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Les espaces vectoriels introduisent un langage commun pour des situations a priori différentes (fonctions, polynômes, 
suites, matrices, …). Ils permettent de résoudre avec la même méthode des problèmes de domaines différents.
Dans tout le chapitre, 𝕂 désignera ℝ ou ℂ.

1 Espaces vectoriels

1.1 Définition et propriétés

Définition 1.1 (Espace vectoriel)

Soit 𝐸 un ensemble non vide, muni d’une addition interne + ∶  𝐸 × 𝐸 → 𝐸 et d’une multiplication externe 
⋅ ∶ 𝕂 × 𝐸 → 𝐸. On dit que (𝐸, +, ⋅) est un 𝕂-espace vectoriel lorsque :

• L’opération interne + vérifie les propriétés suivantes :

– pour tout (𝑥, 𝑦) ∈ 𝐸2, 𝑥 + 𝑦 = 𝑦 + 𝑥 (la loi + est commutative),
– pour tout (𝑥, 𝑦, 𝑧) ∈ 𝐸3, (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) (la loi + est associative),
– il existe un unique 𝑒 ∈ 𝐸 appelé élément neutre tel que pour tout 𝑥 ∈ 𝐸, 𝑥 + 𝑒 = 𝑥 = 𝑒 + 𝑥.
– pour tout 𝑥 ∈ 𝐸, il existe 𝑥′ ∈ 𝐸 tel que 𝑥 + 𝑥′ = 𝑒 = 𝑥′ + 𝑥. Cet élément est unique, appelé

opposé de 𝑥, et noté −𝑥.

• L’opération externe ⋅ vérifie les propriétés suivantes :

– pour tout 𝑥 ∈ 𝐸 et pour tout (𝛼, 𝛽) ∈ 𝕂2, (𝛼 + 𝛽) ⋅ 𝑥 = 𝛼 ⋅ 𝑥 + 𝛽 ⋅ 𝑥
– pour tout (𝑥, 𝑦) ∈ 𝐸2 et pour tout 𝛼 ∈ 𝕂, 𝛼 ⋅ (𝑥 + 𝑦) = 𝛼 ⋅ 𝑥 + 𝛼 ⋅ 𝑦
– pour tout 𝑥 ∈ 𝐸 et pour tout (𝛼, 𝛽) ∈ 𝕂2, 𝛼 ⋅ (𝛽 ⋅ 𝑥) = (𝛼𝛽) ⋅ 𝑥
– pour tout 𝑥 ∈ 𝐸, 1 ⋅ 𝑥 = 𝑥

On appelle vecteurs les éléments d’un 𝕂-espace vectoriel et scalaires les éléments de 𝕂.

Démonstration. On va montrer l’unicité de l’élément neutre et de l’opposé.

• Supposons qu’on a deux éléments neutres, 𝑒 et 𝑒′. Alors, comme 𝑒 et 𝑒′ sont éléments neutres, 𝑒 + 𝑒′ = 𝑒′ et 
𝑒 + 𝑒′ = 𝑒. D’où 𝑒 = 𝑒′, ce qui donne l’unicité de l’élément neutre.

• Soit 𝑥 ∈ 𝐸, supposons que 𝑦 et 𝑦′ sont deux opposés de 𝑥. Alors 𝑦+𝑥 = 𝑒 et 𝑦′+𝑥 = 𝑒. Or 𝑦′+𝑥+𝑦 = 𝑦+𝑥+𝑦′, 
donc 𝑒 + 𝑦 = 𝑒 + 𝑦′. Donc 𝑦 = 𝑦′, d’où l’unicité de l’opposé.

∎

Exemple. Les règles de calcul sur ℝ et ℂ donnent directement que 𝕂 est un 𝕂-espace vectoriel.

Exemple. Dans l’ensemble ℝ2 :

• Si 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 et 𝑦 = (𝑦1, 𝑦2) ∈ ℝ2, on définit 𝑥 + 𝑦 comme (𝑥1 + 𝑦1, 𝑥2 + 𝑦2) ∈ ℝ2. Il s’agit bien d’une 
opération interne dans ℝ2, qui vérifie les propriétés :

– pour tout 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 et 𝑦 = (𝑦1, 𝑦2) ∈ ℝ2, 𝑥 + 𝑦 = (𝑥1 + 𝑦1, 𝑥2 + 𝑦2) = (𝑦1 + 𝑥1, 𝑦2 + 𝑥2) = 𝑦 + 𝑥.
– pour tout 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2, 𝑦 = (𝑦1, 𝑦2) ∈ ℝ2 et 𝑧 = (𝑧1, 𝑧2) ∈ ℝ2,

(𝑥+𝑦)+𝑧 = (𝑥1+𝑦1, 𝑥2+𝑦2)+(𝑧1, 𝑧2) = (𝑥1+𝑦1+𝑧1, 𝑥2+𝑦2+𝑧2) = (𝑥1, 𝑥2)+(𝑦1+𝑧1, 𝑦2+𝑧2) = 𝑥+(𝑦+𝑧).
– il existe un élément 𝑒 = (0, 0) ∈ ℝ2, tel que pour tout 𝑥 ∈ ℝ2, 𝑥 + 𝑒 = 𝑥 = 𝑒 + 𝑥.
– pour tout 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2, il existe 𝑥′ = (−𝑥1, −𝑥2) ∈ ℝ2 tel que 𝑥 + 𝑥′ = 𝑒 = 𝑥′ + 𝑥.

• Si 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 et 𝛼 ∈ ℝ, on définit 𝛼 ⋅ 𝑥 comme (𝛼𝑥1, 𝛼𝑥2) ∈ ℝ2. Il s’agit bien d’une multiplication 
externe, qui vérifie les propriétés :
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– pour tout 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 et pour tout (𝛼, 𝛽) ∈ ℝ2,
(𝛼 + 𝛽) ⋅ 𝑥 = ((𝛼 + 𝛽)𝑥1, (𝛼 + 𝛽)𝑥2) = (𝛼𝑥1 + 𝛽𝑥1, 𝛼𝑥2 + 𝛽𝑥2) = (𝛼𝑥1, 𝛼𝑥2) + (𝛽𝑥1, 𝛽𝑥2) = 𝛼 ⋅ 𝑥 + 𝛽 ⋅ 𝑥.

– pour tout 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2, 𝑦 = (𝑦1, 𝑦2) ∈ ℝ2 et 𝛼 ∈ ℝ,
𝛼 ⋅ (𝑥 + 𝑦) = 𝛼(𝑥1 + 𝑦1, 𝑥2 + 𝑦2) = (𝛼𝑥1 + 𝛼𝑦1, 𝛼𝑥2 + 𝛼𝑦2) = (𝛼𝑥1, 𝛼𝑥2) + (𝛼𝑦1, 𝛼𝑦2) = 𝛼 ⋅ 𝑥 + 𝛼 ⋅ 𝑦.

– pour tout 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 et pour tout (𝛼, 𝛽) ∈ ℝ2, 𝛼⋅(𝛽⋅𝑥) = 𝛼⋅(𝛽𝑥1, 𝛽𝑥2) = (𝛼𝛽𝑥1, 𝛼𝛽𝑥2) = (𝛼𝛽)⋅𝑥.
– pour tout 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2, 1 ⋅ 𝑥 = (𝑥1, 𝑥2) = 𝑥.

Donc (ℝ2, +, .) est un ℝ-espace vectoriel.

Exemple. L’ensemble des vecteurs de l’espace, muni de l’addition de deux vecteurs et de la multiplication d’un 
réel par un vecteur, est un ℝ-espace vectoriel. Son élément neutre est le vecteur nul.

Remarque. Le symbole de l’opération externe ⋅ est parfois omis. Qu’il soit présent ou pas, il faut toujours placer 
le scalaire à gauche du vecteur.

Remarque. L’élément neutre pour + est souvent noté 0𝐸, ou 0 lorsqu’il n’y a pas de risque de confusion.

Proposition 1.2 (Cas d’un produit valant 0𝐸)

Soit (𝐸, +, ⋅) un 𝕂-espace vectoriel. Alors ∀𝑥 ∈ 𝐸 et ∀𝜆 ∈ 𝕂, 𝜆 ⋅ 𝑥 = 0𝐸 ⟺ 𝜆 = 0 ou 𝑥 = 0𝐸.

Démonstration. On montre successivement les deux implications, en commençant par la réciproque.

• Pour tout 𝑥 ∈ 𝐸, 0𝑥 = (0 + 0)𝑥 = 0𝑥 + 0𝑥. D’où en ajoutant −0𝑥 des deux côtés, 0𝑥 = 0𝐸.
De même, pour tout 𝜆 ∈ 𝕂, 𝜆0𝐸 = 𝜆(0𝐸 + 0𝐸) = 𝜆0𝐸 + 𝜆0𝐸. D’où 𝜆0𝐸 = 0𝐸.

