
Informatique — MPSI/PCSI

TP no 9 – Annotations, assertions, jeu de tests

1 Introduction

On commence par rappeler qu’en programmation, plusieurs aspects sont en jeux :
— ce que l’on calcule (quoi) ;
— la manière de le calculer (comment) ;
— la raison pour laquelle c’est correct (pourquoi).

Le programme n’est que le « comment », c’est-à-dire la manière dont la fonction remplit son contrat et
rien d’autre. On appelle contrat d’une fonction la description précise, en français, de ce que fait la
fonction. Il nécessite :

— d’être introduit par un commentaire en début de programme qui précise ce qui est calculé, la nature
des arguments donnés et des résultats. C’est ce que l’on peut retrouver avec la fonction help, par
exemple :

>>> help(abs)
Help on built-in function abs in module builtins:

abs(x, /)
Return the absolute value of the argument.

— une pré-condition qui doit être vraie à l’appel du programme ;
— une post-condition qui garantit sa correction.

Le contrat indique le « quoi » (ce que fait la fonction), mais pas le « comment ». Le « quoi » correspond
à une spécification, décrite dans un cahier des charges. Le « pourquoi » est un ensemble d’expressions
mathématiques qui justifie ce qui est calculé, souvent le point de départ d’un algorithme. Il n’a de sens
que si la pré-condition est vérifiée. Le « comment » correspond à l’algorithme mis en œuvre pour réaliser
le calcul. C’est sa correction partielle (post-condition vérifiée) et sa terminaison qui garantit que le
programme est correct.

1.1 Annotations, documentation d’une fonction

L’aide des fonctions python doit être rédigée avec docstring (voir la PEP 257 de 2001) sous la forme :

def fonction(arg1, arg2, argopt1=val1, ...):
""" Description de la fonction, en français dans notre contexte,
possiblement sur plusieurs lignes...

Arguments :

arg1 (type) : description
arg2 (type) : description

Argument(s) optionnel(s) :

argopt1 (type) : description

Résultat(s) :

(type) : description

"""
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On peut afficher cette aide, soit en tapant

>>> help(fonction)

soit

>>> print(fonction.__doc__)

On rappelle les principaux types :

>>> [type(e) for e in [1, 2.2, [1,2.2], (1,2), 2*"cou"]]
[<class 'int'>, <class 'float'>, <class 'list'>, <class 'tuple'>,
<class 'str'>]

On peut vérifier le type d’une variable avec :

>>> type(2*"cou")==str
True

qui est équivalent à

>>> isinstance(2*"cou", str)
True

Par exemple, pour s’assurer que x est un nombre, il faudrait que isinstance(x, (int,float)) soit vrai.

1.2 Assertions, pré et post-conditions

Le contrat décrit ce que fait la fonction « dans le cas général », mais aussi dans les cas particuliers et
donc la façon dont les erreurs sont gérées. Il décrit également les pré et post-conditions.

Une pré-condition est une propriété portant sur les données du problème qui est censée être vraie avant
d’appeler la fonction. Son résultat est un booléen. Si la pré-condition n’est pas vérifiée, le comportement
de la fonction n’est pas spécifié. Par principe, une pré-condition est censée être vérifiée avant d’appeler
la fonction par le code appelant – et non pas dans la fonction elle-même. En pratique, notamment en
phase de développement (donc avant de livrer son programme), il peut être utile de s’assurer que la
pré-condition est vérifiée à chaque appel. Cela ralentit considérablement le programme mais permet de
détecter les erreurs au plus vite. En python, la vérification peut être réalisée avec le mot-clé assert suivi
d’un tuple constitué d’un test et d’un message d’erreur s’il n’est pas vérifié ; par exemple pour s’assurer
que l’argument d’une fonction est un nombre, on écrira :

def f(x):
assert isinstance(x, (int,float)), "x doit être un nombre"
...

