j]=tmp

1



La version suivante utilise le swap natif des objets en python.

def Permuter(L,i,j):
L[i],L[j]=L[j],L[i]

5. Pour définir la fonction Inserer, on commence par remarquer que l’on travaille sur une séquence L
de longueur k + 1 où les k premiers éléments sont triés. Il faut donc trouver dans cette sous-séquence
et en partant de la fin, la position de l’élément à insérer. Avec l’expression donnée, il vient :

def Inserer(L,k):
if k>0 and L[k]<L[k-1]:

Permuter(L,k,k-1)
Inserer(L,k-1)

6. Pour définir une version récursive du tri par insertion, il suffit d’exploiter l’invariant de boucle,
partant de k = 1 et s’arrêtant à k = n.

def TriInsRec(L,k=1):
if k<len(L):

Inserer(L,k)
TriInsRec(L,k+1)

Exercice 8.3 (Tri par sélection)
1. On commence par définir une fonction imin qui renvoie l’indice du minimum d’une séquence à partir

de l’indice k :

def imin(L,k):
for i in range(k+1,len(L)):

if L[i]<L[k]:
k=i

return(k)

puis on parcourt la séquence en permutant le k-ième élément avec le minimum des n − k + 1 éléments
suivants.

def TriSelection(L):
for k in range(len(L)):

Permuter(L,k,imin(L,k))

2. La complexité est ici constante pour toute séquence de longueur n. Positionner le k-ième élément
(0 ⩽ k ⩽ n − 2) nécessite n − k + 1 tests pour trouver le minimum. Il vient alors :

n−1∑
k=1

k = n (n − 1)
2

d’où une complexité au pire en O(n2).
3. Pour définir une version récursive de l’algorithme de tri par sélection, il suffit d’exploiter l’invariant

de boucle qui est que, à la k-ième itération, Lk ↔ min
k⩽j<n

(Lj) et s’arrêter à Ln−1.

def TriSelRec(L,k=0):
if k<len(L)-1:

Permuter(L,k,imin(L,k))
TriSelRec(L,k+1)

4. En procédant avec les maximums, il vient :

def imax(L):
i=0
for k in range(1,len(L)):

if L[k]>L[i]:
i=k

return(i)

et de façon impérative

2



def TriSelection(L):
n=len(L)
for k in range(n):

Permuter(L,n-k-1,imax(L[:n-k]))

ou, de façon récursive
def TriSelRec(L,k=0):

n=len(L)
if k<n-1:

Permuter(L,n-k-1,imax(L[:n-k]))
TriSelRec(L,k+1)

Exercice 8.4 (Tri par partition-fusion)
1. Remarquant que le principe de la fusion consiste simplement à comparer les premiers éléments

des deux séquences puis à appeler récursivement la fonction elle-même jusqu’à ce qu’une des deux
séquence soit vide, il vient le code suivant.

def Fusion(M,N):
if M==[]:

return(N)
elif N==[]:

return(Fusion(N,M))
elif M[0]<=N[0]:

return([M[0]]+Fusion(M[1:],N))
else:

return(Fusion(N,M))

2. Pour diviser une séquence de longueur n en deux, on utilise le slicing et le quotient de n/2. Si la
séquence contient 0 ou 1 élément, c’est qu’elle est triée. Il vient le code suivant.

def TriFusion(L):
n=len(L)
if n<2:

return(L)
else:

m=n//2
return(Fusion(TriFusion(L[:m]),TriFusion(L[m:])))

3. La complexité en temps de l’algorithme de partition-fusion dépend :
— du nombre de comparaisons de la fonction Fusion, soit n−1 = O(n) pour 2 séquences contenant

n éléments en tout ;
— du nombre d’appels récursifs de la fonction Fusion pour réaliser :⌊n

2

⌋
fusions de 2 éléments

+
⌊n

4

⌋
fusions de 4 éléments

+ . . .

+
⌊ n

2k

⌋
= 1 fusion de 2k éléments

où k ≃ log2(n). Il vient alors par somme et au pire :

log2(n)∑
i=1

⌊ n

2i

⌋
2i = n

log2(n)∑
i=1

1 = n log2(n) = O (ln(n))

La complexité est donc constante et vaut O (n ln(n)). Attention, la complexité en espace est en O(n)
puisqu’on crée une nouvelle liste de même longueur que la liste à trier et cela peut poser problème
pour de très grandes listes.

Exercice 8.5 (Tri rapide)
1. On partitionne la liste L[i:j+1] suivant le pivot L[i] et on renvoie la nouvelle position du pivot.

3



def Partitionnement(L,i,j):
v=L[i]
a=i
for k in range(i+1,j+1):

if L[k]<v:
a+=1
Permuter(L,a,k)

Permuter(L,a,i)
return(a)

2. Pour le tri rapide, on se sert de la fonction Partitionnement par appels récursifs. Il vient le code
suivant.

def TriRapide(L, i=0, j=None):
if j==None:

j=len(L)-1
if i<=j:

k = Partitionnement(L,i,j)
TriRapide(L,i,k-1)
TriRapide(L,k+1,j)

3. La complexité en temps de l’algorithme de tri rapide dans le pire des cas, c’est-à-dire pour une liste
triée dans l’ordre décroissant, vaut O(n2). Dans le meilleur des cas, le pivot est placé au milieu de
la séquence et la complexité correspond à celle du tri par partition-fusion. Dans tous les cas, la
complexité en espace est diminuée.

Exercice 8.6 (Tri par comptage)
1. Tirant profit du fait que les éléments de L sont des entiers, ils peuvent servir d’indices pour la

séquence des occurrences C initialisée avec N zéros. Le code suivant convient.

def comptage(L,N):
C = [0 for k in range(N)]
for e in L:

C[e]+=1
return(C)

2. Une fois construit l’histogramme, il suffit d’affecter successivement le bon nombre d’occurrences des
entiers de J0, N − 1K à L pour ne pas augmenter la complexité spatiale.

def TriComptage(L,N):
i=0
for e,n in enumerate(comptage(L,N)):

for j in range(n):
L[i]=e
i+=1

3. Avec 2 boucle de n termes, la complexité en temps de cet algorithme est linéaire, soit en O(n). La
complexité en espace est en n + N . Son seul inconvénient porte sur la nature très restrictive de ses
données d’entrée.

* *
*

4