• Soit 𝑥 ∈ 𝐸 et 𝜆 ∈ 𝕂 tels que 𝜆𝑥 = 0𝐸. On suppose que 𝜆 ≠ 0. En calculant de deux manières différentes,

1
𝜆

𝜆𝑥 = 1
𝜆

0𝐸 = 0𝐸  et 1
𝜆

𝜆𝑥 = 𝜆
𝜆

𝑥 = 1𝑥 = 𝑥.

D’où 𝑥 = 0𝐸.

∎

Exemple. Soit 𝑥 ∈ ℝ2 et 𝜆 ∈ ℝ. Alors 𝜆 ⋅ 𝑥 = (0, 0) ⟺ 𝜆 = 0 ou 𝑥 = (0, 0).

Proposition 1.3 (Construction de l’opposé)

Soit (𝐸, +, ⋅) un 𝕂-espace vectoriel. Alors pour tout 𝑥 ∈ 𝐸, −𝑥 = (−1) ⋅ 𝑥, où −𝑥 est l’opposé de 𝑥 dans 𝐸.

Démonstration. Soit 𝑥 ∈ 𝐸, 𝑥 + (−1) ⋅ 𝑥 = 1 ⋅ 𝑥 + (−1) ⋅ 𝑥 = (1 − 1) ⋅ 𝑥 = 0 ⋅ 𝑥 = 0𝐸. Donc −𝑥 = (−1) ⋅ 𝑥. ∎

1.2 Espaces vectoriels de référence

Pour montrer les résultats qui suivent, on vérifie mécaniquement toutes les propriétés.

Proposition 1.4 (𝕂𝑛)

Soit 𝑛 ∈ ℕ∗. Muni des opérations usuelles, 𝕂𝑛 est un 𝕂-espace vectoriel.

Remarque. L’élément neutre de 𝕂𝑛 est le 𝑛-uplet (0, …, 0).

Proposition 1.5 (ℳ𝑛,𝑝(𝕂))

Soit (𝑛, 𝑝) ∈ (ℕ∗)2. Muni de l’addition de deux matrices et de la multiplication d’une matrice par un scalaire, 
ℳ𝑛,𝑝(𝕂) est un 𝕂-espace vectoriel.
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Remarque. L’élément neutre de ℳ𝑛,𝑝(𝕂) est la matrice nulle de taille 𝑛 × 𝑝.

Proposition 1.6 (𝕂[𝑋])

Muni de l’addition de deux polynômes et de la multiplication d’un polynôme par un scalaire, 𝕂[𝑋] est un 
𝕂-espace vectoriel.

Remarque. L’élément neutre de 𝕂[𝑋] est le polynôme nul.

Proposition 1.7 (𝐸 × 𝐹)

Soit 𝐸 et 𝐹 sont deux 𝕂-espaces vectoriels. Muni des opérations usuelles, le produit cartésien 𝐸 × 𝐹 est aussi 
un 𝕂-espace vectoriel.

Remarque. L’élément neutre de 𝐸 × 𝐹 est (0𝐸, 0𝐹).

Proposition 1.8 (ℱ(Ω, 𝐹))

Soit Ω un ensemble non vide et 𝐹 un 𝕂-espace vectoriel. Muni des opérations usuelles, l’ensemble ℱ(Ω, 𝐹)
des applications de Ω dans 𝐹 est un 𝕂-espace vectoriel.

Remarque. L’élément neutre de ℱ(Ω, 𝐹) est l’application nulle de Ω dans 𝐹 (l’application qui à tout élément de 
Ω associe 0𝐹).

Remarque. Ω n’a pas besoin d’être un espace vectoriel pour que le résultat soit valide.

Exemple. L’ensemble 𝕂ℕ des suites à valeurs dans 𝕂 est un 𝕂-espace vectoriel. Son élément neutre est la suite 
nulle.

Exemple. Soit 𝐴 une partie de ℝ. L’ensemble 𝕂𝐴 des applications de 𝐴 dans 𝕂 est un 𝕂-espace vectoriel. Son 
élément neutre est la fonction nulle.

1.3 Combinaison linéaire

Définition 1.9 (Famille finie de vecteurs)

Soit 𝐸 un espace vectoriel et 𝑝 ∈ ℕ∗. On dit que (𝑒1, 𝑒2, ..., 𝑒𝑝) est une famille finie de vecteurs de 𝐸
lorsque tous les 𝑒𝑖 appartiennent à 𝐸.

Exemple. (1, 0), (0, 1, 3) et (1, 2, 2, 4) sont trois familles finies de l’espace vectoriel ℝ.
((1, 0), (2, 3), (2, 1)) est une famille finie de l’espace vectoriel ℝ2.

Définition 1.10 (Combinaison linéaire)

Soit 𝐸 un 𝕂-espace vectoriel, 𝑝 ∈ ℕ∗, 𝒮 = (𝑒𝑘)1⩽𝑘⩽𝑝 une famille finie de vecteurs de 𝐸 et 𝑥 ∈ 𝐸. On dit que 
𝑥 est combinaison linéaire des vecteurs de 𝒮 lorsqu’il existe 𝑝 scalaires (𝛼𝑘)1⩽𝑘⩽𝑝 de 𝕂 tels que

𝑥 =
𝑝

∑
𝑘=1

𝛼𝑘𝑒𝑘.

Exemple. Soit 𝑛 ∈ ℕ et 𝑃 ∈ 𝕂[𝑋] un polynôme de degré inférieur ou égal à 𝑛. Alors il existe des scalaires 

(𝑎0, …, 𝑎𝑛) tels que 𝑃(𝑋) =
𝑛

∑
𝑘=0

𝑎𝑘𝑋𝑘, donc 𝑃 est combinaison linéaire de (1, 𝑋, …, 𝑋𝑛).
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Exercice 1. Montrer que (4, 13) est combinaison linéaire de ((1, 5), (2, 3)).
Solution : On résout (au brouillon) l’équation (4, 13) = 𝛼1(1, 5) + 𝛼2(2, 3), d’inconnues 𝛼1 et 𝛼2 :

{ 4 = 𝛼1 + 2𝛼2
13 = 5𝛼1 + 3𝛼2

⇔ 𝛼1 = 2 et 𝛼2 = 1.

Rédaction finale : on remarque que (4, 13) = 2(1, 5) + (2, 3), donc (4, 13) est combinaison linéaire de ((1, 5), (2, 3)).

Exercice 2. Montrer que (1, 1) n’est pas combinaison linéaire de ((0, 0), (0, 1), (0, 2)).
Solution : Supposons que (1, 1) soit combinaison linéaire des vecteurs. Alors il existe des réels (𝛼1, 𝛼2, 𝛼3) tels que 
(1, 1) = 𝛼1(0, 0) + 𝛼2(0, 1) + 𝛼3(0, 2). Donc (1, 1) = (0, 𝛼2 + 2𝛼3). Donc 1 = 0, ce qui est absurde.
Donc (1, 1) n’est pas combinaison linéaire de ((0, 0), (0, 1), (0, 2)).

2 Sous-espaces vectoriels

2.1 Définition et caractérisation

Définition 2.1 (Sous-espace vectoriel)

Soit (𝐸, +, ⋅) un 𝕂-espace vectoriel et 𝐹 une partie de 𝐸 stable par combinaison linéaire. On dit que 𝐹 est 
un sous-espace vectoriel de 𝐸 lorsque (𝐹 , +, ⋅) est un 𝕂-espace vectoriel.

Remarque. Dire que 𝐹 est stable par combinaison linéaire signifie que toute combinaison linéaire d’éléments de 𝐹
appartient à 𝐹.

Exemple. Si 𝐸 est un 𝕂-espace vectoriel, {0𝐸} (sous-espace nul) et 𝐸 sont des sous-espaces vectoriels de 𝐸.

Proposition 2.2 (Cas de l’élément neutre)

Soit 𝐸 un 𝕂-espace vectoriel et 𝐹 un sous-espace vectoriel de 𝐸. Alors 0𝐸 ∈ 𝐹.

Démonstration. Par propriétés des espaces vectoriels, 𝐹 possède un élément neutre pour la loi +, qu’on note 0𝐹. 
0 ∈ 𝕂, donc la stabilité par combinaison linéaire donne 0 ⋅ 0𝐹 ∈ 𝐹. Or 0𝐹 ∈ 𝐸, donc 0 ⋅ 0𝐹 = 0𝐸. Donc 0𝐸 ∈ 𝐹. ∎

Remarque. Si 𝐹 est un sous-espace vectoriel de 𝐸, l’unicité de l’élément neutre donne donc 0𝐹 = 0𝐸.