Une post-condition est une propriété portant sur les données et le résultat du problème qui est censée
être vraie après l’appel de la fonction. Son résultat est un booléen. Par exemple, si une fonction doit
renvoyer un réel positif, on peut tester le résultat r avec :

def f(x):
assert isinstance(x, (int,float)), "x doit être un nombre"
# ...
# calcul de r
# ...
assert (isinstance(r, (int,float)) and r>=0), \

"le résultat doit être un nombre positif"
return(r)

Le résultat r ne sera renvoyé que si c’est un nombre positif.

Exercice 9.1
Définir une fonction f, implémentation de la fonction x 7→ x2, avec son aide rédigée avec le docstring
ainsi que la pré-condition et la post-consition avec assert.
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1.3 Jeux de tests, correction

Dans une approche rigoureuse de la programmation, on se donne une spécification écrite en langage
mathématique et on souhaite une preuve formelle que le programme vérifie cette spécification, qu’il soit
correct.

En pratique, on réalise souvent un nombre de tests fini visant à s’assurer du comportement d’un
programme dans différents cas. L’étude de chaque cas est appelé un test unitaire. On écrit un test pour
confronter une réalisation à sa spécification. Le test définit un critère d’arrêt (état ou sorties à l’issue de
l’exécution) et permet de statuer sur le succès ou sur l’échec d’une vérification. Grâce à la spécification, on
est en mesure de faire correspondre un état d’entrée donné à un résultat ou à une sortie. Le test permet
de vérifier que la relation d’entrée/sortie donnée par la spécification est bel et bien réalisée.

On définit généralement 4 phases dans l’exécution d’un test unitaire :
Initialisation définition d’un environnement de test complètement reproductible, idéalement un nouveau

shell, c’est-à-dire avec un répertoire de travail dir() vierge.
Exercice le module à tester est exécuté.
Vérification Comparaison des résultats obtenus avec un vecteur de résultats défini. Ces tests définissent

le résultat du test (succès ou échec).
Désactivation Désinstallation pour retrouver l’état initial du système, dans le but de ne pas polluer

les tests suivants. Tous les tests doivent être indépendants et reproductibles unitairement (quand
exécutés seuls).

Il existe un certain nombre de modules qui permettent de faire des tests unitaires en python (comme
unittest ou pytest) mais leur utilisation est hors programme. Dans notre contexte, on se limitera à
l’utilisation d’instructions try...except... : l’instruction try permet d’essayer d’appliquer une fonction
et la clause except permet de gérer les exceptions, c’est-à-dire les erreurs détectées lors de l’exécution.
On ne distinguera que les exceptions venant d’assertions que nous avons définies dans la fonction testée.
Pour ce faire, on utilisera le mot-clé AssertionError. Pour forcer la poursuite de l’exécution du code
dans une boucle malgré cette exception, on pourra utiliser le mot-clé continue. Dans ce cas, on passera
immédiatement à la valeur suivante de la boucle.

Exercice 9.2
Expliquer ce que permettent de faire les deux codes suivants :

for x in [1, 2.3, "a", [1,2], 4.5]:
try:

y = f(x)
except AssertionError as msg:

print(x,msg)
print(y)

for x in [1, 2.3, "a", [1,2], 4.5]:
try:

y = f(x)
except AssertionError as msg:

print(x,msg)
continue

print(y)

Comparer en particulier les sorties. En déduire l’intérêt de l’instruction continue.

Ainsi, afin de poursuivre l’exécution de tests après l’échec d’un test avec une clause assert, on veillera
à utiliser un structure de la forme :

try:
# evaluation de yt, à comparer à y
assert yt==y, "résultat faux"
print("test réussi avec ...")

except:
print("test NON réussi avec ...")

Il reste à fournir pour chaque test un environnement d’évaluation neutre. On sauvegardera donc avant
chaque test l’état du répertoire dir() pour le remettre à l’identique après exécution. En pratique, on
peut constituer une liste dirinit avec les noms des éléments initialement présents dans le dir() de façon
à purger en fin de test tous les éléments du dir() sauf ceux de dirinit ; on pensera juste à ajouter la
chaîne "dirinit" pour protéger la liste dirinit elle-même de toute suppression après le test.