Proposition 2.3 (Caractérisation d’un sous-espace vectoriel)

Soit 𝐸 un 𝕂-espace vectoriel et 𝐹 un sous-ensemble de 𝐸. Alors :

𝐹 est un sous-espace vectoriel de 𝐸 ⟺ 0𝐸 ∈ 𝐹 et ∀(𝑥, 𝑦) ∈ 𝐹 2, ∀𝛼 ∈ 𝕂, (𝛼 ⋅ 𝑥) + 𝑦 ∈ 𝐹.

Démonstration. Montrons le sens direct, puis la réciproque.

• Si 𝐹 est un sous-espace vectoriel de 𝐸, il contient 0𝐸 d’après le résultat précédent. De plus, il est stable par 
combinaison linéaire, donc ∀(𝑥, 𝑦) ∈ 𝐹 2, ∀𝛼 ∈ 𝕂, la combinaison linéaire (𝛼 ⋅ 𝑥) + 𝑦 appartient à 𝐹. D’où le 
résultat annoncé.

• On suppose que 0𝐸 ∈ 𝐹 et que ∀(𝑥, 𝑦) ∈ 𝐹 2, ∀𝛼 ∈ 𝕂, (𝛼 ⋅ 𝑥) + 𝑦 ∈ 𝐹. On revient à la définition :

– En prenant 𝛼 = 1, la relation garantit que l’opération + définie sur 𝐹 × 𝐹 est à valeurs dans 𝐹.
– En prenant 𝑦 = 0𝐸 ∈ 𝐹, la relation garantit que l’opération ⋅ définie sur 𝕂 × 𝐹 est à valeurs dans 𝐹.
– 0𝐸 ∈ 𝐹, il existe donc un élément neutre dans 𝐹.
– Soit 𝑥 ∈ 𝐹. Comme −1 ∈ 𝕂, alors −1 ⋅ 𝑥 ∈ 𝐹. Donc −𝑥 ∈ 𝐹 et 𝑥 admet un opposé dans 𝐹.
– Les autres propriétés ne demandent aucune vérification car une relation vraie sur 𝐸 l’est aussi sur 𝐹.
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Donc 𝐹 est un 𝕂-espace vectoriel. La relation garantit de plus la stabilité par combinaison linéaire, donc 𝐹
est un sous-espace vectoriel de 𝐸.

∎

Remarque. Pour montrer qu’un ensemble 𝐹 est un espace vectoriel, revenir à la définition est peu pratique. Il est 
beaucoup plus rapide de montrer par la caractérisation ci-dessus que c’est un sous-espace vectoriel d’un espace 
vectoriel connu.

Exercice 3. Montrer que l’ensemble 𝐸 des suites réelles convergentes est un ℝ-espace vectoriel.
Solution :

• La suite nulle converge (vers 0), donc est dans 𝐸.

• Soit ((𝑢𝑛)𝑛∈ℕ, (𝑣𝑛)𝑛∈ℕ) ∈ 𝐸2, on note ℓ1 et ℓ2 leurs limites réelles respectives. Soit 𝜆 ∈ ℝ.
Alors (𝜆𝑢𝑛 + 𝑣𝑛)𝑛∈ℕ converge vers 𝜆ℓ1 + ℓ2 ∈ ℝ. Donc (𝜆𝑢𝑛 + 𝑣𝑛)𝑛∈ℕ ∈ 𝐸.

Donc 𝐸 est un sous-espace vectoriel de l’espace vectoriel des suites réelles. Donc 𝐸 est un ℝ-espace vectoriel.

Exercice 4. Montrer que l’ensemble 𝐷 des suites réelles divergentes n’est pas un ℝ-espace vectoriel.
Solution : 𝐷 est un sous-ensemble de ℝℕ qui ne contient pas la suite nulle. Ce n’est donc pas un ℝ-espace vectoriel.

Exercice 5. L’ensemble 𝐸′ des fonctions 𝑓 définies de ℝ dans ℝ et telles que 𝑓(0) = 0 est-il un ℝ-espace vectoriel ?
Solution :

• La fonction nulle est dans 𝐸′ (car elle vaut 0 en 0).

• Soit (𝑓, 𝑔) ∈ (𝐸′)2 et 𝜆 ∈ ℝ. Alors (𝜆𝑓 + 𝑔)(0) = 𝜆𝑓(0) + 𝑔(0) = 𝜆0 + 0 = 0. Donc 𝜆𝑓 + 𝑔 ∈ 𝐸′.

Donc 𝐸′ est un sous-espace vectoriel de l’espace vectoriel des applications de ℝ dans ℝ. Donc 𝐸′ est un ℝ-espace 
vectoriel.

Exercice 6. Soit 𝑛 ∈ ℕ, l’ensemble ℂ𝑛[𝑋] des polynômes de degré au plus 𝑛 est-il un ℂ-espace vectoriel ?
Solution :

• deg(0) = −∞ ⩽ 𝑛, donc 0 ∈ ℂ𝑛[𝑋].

• Soit (𝑃 , 𝑄) ∈ (ℂ𝑛[𝑋])2 et 𝜆 ∈ ℂ. Alors deg(𝜆𝑃 + 𝑄) ⩽ max(deg(𝜆𝑃), deg(𝑄)). Or deg(𝑄) ⩽ 𝑛 et deg(𝜆𝑃) ⩽
deg(𝑃 ) ⩽ 𝑛. Donc deg(𝜆𝑃 + 𝑄) ⩽ 𝑛 et 𝜆𝑃 + 𝑄 ∈ ℂ𝑛[𝑋].

Donc ℂ𝑛[𝑋] est un sous-espace vectoriel de ℂ[𝑋]. Donc ℂ𝑛[𝑋] est un ℂ-espace vectoriel.

Variante de ce raisonnement en utilisant les coefficients plutôt que le degré :

• 0 = ∑𝑛
𝑘=0 0𝑋𝑘, donc 0 ∈ ℂ𝑛[𝑋].

• Soit (𝑃 , 𝑄) ∈ (ℂ𝑛[𝑋])2 et 𝜆 ∈ ℂ. Alors il existe (𝛼0, …, 𝛼𝑛) ∈ ℂ𝑛+1 et (𝛽0, …, 𝛽𝑛) ∈ ℂ𝑛+1 tels que 𝑃(𝑋) =
∑𝑛

𝑘=0 𝛼𝑘𝑋𝑘 et 𝑄(𝑋) = ∑𝑛
𝑘=0 𝛽𝑘𝑋𝑘. Donc

(𝜆𝑃 + 𝑄)(𝑋) =
𝑛

∑
𝑘=0

(𝜆𝛼𝑘 + 𝛽𝑘)(𝑋).

Donc 𝜆𝑃 + 𝑄 ∈ ℂ𝑛[𝑋].

Donc ℂ𝑛[𝑋] est un sous-espace vectoriel de ℂ[𝑋]. Donc ℂ𝑛[𝑋] est un ℂ-espace vectoriel.
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2.2 Intersection de sous-espaces vectoriels

Proposition 2.4 (Intersection de sous-espaces vectoriels)

Soit 𝐸 un 𝕂-espace vectoriel. L’intersection de deux sous-espaces vectoriels de 𝐸 est un sous-espace vectoriel 
de 𝐸.

Démonstration. Soit 𝐹 et 𝐺 deux sous-espaces vectoriels de 𝐸.

• Par propriété des sous-espaces vectoriels de 𝐸, 0𝐸 ∈ 𝐹 et 0𝐸 ∈ 𝐺. Donc 0𝐸 ∈ 𝐹 ∩ 𝐺.

• Soit (𝑥, 𝑦) ∈ (𝐹 ∩ 𝐺)2 et 𝜆 ∈ 𝕂.
Comme 𝑥 ∈ 𝐹, 𝑦 ∈ 𝐹, 𝜆 ∈ 𝕂 et 𝐹 est un sous-espace vectoriel de 𝐸, alors 𝜆𝑥 + 𝑦 ∈ 𝐹. De même, 𝜆𝑥 + 𝑦 ∈ 𝐺. 
Donc 𝜆𝑥 + 𝑦 ∈ 𝐹 ∩ 𝐺.

Donc 𝐹 ∩ 𝐺 est un sous-espace vectoriel de 𝐸. ∎

Remarque. Ce résultat se généralise à l’intersection de plus de deux sous-espaces vectoriels.

Remarque. Attention : de manière générale, la réunion de deux sous-espaces vectoriels de 𝐸 n’est PAS un 
sous-espace vectoriel de 𝐸.

Exercice 7. {0} × ℝ et ℝ × {0} sont deux sous-espaces vectoriels de ℝ2. Montrer que ({0} × ℝ) ∪ (ℝ × {0}) n’est 
pas un sous-espace vectoriel de ℝ2.
Solution : Il contient (0, 1) et (1, 0), mais pas leur somme (1, 1), donc ce n’est pas un espace vectoriel.

2.3 Sous-espace vectoriel engendré par une famille

Définition 2.5 (Sous-espace vectoriel engendré)

Soit 𝐸 un 𝕂-espace vectoriel, 𝑝 ∈ ℕ∗ et 𝒮 = (𝑒𝑖)1⩽𝑖⩽𝑝 une famille finie de vecteurs de 𝐸. On note Vect(𝒮)
l’ensemble de toutes les combinaisons linéaires des vecteurs de 𝒮.
Vect(𝒮) est un sous-espace vectoriel de 𝐸, appelé sous-espace vectoriel engendré par la famille 𝒮.

Démonstration. On revient à la caractérisation des sous-espaces vectoriels :

• 0𝐸 =
𝑝

∑
𝑘=1

0𝑒𝑘, donc 0𝐸 ∈ Vect(𝒮).

• Soit 𝑥 et 𝑦 deux vecteurs de Vect(𝒮), et 𝜆 un scalaire. Donc ∃(𝑥1, …, 𝑥𝑝) ∈ 𝕂𝑝 et ∃(𝑦1, …, 𝑦𝑝) ∈ 𝕂𝑝 tels que 

𝑥 =
𝑝

∑
𝑖=1

𝑥𝑖𝑒𝑖 et 𝑦 =
𝑝

∑
𝑖=1

𝑦𝑖𝑒𝑖. On peut alors écrire :

𝜆𝑥 + 𝑦 = 𝜆
𝑝

∑
𝑖=1

𝑥𝑖𝑒𝑖 +
𝑝

∑
𝑖=1

𝑦𝑖𝑒𝑖 =
𝑝

∑
𝑖=1

(𝜆𝑥𝑖 + 𝑦𝑖) 𝑒𝑖 ∈ Vect(𝒮).

Donc Vect(𝒮) est bien un sous-espace vectoriel de 𝐸. ∎

Exemple. D’après le cours sur les polynômes, ℝ2[𝑋] = Vect(1, 𝑋, 𝑋2).

Exemple. Soit (𝑎, 𝑏) ∈ ℝ2 ∖ {(0, 0)}, Vect((𝑎, 𝑏)) est un sous-espace vectoriel de ℝ2 appelé droite vectorielle :

𝑎

Vect((𝑎, 𝑏))𝑏
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Exemple. Soit (𝑎1, 𝑏1, 𝑐1) et (𝑎2, 𝑏2, 𝑐2) deux vecteurs non colinéaires de ℝ3. Alors Vect((𝑎1, 𝑏1, 𝑐1), (𝑎2, 𝑏2, 𝑐2))
est un sous-espace vectoriel de ℝ3, appelé plan vectoriel.

Exemple. Dans ℳ2(𝕂), Vect (( 1 0
0 0 ), ( 0 1

0 0 ), ( 0 0
0 1 )) est l’ensemble des matrices triangulaires supérieures (qui forme 

donc un espace vectoriel).

Exercice 8. Montrer que Vect((1, 2), (1, 0)) = ℝ2.
Solution : L’inclusion Vect((1, 2), (1, 0)) ⊂ ℝ2 est immédiate. Réciproquement, soit (𝑥, 𝑦) ∈ ℝ2,

(𝑥, 𝑦) = 𝑦
2
(1, 2) + (𝑥 − 𝑦

2
) (1, 0) ∈ Vect((1, 2), (1, 0)),

d’où ℝ2 ⊂ Vect((1, 2), (1, 0)). Par double inclusion, on a donc égalité des deux ensembles.

Proposition 2.6 (Sous-espace contenant une famille)

Soit 𝐸 un 𝕂-espace vectoriel, 𝑝 ∈ ℕ∗ et 𝒮 = (𝑒𝑖)1⩽𝑖⩽𝑝 une famille finie de vecteurs de 𝐸. Tout sous-espace 
vectoriel de 𝐸 contenant les 𝑒𝑖 contient Vect(𝒮).

Démonstration. Soit 𝐹 un sous-espace vectoriel de 𝐸 contenant tous les 𝑒𝑖 et soit 𝑥 ∈ Vect(𝒮). Alors il existe 

(𝑥1, …, 𝑥𝑝) ∈ 𝕂𝑝 tels que 𝑥 =
𝑝

∑
𝑖=1

𝑥𝑖𝑒𝑖. On sait que ∀𝑖 ∈ [[1, 𝑝]], 𝑒𝑖 ∈ 𝐹. Or 𝐹 est un sous-espace vectoriel de 𝐸, donc 

𝐹 est stable par combinaison linéaire. Donc 𝑥 ∈ 𝐹. Cela montre Vect(𝒮) ⊂ 𝐹, d’où le résultat annoncé. ∎

Proposition 2.7 (Cas d’un vecteur combinaison linéaire)

Soit 𝐸 un 𝕂-espace vectoriel et 𝒮 une famille finie de vecteurs de 𝐸. Si 𝑥 ∈ 𝒮 est combinaison linéaire des 
autres vecteurs de 𝒮, alors Vect(𝒮) = Vect(𝒮′), où 𝒮′ est la famille obtenue en retirant 𝑥 à 𝒮.

Démonstration. Soit 𝑥 un vecteur de 𝒮 qui est combinaison linéaire des autres vecteurs de 𝒮 et 𝒮′ la famille obtenue 
en retirant 𝑥 à 𝒮.

• 𝒮 contient tous les éléments de 𝒮′, donc Vect(𝑆′) ⊂ Vect(𝑆).

• Réciproquement, Vect(𝒮′) est un espace vectoriel qui contient tous les éléments de 𝒮′ et leurs combinaisons 
linéaires, donc qui contient 𝑥. Donc Vect(𝒮′) contient tous les éléments de 𝒮. Donc Vect(𝑆) ⊂ Vect(𝑆′).

Donc par double inclusion, Vect(𝒮) = Vect(𝒮′). ∎

Exemple. (3, 6) = 3(1, 2), donc Vect((1, 2), (3, 6)) = Vect((1, 2)) = {(𝜆, 2𝜆), 𝜆 ∈ ℝ}.

3 Familles finies de vecteurs

3.1 Familles génératrices

Définition 3.1 (Famille génératrice)

Soit 𝐸 un espace vectoriel et 𝒮 une famille finie d’éléments de 𝐸. La famille 𝒮 est dite génératrice de 𝐸
lorsque Vect(𝒮) = 𝐸.

Remarque. L’inclusion Vect(𝒮) ⊂ 𝐸 est évidente. Pour prouver que 𝒮 est génératrice de 𝐸, il suffit donc de 
montrer que 𝐸 ⊂ Vect(𝒮), c’est-à-dire de montrer que tout 𝑥 ∈ 𝐸 peut s’écrire comme combinaison linéaire des 
éléments de 𝒮.

Exemple. Si 𝑃(𝑋) ∈ 𝕂2[𝑋], alors il existe (𝑎, 𝑏, 𝑐) ∈ 𝕂3 tels que 𝑃(𝑋) = 𝑎𝑋2 + 𝑏𝑋 + 𝑐. Les vecteurs 𝑋2, 𝑋 et 1
sont bien dans 𝕂2[𝑋], donc (1, 𝑋, 𝑋2) est une famille génératrice de 𝕂2[𝑋].
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Exercice 9. La famille ((1, 0), (1, 1)) est-elle une famille génératrice de ℝ2 ?
Solution : Soit (𝑥, 𝑦) ∈ ℝ2. On peut écrire (𝑥, 𝑦) = (𝑥 − 𝑦)(1, 0) + 𝑦(1, 1). De plus (1, 0) et (1, 1) sont bien des 
éléments de ℝ2. Donc ((1, 0), (1, 1)) est une famille génératrice de ℝ2.

Exercice 10. La famille ((1, 0)) est-elle une famille génératrice de ℝ2 ?
Solution : (0, 1) ∈ ℝ2, montrons par l’absurde qu’il ne s’écrit pas comme combinaison linéaire des éléments de 
la famille. On suppose qu’il existe 𝜆 ∈ ℝ tel que (0, 1) = 𝜆(1, 0) = (𝜆, 0). Alors 1 = 0 : absurde. Donc la famille 
((1, 0)) n’est pas génératrice de ℝ2.

Exercice 11. Soit 𝐸 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3|𝑥 = 2𝑦}. Montrer que c’est un ℝ-espace vectoriel, dont on déterminera une 
famille génératrice.
Solution :

Méthode 1 : on gère les deux objectifs successivement.

• 0 = 2 × 0, donc (0, 0, 0) ∈ 𝐸.
• Soit 𝑎 = (𝑥𝑎, 𝑦𝑎, 𝑧𝑎) et 𝑏 = (𝑥𝑏, 𝑦𝑏, 𝑧𝑏) deux éléments de 𝐸 et 𝜆 ∈ ℝ.