Finalement, pour tester une fonction f avec des arguments dans une liste X et des résultats connus
dans une liste Y (de même longueur que X), à des choses du genre :
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# on sauvegarde le répertoire dir()
dirinit = dir()+['dirinit']
for x,y in zip(X,Y):

try:
# on essaie de calculer f(x)
try:

yt=f(x)
except AssertionError as msg:

print("*** PB :", msg)
continue # pour passer si l’exception vient de f

assert yt==y, "résultat faux"
print("test réussi avec ", x)

except:
print("test NON réussi avec ", x)

finally:
# on purge le répertoire dir()
for e in dir():

if e not in dirinit:
del(e)

On veillera que les test réalisés permettent de partitionner les domaines d’entrée et de tester les limites.

Exercice 9.3 (Implémentation du logarithme népérien)
On souhaite implémenter une fonction ln qui permet de calculer le logarithme népérien d’un réel positif x
avec une précision ε donnée.

1. Décrire les spécifications mathématiques de la fonction ln. En déduire une aide rédigée avec le
docstring ainsi que les pré-conditions avec assert.

2. En utilisant un développement limité de ln(1+x) au voisinage de x = 0, déterminer une approximation
à ε près de ln(x) dans le cas x ∈ [1; 2[.

3. Sachant que 2 ln(
√

x) = ln(x), proposer une méthode permettant de calculer, pour tout x ⩾ 2, ln(x)
par appels récursifs, en s’appuyant notamment sur l’expression précédente.

4. Sachant que ln(x) = − ln (1/x), proposer une implémentation de la fonction ln, pour tout x > 0. On
veillera à minimiser le nombre de calculs, notamment les puissances de x.

5. Définir un certain nombre de tests unitaires permettant de vérifier le comportement de la fonction.
On pourra librement utiliser la fonction log de la bibliothèque math pour vérifier les calculs.

Exercice 9.4 (Évaluation de polynômes – schéma de Horner)
On s’intéresse au problème d’évaluation de polynômes de la forme

P (X) = c0 + c1 X + c2 X2 + · · · + cn Xn =
n∑

i=0
ci Xi

connaissant ses coefficients (ci)0⩽i⩽n en un réel x ∈ R. Pour avoir moins de multiplications à faire, le
mathématicien britannique William George Horner (1786-1837) a eu l’idée de les écrire sous la forme

P (X) = c0 + X (c1 + X (. . . (cn−2 + X (cn−1 + X (cn))) . . . ))

Dans ce qui suit, on souhaite définir une fonction Horner qui prend comme arguments un réel x ∈ R et
une séquence (liste ou tuple) de n + 1 coefficients réels (ci)0⩽i⩽n.

1. Décrire les spécifications mathématiques de la fonction Horner. En déduire une aide rédigée avec le
docstring ainsi que les pré-conditions avec assert.

2. Déterminer un variant et un invariant permettant de définir une version récursive de la fonction
Horner. Proposer une implémentation.

3. Définir un certain nombre de tests unitaires permettant de vérifier le comportement de la fonction.
On pourra librement utiliser la fonction polyval de la bibliothèque numpy.polynomial.polynomial
sous la forme :

import numpy.polynomial.polynomial as npp
npp.polyval(x, C)

pour vérifier les calculs.
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Exercice 9.5 (Exponentiation rapide, arbre des puissances de Knuth)
On étudie le problème du calcul de xn, étant donnés x ∈ R et n ⩾ 1 un entier positif. On pose y0 = x et
on décompose

yk = yi yj , 0 ⩽ i, j ⩽ n − 1

Le but est d’atteindre yk = xn le plus vite possible. La méthode naïve que nous venons d’utiliser pour le
calcul des polynômes peut être définies par la relation de récurrence

∀k ∈ J1, n − 1K, yk = y0 × yk−1

où yn−1 = xn et qui nécessite donc n − 1 multiplications. Pour améliorer cet algorithme, on peut exploiter
la propriété d’associativité de la loi ×, telle que :

∀n ⩾ 2, xn =
{

x2k = xk × xk si n = 2k (pair)
x2k+1 = x × xk × xk sinon.

aussi appelée méthode chinoise. Ainsi, on calcule d’abord xk puis on en fait le produit, si besoin avec un
produit avec x en plus dans le cas impair.