Alors 𝜆𝑎 + 𝑏 = (𝜆𝑥𝑎 + 𝑥𝑏, 𝜆𝑦𝑎 + 𝑦𝑏, 𝜆𝑧𝑎 + 𝑧𝑏), et 𝜆𝑥𝑎 + 𝑥𝑏 = 𝜆2𝑦𝑎 + 2𝑦𝑏 = 2(𝜆𝑦𝑎 + 𝑦𝑏), puisque 𝑎 et 𝑏
sont dans 𝐸. Donc 𝜆𝑎 + 𝑏 ∈ 𝐸.

𝐸 est donc un sous-espace vectoriel de ℝ3. C’est donc un ℝ-espace vectoriel.
Soit (𝑥, 𝑦, 𝑧) ∈ 𝐸. Alors 𝑥 = 2𝑦. Donc

(𝑥, 𝑦, 𝑧) = (2𝑦, 𝑦, 𝑧) = (2𝑦, 𝑦, 0) + (0, 0, 𝑧) = 𝑦(2, 1, 0) + 𝑧(0, 0, 1).

Or (2, 1, 0) ∈ 𝐸 et (0, 0, 1) ∈ 𝐸. Donc ((2, 1, 0), (0, 0, 1)) est une famille génératrice de 𝐸.

Méthode 2 : on gère les deux objectifs simultanément. Soit 𝑢 = (𝑥, 𝑦, 𝑧) ∈ ℝ3,

𝑢 ∈ 𝐸 ⟺ 𝑥 = 2𝑦 ⟺ 𝑢 = (2𝑦, 𝑦, 𝑧) ⟺ 𝑢 = 𝑦(2, 1, 0) + 𝑧(0, 0, 1) ⟺ 𝑢 ∈ Vect((2, 1, 0), (0, 0, 1)),

car on a bien (2, 1, 0) ∈ 𝐸 et (0, 0, 1) ∈ 𝐸. Donc 𝐸 = Vect((2, 1, 0), (0, 0, 1)) ce qui redonne le même résultat.

Proposition 3.2 (Famille contenant une famille génératrice)

Toute famille de vecteurs qui contient une famille génératrice de l’espace vectoriel 𝐸 est une famille génératrice 
de l’espace vectoriel 𝐸.

Démonstration. Soit 𝒮 une famille génératrice de 𝐸 et 𝒮′ une famille de vecteurs qui contient les vecteurs de 𝒮. Les 
propriétés des sous-espaces vectoriels engendrés donnent directement Vect(𝒮) ⊂ Vect(𝒮′) ⊂ 𝐸. Or Vect(𝑆) = 𝐸
puique 𝒮 est une famille génératrice de 𝐸. Donc Vect(𝒮′) = 𝐸 et 𝒮′ est aussi une famille génératrice de 𝐸. ∎

Proposition 3.3 (Cas d’un élément combinaison linéaire des autres)

Soit 𝐸 un espace vectoriel et 𝒮 est une famille génératrice de 𝐸. Si 𝑥 ∈ 𝒮 est combinaison linéaire des autres 
vecteurs de 𝒮, alors la famille 𝒮′ obtenue en retirant 𝑥 à 𝒮 est aussi génératrice de 𝐸.

Démonstration. Les propriétés des sous-espaces vectoriels engendrés et des familles génératrices donnent directement 
𝐸 = Vect(𝒮) = Vect(𝒮′). Donc 𝒮′ est génératrice de 𝐸. ∎
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3.2 Familles libres

Définition 3.4 (Famille libre, famille liée)

Une famille (𝑒1, 𝑒2, ..., 𝑒𝑝) de l’espace vectoriel 𝐸 est dite libre lorsque pour tout 𝑝-uplet (𝛼𝑖)1⩽𝑖⩽𝑝 de scalaires 
de 𝕂𝑝,

𝑝

∑
𝑘=1

𝛼𝑘𝑒𝑘 = 0𝐸 ⟹ ∀𝑘 ∈ [[1, 𝑝]], 𝛼𝑘 = 0.

On dit alors que les vecteurs 𝑒1, 𝑒2, …, 𝑒𝑝 sont linéairement indépendants. Une famille qui n’est pas libre 
est dite liée.

Remarque. Si 𝑥 ∈ 𝐸 et 𝑥 ≠ 0𝐸, alors la famille (𝑥) est libre. En effet, soit 𝜆 ∈ 𝕂, si on suppose 𝜆𝑥 = 0𝐸, comme 
𝑥 ≠ 0𝐸, alors 𝜆 = 0.

Remarque. Pour montrer qu’une famille est libre, on fixe (𝛼𝑖)1⩽𝑖⩽𝑝 ∈ 𝕂𝑝, on suppose que 
𝑝

∑
𝑘=1

𝛼𝑘𝑒𝑘 = 0𝐸 et on 

cherche à en déduire que tous les 𝛼𝑖 sont nuls.

Exercice 12. Montrer que la famille ((2, 1, 0), (0, 0, 1)) obtenue précédemment est une famille libre de ℝ3.
Solution : Soit (𝜆, 𝜇) ∈ ℝ2. On suppose que 𝜆(2, 1, 0)+𝜇(0, 0, 1) = (0, 0, 0). Alors (2𝜆, 𝜆, 𝜇) = (0, 0, 0), ce qui donne 
𝜆 = 𝜇 = 0. Donc ((2, 1, 0), (0, 0, 1)) est une famille libre de ℝ3.

Exercice 13. Montrer que ((1, 2), (3, 6)) est une famille liée.
Solution : −3 ⋅ (1, 2) + 1 ⋅ (3, 6) = (0, 0), alors que ni −3 ni 1 ne sont nuls, la famille est donc liée.

Proposition 3.5 (Unicité de la décomposition dans une famille libre)

Soit 𝐸 un 𝕂-espace vectoriel. Une famille (𝑒1, 𝑒2, …, 𝑒𝑝) de 𝐸 est libre si et seulement si pour tous scalaires 

𝛼1, 𝛼2, …, 𝛼𝑝, 𝛽1, 𝛽2, … , 𝛽𝑝 de 𝕂, 
𝑝

∑
𝑘=1

𝛼𝑘𝑒𝑘 =
𝑝

∑
𝑘=1

𝛽𝑘𝑒𝑘 ⟹ ∀𝑘 ∈ [[1, 𝑝]], 𝛼𝑘 = 𝛽𝑘.

Démonstration. Soit 𝛼1, 𝛼2, …, 𝛼𝑝, 𝛽1, 𝛽2, … , 𝛽𝑝 des scalaires. Le résultat annoncé découle directement de 
l’équivalence suivante :

(
𝑝

∑
𝑘=1

𝛼𝑘𝑒𝑘 =
𝑝

∑
𝑘=1

𝛽𝑘𝑒𝑘 ⇒ ∀𝑘 ∈ [[1, 𝑝]], 𝛼𝑘 = 𝛽𝑘) ⟺ (
𝑝

∑
𝑘=1

(𝛼𝑘 − 𝛽𝑘)𝑒𝑘 = 0𝐸 ⇒ ∀𝑘 ∈ [[1, 𝑝]], (𝛼𝑘 − 𝛽𝑘) = 0)

∎

Remarque. La liberté d’une famille permet donc d’identifier les coefficients dans une égalité.

Exercice 14. Soit 𝑓 et 𝑔 les fonctions définies sur ℝ par ∀𝑥 ∈ ℝ, 𝑓(𝑥) = 𝑒𝑥 et 𝑔(𝑥) = 𝑒2𝑥. La famille (𝑓, 𝑔) est-elle 
libre dans l’espace vectoriel des fonctions réelles ?
Solution : Soit (𝜆, 𝜇) ∈ ℝ2. Supposons que 𝜆𝑓 + 𝜇𝑔 = 0. Alors pour tout 𝑥 réel, 𝜆𝑒𝑥 + 𝜇𝑒2𝑥 = 0. En particulier, 
on peut diviser par 𝑒𝑥 > 0 : ∀𝑥 ∈ ℝ, 𝜆 + 𝜇𝑒𝑥 = 0. En prenant la limite pour 𝑥 → −∞, on obtient 𝜆 = 0. Donc 
∀𝑥 ∈ ℝ, 𝜇𝑒𝑥 = 0. La valeur en 𝑥 = 0 donne 𝜇 = 0. On a montré que 𝜆 = 𝜇 = 0, la famille est donc libre.

Exercice 15. Montrer que la famille (𝑋 + 2, 𝑋 + 1, 𝑋2) est libre dans ℝ[𝑋].
Solution : Soit (𝛼1, 𝛼2, 𝛼3) ∈ ℝ3. On suppose que 𝛼1(𝑋 +2)+𝛼2(𝑋 +1)+𝛼3𝑋2 = 0. En regroupant les coefficients, 
on trouve :

(2𝛼1 + 𝛼2) + (𝛼1 + 𝛼2)𝑋 + 𝛼3𝑋2 = 0.

Par identification des coefficients du polynôme (0 = 0+0𝑋 +0𝑋2), on obtient 2𝛼1 +𝛼2 = 0, 𝛼1 +𝛼2 = 0 et 𝛼3 = 0, 
ce qui donne en résolvant le système linéaire 𝛼1 = 𝛼2 = 𝛼3 = 0. La famille (1, 𝑋 + 1, 𝑋2) est donc libre dans ℝ[𝑋].
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Proposition 3.6 (Famille de polynômes échelonnée en degré)

Soit 𝑛 ∈ ℕ∗ et (𝑃1, …, 𝑃𝑛) une famille de polynômes de 𝕂[𝑋]. Si la famille est échelonnée en degré
(c’est-à-dire si 0 ⩽ deg(𝑃1) < … < deg(𝑃𝑛)), alors elle est libre.

Démonstration. Soit (𝜆1, …, 𝜆𝑛) ∈ 𝕂𝑛, on suppose que 
𝑛

∑
𝑘=1

𝜆𝑘𝑃𝑘(𝑋) = 0.

Supposons que les 𝜆𝑘 ne sont pas tous nuls. On peut alors définir 𝑖 = max{𝑘 ∈ [[1, 𝑛]]|𝜆𝑘 ≠ 0}, ce qui donne 
∑𝑖

𝑘=1 𝜆𝑘𝑃𝑘(𝑋) = 0. Or la famille est échelonnée en degré, donc 𝑃𝑖 est de degré strictement supérieur aux autres 
polynômes de la somme. De plus, 𝜆𝑖 ≠ 0, donc deg(∑𝑖

𝑘=1 𝜆𝑘𝑃𝑘(𝑋)) = deg(𝑃𝑖(𝑋)) ⩾ 0. Or cette somme est égale 
au polynôme nul, qui est de degré −∞ : absurde.
Donc tous les 𝜆𝑘 sont nuls, donc la famille est libre. ∎

Exemple. La famille (1, (𝑋 + 1)5, (𝑋 − 2)7) est échelonnée en degrés, donc libre dans ℝ[𝑋].

Proposition 3.7 (Sous-famille d’une famille libre)

Toute sous-famille d’une famille libre est libre.

Démonstration. Soit (𝑒1, 𝑒2, …, 𝑒𝑝) une famille libre. On va montrer que (𝑒1, 𝑒2, …, 𝑒𝑝−1) reste libre, le résultat 
général se montre ensuite par récurrence décroissante.

Soit 𝛼1, …, 𝛼𝑝−1 des scalaires, on suppose que : 
𝑝−1

∑
𝑘=1

𝛼𝑘𝑒𝑘 = 0𝐸. Alors 
𝑝−1

∑
𝑘=1

𝛼𝑘𝑒𝑘 + 0 ⋅ 𝑒𝑝 = 0𝐸. Comme la famille 

(𝑒1, 𝑒2, …, 𝑒𝑝) est libre, alors pour tout 𝑘 ∈ [[1, 𝑝 − 1]], 𝛼𝑘 = 0. Donc (𝑒1, 𝑒2, …, 𝑒𝑝−1) est une famille libre. ∎

Proposition 3.8 (Cas d’un vecteur combinaison linéaire des autres)

Soit 𝐸 un 𝕂-espace vectoriel. Une famille (𝑒1, 𝑒2, …, 𝑒𝑝) de 𝐸 est liée si et seulement si l’un des vecteurs de 
cette famille peut s’écrire comme une combinaison linéaire des autres vecteurs.

Remarque. En particulier toute famille qui contient l’élément neutre est liée, car si 𝑒1 = 0𝐸, 𝑒1 = 0𝑒2 + … + 0𝑒𝑝.

Démonstration. On fait la preuve en deux temps :

• Supposons que (𝑒1, 𝑒2, …, 𝑒𝑝) est liée. Alors il existe (𝛼𝑖)𝑖∈[[1,𝑝]] ∈ 𝕂𝑝 et 𝑗 ∈ [[1, 𝑝]] tels que 
𝑝

∑
𝑖=1

𝛼𝑖𝑒𝑖 = 0𝐸 et 

𝛼𝑗 ≠ 0. On peut donc écrire 𝑒𝑗 = −
𝑗−1

∑
𝑖=1

𝛼𝑖
𝛼𝑗

𝑒𝑖 −
𝑝

∑
𝑖=𝑗+1

𝛼𝑖
𝛼𝑗

𝑒𝑖.

• Réciproquement, on suppose qu’il existe 𝑗 ∈ [[1, 𝑝]] et (𝛽𝑖)𝑖∈[[1,𝑝]]∖{𝑗} ∈ 𝕂𝑝−1 tels que 𝑒𝑗 =
𝑗−1

∑
𝑖=1

𝛽𝑖𝑒𝑖 +
𝑝

∑
𝑖=𝑗+1

𝛽𝑖𝑒𝑖. 

En posant 𝛽𝑗 = −1 ≠ 0, on obtient 
𝑝

∑
𝑖=1

𝛽𝑖𝑒𝑖 = 0𝐸, où les 𝛽𝑖 ne sont pas tous nuls. La famille est donc liée.

∎

Remarque. Si on ajoute à une famille libre un vecteur qui n’est pas combinaison linéaire de ses éléments, on 
obtient donc une nouvelle famille libre.

Exercice 16. La famille ((0, 1, 2), (0, 2, 1), (0, 1, 1)) est-elle libre ?
Solution : On cherche à montrer que la famille est libre. Soit 𝜆1, 𝜆2 et 𝜆3 trois réels, on suppose que :

𝜆1(0, 1, 2) + 𝜆2(0, 2, 1) + 𝜆3(0, 1, 1) = (0, 0, 0).
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On aurait alors (0, 𝜆1 + 2𝜆2 + 𝜆3, 2𝜆1 + 𝜆2 + 𝜆3) = (0, 0, 0), et donc :

{ 𝜆1 + 2𝜆2 + 𝜆3 = 0
2𝜆1 + 𝜆2 + 𝜆3 = 0 ⇔ { −𝜆1 + 𝜆2 = 0

2𝜆1 + 𝜆2 + 𝜆3 = 0 ⇔ { 𝜆1 = 𝜆2
𝜆3 = −3𝜆2

Cela ne permet pas de conclure directement, mais permet de construire un contre-exemple.
Rédaction finale : (0, 1, 1) = 1

3(0, 1, 2) + 1
3(0, 2, 1), donc la famille est liée.

3.3 Bases

Définition 3.9 (Base, coordonnées)

Soit 𝐸 un 𝕂-espace vectoriel. Une famille (𝑒𝑖)1⩽𝑖⩽𝑝 est une base de 𝐸 lorsque tout vecteur 𝑥 de 𝐸 peut 
s’écrire d’une manière unique comme une combinaison linéaire des vecteurs 𝑒1, 𝑒2, …, 𝑒𝑝.
On appelle alors coordonnées de 𝑥 les coefficients de cette combinaison linéaire.

Exemple. (1, 𝑋, 𝑋2) est une base de ℝ2[𝑋] et les coefficients de 1 + 3𝑋2 dans cette base sont 1, 0 et 3.

Proposition 3.10 (Caractérisation des bases)

Soit 𝐸 un 𝕂-espace vectoriel. Une famille finie d’éléments de 𝐸 est une base de 𝐸 si et seulement si elle est à 
la fois libre et génératrice de 𝐸.

Démonstration. Soit 𝒮 = (𝑒𝑖)1⩽𝑖⩽𝑝 une famille finie d’éléments de 𝐸.

• On suppose que 𝒮 est une base de 𝐸. La famille 𝒮 est composée d’éléments de 𝐸 et tout vecteur de 𝐸 peut 
être écrit comme combinaison linéaire de vecteurs de 𝒮, donc 𝒮 est une famille génératrice de 𝐸.

Soit (𝑥1, …, 𝑥𝑝) ∈ 𝕂𝑝, on suppose que 
𝑝

∑
𝑖=1

𝑥𝑖𝑒𝑖 = 0𝐸. Comme 0𝐸 =
𝑝

∑
𝑖=1

0𝑒𝑖, l’unicité de la décomposition 

donne 𝑥1 = 𝑥2 = … = 𝑥𝑝 = 0, donc 𝒮 est une famille libre.

• On suppose que 𝒮 est une famille libre et génératrice de 𝐸. Soit 𝑥 ∈ 𝐸. Comme 𝒮 est génératrice, 𝑥 peut s’écrire 
comme combinaison linéaire des vecteurs de 𝒮. Et comme 𝒮 est libre, cette décomposition en combinaison 
linéaire est unique. Donc 𝒮 est une base de 𝐸.