1. Déterminer un variant et un invariant permettant de définir une version récursive du calcul de xn.
2. Vérifier la correction de votre algorithme et évaluer sa complexité.
3. Définir une fonction puissance qui prend comme arguments un réel x ∈ R et un entier naturel

positif n et qui renvoie xn, incluant son aide rédigée avec le docstring ainsi que les pré-conditions
avec assert.

4. Définir un certain nombre de tests unitaires permettant de vérifier le comportement de la fonction.
On pourra librement utiliser la fonction pow de la bibliothèque standard sous la forme :

puissance(x,n)==pow(x,n)

pour vérifier les calculs.
Une autre méthode est d’utiliser une décomposition en facteurs premiers de n = pq, p ⩽ q de sorte que

xn = (xp)q

Si n est premier, on calcule xn−1 que l’on multiplie par x.
5. Définir une fonction factorisation qui prend comme argument un entier positif n et qui renvoie

une liste avec son plus petit facteur premier p et son quotient q = n/p si n n’est pas premier, avec n
sinon.

6. Définir une fonction puissance_facteur qui prend comme arguments un réel x ∈ R et un entier
naturel positif n et qui renvoie xn avec la méthode des facteurs. Tester votre implémentation.

Une autre façon de calculer xn est d’exploiter l’arbre des puissances de Knuth

D.E. Knuth, The Art of Computer Programming : Semi-Numerical Algorithms (vol 2), page 464.

Par exemple, pour calculer x29, on calcule successivement x2, x3, x5, x14, x28 et x29.
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Supposant connus k niveaux, pour construire le niveau (k + 1) de cet arbre, il s’agit de calculer, de
gauche à droite :

n + 1, n + a1, n + a2, . . . n + ak−1

où les a1, a2, . . . , ak−1 est le chemin depuis la racine de l’arbre (1) jusqu’à n. On n’ajoutera pas un nœud
si celui-ci est déjà présent dans l’arbre. Pour stocker les informations de l’arbre, on pourra utiliser un
dictionnaire de la forme :

N = {1:None,2:1,3:2,4:2}

avec

>>> N.keys()
dict_keys([1, 2, 3, 4])
>>> N.values()
dict_values([None, 1, 2, 2])
>>> N.get(2)
1
>>>N.get(12)==None
True

où N.get(12) ne renvoie rien puisque 12 n’est pas une clé.
7. Définir une fonction chemin qui prend comme arguments un dictionnaire N et une clé i et qui renvoie

la liste des clés parcourues en partant de la racine 1 pour aller à la feuille i (inclue).
8. Définir une fonction niveau qui prend comme arguments un dictionnaire N et une clé i et qui renvoie

l’entier correspondant au niveau de la feuille i dans l’arbre.
9. Définir une fonction knuth qui prend comme argument un nombre de niveaux z et de façon optionnelle

un dictionnaire N correspondant à l’arbre déjà construit et qui renvoi le dictionnaire de l’arbre de
Knuth avec z niveaux.

10. Définir une fonction knuth_exp qui prend comme argument un entier positif n et renvoie la liste des
puissances à calculer ; par exemple :

>>> knuth_exp(29)
[1, 2, 3, 5, 7, 14, 28, 29]

11. Définition une fonction combinaison qui prend comme argument une liste L, sous-liste d’une liste
de puissances de Knuth, et qui renvoie une combinaison possible ; par exemple :

>>> combinaisons([1, 2, 3, 5], 7)
(5, 2)

12. Définir une fonction puissance_knuth qui prend comme arguments un réel x ∈ R et un entier
naturel positif n et qui renvoie xn avec la méthode des facteurs. Tester votre implémentation.

* *
*
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