∎

Exercice 17. Dans 𝕂𝑛, on pose 𝑒1 = (1, 0, …, 0), …, 𝑒𝑘 = (0, …, 1⏟
𝑘ème position

, …, 0), … , 𝑒𝑛 = (0, …, 0, 1). Montrer 

que (𝑒1, 𝑒2, …, 𝑒𝑛) forme une base de 𝕂𝑛.
Solution :

• Soit (𝛼1, 𝛼2, …, 𝛼𝑛) ∈ 𝕂𝑛. On suppose que ∑𝑛
𝑘=1 𝛼𝑖𝑒𝑖 = 0𝕂𝑛 . Alors (𝛼1, 𝛼2, …, 𝛼𝑛) = (0, 0, …, 0), et par 

identification des coefficients les 𝛼𝑖 sont tous nuls. La famille (𝑒1, 𝑒2, …, 𝑒𝑛) est donc libre.

• Soit 𝑥 = (𝑥1, 𝑥2, …, 𝑥𝑛) ∈ 𝕂𝑛. On a alors 𝑥 = ∑𝑛
𝑘=1 𝑥𝑖𝑒𝑖. Or ∀𝑖 ∈ [[1, 𝑛]], 𝑒𝑖 ∈ 𝕂𝑛. La famille (𝑒1, 𝑒2, …, 𝑒𝑛) est 

donc génératrice de 𝕂𝑛.

La famille est libre et génératrice, c’est donc une base de 𝕂𝑛.

Remarque. Plusieurs ensembles usuels ont des bases « naturelles », appelées bases canoniques :

 Espace vectoriel  Base canonique associée 
𝕂𝑛 ((1, 0, …, 0), (0, 1, 0, …, 0), …(0, …, 0, 1))

𝕂𝑛[𝑋] (1, 𝑋, 𝑋2, …, 𝑋𝑛)
ℳ𝑛,𝑝(𝕂) (𝐸𝑖,𝑗)(𝑖,𝑗)∈[[1,𝑛]]×[[1,𝑝]]

On rappelle que 𝐸𝑖,𝑗 désigne la matrice dont tous les coefficients sont nuls à l’exception de celui placé à la 𝑖-ème 
ligne et 𝑗-ième colonne, qui vaut 1.
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Exemple. La famille ((1, 0, 0), (0, 1, 0), (0, 0, 1)) est la base canonique de ℝ3 ou de ℂ3.

Exercice 18. Soit 𝐸 l’ensemble des suites réelles qui vérifient la relation de récurrence : ∀𝑛 ∈ ℕ, 𝑢𝑛+2 = 𝑢𝑛+1 +𝑢𝑛.

1. Montrer que 𝐸 est un espace vectoriel.

2. En déterminer une base.

Solution :

1. • La suite nulle vérifie la relation de récurrence proposée, donc appartient à 𝐸.
• Soit 𝑢 et 𝑣 deux suites de 𝐸, et 𝜆 ∈ ℝ. Alors ∀𝑛 ∈ ℕ,

(𝜆𝑢 + 𝑣)𝑛+2 = 𝜆(𝑢𝑛+1 + 𝑢𝑛) + 𝑣𝑛+1 + 𝑣𝑛 = (𝜆𝑢𝑛+1 + 𝑣𝑛+1) + (𝜆𝑢𝑛 + 𝑣𝑛) = (𝜆𝑢 + 𝑣)𝑛+1 + (𝜆𝑢 + 𝑣)𝑛.

Donc 𝜆𝑢 + 𝑣 ∈ 𝐸.
Donc 𝐸 est un sous-espace vectoriel de l’ensemble des suites réelles. Donc c’est un ℝ-espace vectoriel.

2. • Soit 𝑢 ∈ 𝐸, c’est une suite récurrente linéaire d’ordre deux, d’équation caractéristique 𝑋2 = 𝑋 + 1, dont 
les solutions sont 1+

√
5

2  et 𝑞2 = 1−
√

5
2 . D’après le cours sur les suites réelles, il existe donc deux réels 𝛼 et 

𝛽 tels que

∀𝑛 ∈ ℕ, 𝑢𝑛 = 𝛼 (1 +
√

5
2

)
𝑛

+ 𝛽 (1 −
√

5
2

)
𝑛

.

Or ∀𝑛 ∈ ℕ, (1+
√

5
2 )

𝑛
+ (1+

√
5

2 )
𝑛+1

= (1+
√

5
2 )

𝑛
(1 + 1+

√
5

2 ) = (1+
√

5
2 )

𝑛
(1+

√
5

2 )
2

= (1+
√

5
2 )

𝑛+2
 (car 1+

√
5

2

est solution de l’équation caractéristique, donc (1+
√

5
2 )

2
= 1+

√
5

2 + 1). Donc ((1+
√

5
2 )

𝑛
)𝑛∈ℕ ∈ 𝐸.

On montre de même que ((1−
√

5
2 )

𝑛
)𝑛∈ℕ ∈ 𝐸. Donc (((1+

√
5

2 )
𝑛
)𝑛∈ℕ, ((1−

√
5

2 )
𝑛
)𝑛∈ℕ) est une famille 

génératrice de 𝐸.

• Soit 𝜆 et 𝜇 deux réels, on suppose que ∀𝑛 ∈ ℕ, 𝜆 (1+
√

5
2 )

𝑛
+ 𝜇 (1−

√
5

2 )
𝑛

= 0. On trouve en particulier 
pour 𝑛 = 0 et 𝑛 = 1 que 𝜆 + 𝜇 = 0 et 𝜆1+

√
5

2 + 𝜇1−
√

5
2 = 0. Donc 𝜆 = −𝜇 et 𝜇 (1−

√
5

2 − 1+
√

5
2 ) = 0. Cela 

donne 𝜆 = 𝜇 = 0. Donc (((1+
√

5
2 )

𝑛
)𝑛∈ℕ, ((1−

√
5

2 )
𝑛
)𝑛∈ℕ) est une famille libre de 𝐸.

Donc (((1+
√

5
2 )

𝑛
)𝑛∈ℕ, ((1−

√
5

2 )
𝑛
)𝑛∈ℕ) est une base de 𝐸.

4 Somme de sous-espaces vectoriels

4.1 Définitions et premières propriétés

Définition 4.1 (Somme de deux sous-espaces vectoriels)

Soit 𝐸 un espace vectoriel et 𝐹 et 𝐺 deux sous-espaces vectoriels de 𝐸. L’ensemble des éléments de 𝐸
s’écrivant sous la forme de la somme d’un élément de 𝐹 et d’un élément de 𝐺 est un sous-espace vectoriel de 
𝐸 appelé somme des sous-espaces vectoriels 𝐹 et 𝐺. On note 𝐹 + 𝐺 = {𝑥 + 𝑦|(𝑥, 𝑦) ∈ 𝐹 × 𝐺}.

Démonstration. Montrons qu’il s’agit bien d’un sous-espace vectoriel de 𝐸 :

• 0𝐸 ∈ 𝐹 et 0𝐸 ∈ 𝐺, puisque 𝐹 et 𝐺 sont des sous-espaces vectoriels de 𝐸. Donc 0𝐸 = 0𝐸 + 0𝐸 ∈ 𝐹 + 𝐺.

• Soit (𝑢, 𝑣) ∈ (𝐹 + 𝐺)2 et 𝜆 un scalaire. Alors ∃(𝑢𝐹, 𝑢𝐺) ∈ 𝐹 × 𝐺 tels que 𝑢 = 𝑢𝐹 + 𝑢𝐺 et ∃(𝑣𝐹, 𝑣𝐺) ∈ 𝐹 × 𝐺
tels que 𝑣 = 𝑣𝐹 + 𝑣𝐺. Donc

𝜆𝑢 + 𝑣 = 𝜆(𝑢𝐹 + 𝑢𝐺) + (𝑣𝐹 + 𝑣𝐺) = (𝜆𝑢𝐹 + 𝑣𝐹) + (𝜆𝑢𝐺 + 𝑣𝐺).

Or 𝜆𝑢𝐹 +𝑣𝐹 ∈ 𝐹 et 𝜆𝑢𝐺 +𝑣𝐺 ∈ 𝐺 puisque 𝐹 et 𝐺 sont stables par combinaison linéaire. Donc 𝜆𝑢+𝑣 ∈ 𝐹 +𝐺.

Donc 𝐹 + 𝐺 est un sous-espace vectoriel de 𝐸. ∎
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Proposition 4.2 (Somme d’espaces vectoriels engendrés)

Soit 𝐸 un 𝕂-espace vectoriel et 𝒮1, 𝒮2 deux familles finies d’éléments de 𝐸. On note 𝒮 la famille qui juxtapose 
les vecteurs de 𝒮1 et 𝒮2. Alors Vect(𝒮1) + Vect(𝒮2) = Vect(𝒮).

Démonstration. Il suffit de revenir à la définition. ∎

Remarque. Si 𝐹 et 𝐺 sont deux sous-espaces vectoriels de 𝐸, on obtient donc une famille génératrice de 𝐹 + 𝐺 en 
juxtaposant des familles génératrices de 𝐹 et de 𝐺.

Exercice 19. On se place dans ℝ[𝑋]. Que vaut ℝ1[𝑋] + Vect(𝑋2) ?
Solution : ℝ1[𝑋] + Vect(𝑋2) = Vect(1, 𝑋) + Vect(𝑋2) = Vect(1, 𝑋, 𝑋2) = ℝ2[𝑋].

Définition 4.3 (Somme directe de deux sous-espaces vectoriels)

Soit 𝐸 un 𝕂-espace vectoriel et 𝐹 et 𝐺 deux sous-espaces vectoriels de 𝐸. On dit que la somme 𝐹 + 𝐺 est 
une somme directe lorsque tout élément 𝑢 de 𝐹 + 𝐺 s’écrit de manière unique sous la forme 𝑢 = 𝑥 + 𝑦, 
avec (𝑥, 𝑦) ∈ 𝐹 × 𝐺. La somme est alors notée 𝐹 ⊕ 𝐺.

Remarque. La définition de 𝐹 + 𝐺 donne l’existence de cette décomposition, il suffit donc de montrer l’unicité 
pour conclure que la somme est directe.

Proposition 4.4 (Caractérisation des sommes directes)

Soit 𝐸 un 𝕂-espace vectoriel et 𝐹 et 𝐺 deux sous-espaces vectoriels de 𝐸. La somme 𝐹 + 𝐺 est une somme 
directe si et seulement si 𝐹 ∩ 𝐺 = {0𝐸}.

Démonstration. On procède en deux temps :

• Supposons que 𝐹 ∩ 𝐺 = {0𝐸}. Soit 𝑢 ∈ 𝐹 + 𝐺, supposons qu’il existe (𝑥1, 𝑦1) ∈ 𝐹 × 𝐺 et (𝑥2, 𝑦2) ∈ 𝐹 × 𝐺
tels que 𝑢 = 𝑥1 + 𝑦1 = 𝑥2 + 𝑦2. Alors :

𝑥1 − 𝑥2⏟
∈𝐹

= 𝑦1 − 𝑦2⏟
∈𝐺

.

Donc 𝑥1 − 𝑥2 ∈ 𝐹 ∩ 𝐺 = {0𝐸}, c’est-à-dire 𝑥1 = 𝑥2. De même, 𝑦1 = 𝑦2. La décomposition de 𝑢 est donc 
unique. Donc 𝐹 + 𝐺 est une somme directe.

• Réciproquement, supposons que 𝐹 + 𝐺 est une somme directe. Soit 𝑢 ∈ 𝐹 ∩ 𝐺, on peut le décomposer comme 
𝑢 = 𝑢 + 0 et comme 𝑢 = 0 + 𝑢. L’unicité de la décomposition donne 𝑢 = 0𝐸. Donc 𝐹 ∩ 𝐺 ⊂ {0𝐸}, donc 
𝐹 ∩ 𝐺 = {0𝐸}.

∎

Remarque. Comme 𝐹 et 𝐺 sont des sous-espaces vectoriels de 𝐸, on a toujours {0𝐸} ⊂ 𝐹 ∩ 𝐺. Il suffit donc de 
montrer que 𝐹 ∩ 𝐺 ⊂ {0𝐸} pour montrer qu’une somme est directe.

Exercice 20. Montrer que la somme ℝ1[𝑋] + Vect(𝑋2) est directe.
Solution : Soit 𝑃(𝑋) ∈ ℝ1[𝑋]∩Vect(𝑋2). Alors ∃(𝑎, 𝑏) ∈ ℝ2 tel que 𝑃(𝑋) = 𝑎𝑋+𝑏 et ∃𝜆 ∈ ℝ tel que 𝑃(𝑋) = 𝜆𝑋2. 
Donc 𝑎𝑋 + 𝑏 = 𝜆𝑋2, et par identification des coefficients des polynômes 𝑎 = 𝑏 = 𝜆 = 0. Donc 𝑃(𝑋) = 0. On en 
déduit que ℝ1[𝑋] ∩ Vect(𝑋2) = {0}, c’est-à-dire que la somme est directe.
Remarque : avec l’exercice 19, on a donc montré que ℝ2[𝑋] = ℝ1[𝑋] ⊕ Vect(𝑋2).
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4.2 Sous-espaces vectoriels supplémentaires

Définition 4.5 (Sous-espaces vectoriels supplémentaires)

Soit 𝐸 un 𝕂-espace vectoriel et 𝐹 et 𝐺 deux sous-espaces vectoriels de 𝐸. On dit que 𝐹 et 𝐺 sont supplé­
mentaires dans 𝐸 lorsque 𝐸 = 𝐹 ⊕ 𝐺.

Remarque. Des méthodes pratiques de construction de supplémentaire seront étudiées dans un prochain chapitre.

Remarque. Un même espace vectoriel peut avoir plusieurs supplémentaires différents.

Exemple. Vect(𝑋2) et Vect(𝑋2 + 1) sont deux supplémentaires de ℝ1[𝑋] dans ℝ2[𝑋]
(on a montré ℝ2[𝑋] = ℝ1[𝑋] ⊕ Vect(𝑋2) dans l’exercice 20, l’égalité ℝ2[𝑋] = ℝ1[𝑋] ⊕ Vect(𝑋2 + 1) s’établit de la 
même manière).

Exemple. Les supplémentaires d’une droite du plan passant par 0 sont toute autre droite du plan passant 
par 0. Par exemple, les supplémentaires de Vect((1, 0)) dans ℝ2 sont les ensembles de la forme Vect((𝑎, 𝑏)) avec 
(𝑎, 𝑏) ∈ ℝ × ℝ∗.

1

Vect((1, 1))1

Supplémentaires possibles

Exemple. Les supplémentaires d’un plan 𝑃 de ℝ3 passant par 0 sont toute droite du plan passant par 0 et non 
incluse dans le plan 𝑃.

Exercice 21. Soit 𝑛 un entier naturel non nul, on se place dans ℳ𝑛(ℝ). Montrer que 𝒮𝑛(ℝ) et 𝒜𝑛(ℝ) sont deux 
sous-espaces vectoriels supplémentaires.
Solution :

• La matrice nulle est symétrique. De plus, soit (𝐴, 𝐵) ∈ 𝒮𝑛(ℝ) et 𝜆 ∈ ℝ, (𝜆𝐴 + 𝐵)⊤ = 𝜆𝐴⊤ + 𝐵⊤ = 𝜆𝐴 + 𝐵, 
donc 𝜆𝐴 + 𝐵 ∈ 𝒮𝑛(ℝ). Donc 𝒮𝑛(ℝ) est un sous-espace vectoriel de ℳ𝑛(ℝ).

• On montre de même (en changeant les signes des transposées) que 𝒜𝑛(ℝ) est un sous-espace vectoriel de 
ℳ𝑛(ℝ).

• Montrons par analyse-synthèse que toute matrice s’écrit de manière unique comme somme d’une matrice 
symétrique et d’une antisymétrique. Soit 𝐴 ∈ ℳ𝑛(ℝ).

– Analyse : on suppose qu’il existe 𝐵 ∈ 𝒮𝑛(ℝ) et 𝐶 ∈ 𝒜𝑛(ℝ) tels que 𝐴 = 𝐵 + 𝐶. Alors :

𝐴⊤ = 𝐵⊤ + 𝐶⊤ = 𝐵 − 𝐶.

Sommer les deux relations donne 𝐴 + 𝐴⊤ = 2𝐵, et donc 𝐵 = 𝐴+𝐴⊤

2 . On en déduit ensuite 𝐶 = 𝐴−𝐴⊤

2 .

– Synthèse : on pose 𝐵 = 𝐴+𝐴⊤

2  et 𝐶 = 𝐴−𝐴⊤

2 . Il est immédiat que 𝐴 = 𝐵 + 𝐶. De plus,

𝐵⊤ = 𝐴⊤ + 𝐴
2

= 𝐵 et 𝐶⊤ = 𝐴⊤ − 𝐴
2

= −𝐶,

donc 𝐵 est symétrique et 𝐶 antisymétrique. Ces valeurs de 𝐵 et 𝐶 sont donc solution du problème.

Il existe donc bien une unique décomposition de 𝐴 comme somme d’une matrice symétrique et d’une 
antisymétrique, donc ℳ𝑛(ℝ) = 𝒮𝑛(ℝ) ⊕ 𝒜𝑛(ℝ).

15
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