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Les espaces vectoriels introduisent un langage commun pour des situations a priori différentes (fonctions, polynémes,
suites, matrices, ...). Ils permettent de résoudre avec la méme méthode des problémes de domaines différents.
Dans tout le chapitre, K désignera R ou C.

1 Espaces vectoriels
1.1 Définition et propriétés
Définition 1.1 (Espace vectoriel)

Soit F un ensemble non vide, muni d’une addition interne 4+ : E X E — E et d’une multiplication externe
-: Kx E — E. On dit que (F,+,-) est un K-espace vectoriel lorsque :

o L’opération interne + vérifie les propriétés suivantes :

— pour tout (z,y) € E?, 2 +y =y + (la loi + est commutative),

— pour tout (z,y,2) € B3, (x +y) +2z=x+ (y+ 2) (la loi + est associative),

— il existe un unique e € F appelé élément neutre tel que pour tout t € F, x +e=x =e + x.

— pour tout x € F, il existe 2’ € E tel que x + 2" = e = 2’ + . Cet élément est unique, appelé
opposé de z, et noté —z.

o L’opération externe - vérifie les propriétés suivantes :

— pour tout x € E et pour tout (o, 3) € K?, (a+8) - z2=a-x2+ 8-z
— pour tout (z,y) € E? et pour tout a €K, - (z+y)=a-x+a-y
— pour tout x € E et pour tout (a, B) € K2, a- (8- z) = (aff) - @

—pourtoutx € £, 1-z==x

On appelle vecteurs les éléments d’un K-espace vectoriel et scalaires les éléments de K.

Démonstration. On va montrer I'unicité de I’élément neutre et de 'opposé.

e Supposons qu’on a deux éléments neutres, e et e’. Alors, comme e et ¢’ sont éléments neutres, e + ¢ = ¢’ et
e+e =e Dol e=c¢e, ce qui donne l'unicité de ’élément neutre.

e Soit € F, supposons que y et y’ sont deux opposés de x. Alors y+x =eety' +x =e. Ory' +ax+y = y+x+y/,
donc e+y =e+y . Donc y =y’, d’ou 'unicité de 'opposé.

O
Exemple. Les regles de calcul sur R et C donnent directement que K est un K-espace vectoriel.

Exemple. Dans I’ensemble R? :

o Siz=(z,,75) €R? et y=(y;,9,) € R?, on définit = + y comme (r; + y;, 25 + y5) € R%. 1l s’agit bien d'une
opération interne dans R?, qui vérifie les propriétés :
— pour tout ¥ = (z1,25) € R? et y = (y1, ) € R*, x4y = (21 +yp, 2 +yo) = (Y1 + 21,92 +25) =y +2.
— pour tout & = (z1,7,) € R%, y = (y1,y5) € RZ et 2 = (21, 2y) € R,
(@+y)+z = (T1+yr, Bo+Ys)+(21, 22) = (T1Hy1+20, TatHya+25) = (21, 39)+ (Y1 +21, Yo +22) = 2+(y+2).
— il existe un élément e = (0,0) € R?, tel que pour tout z € R?, x + e =z = e + .
— pour tout x = (x,,1,) € R?, il existe 2’ = (—z,,—x,) ER?> tel que z + 2’ =e =2’ + .

e Siz=(x,7,) € R? et @ € R, on définit a - z comme (ax;,ar,) € R?. Il s’agit bien d’une multiplication
externe, qui vérifie les propriétés :



— pour tout ¥ = (z;,75) € R? et pour tout (a, 8) € R?,

(a+B)-x = ((a+ By, (a+ f)xy) = (aw) + oy, 0wy + fry) = (o), awy) + (B, Bag) = -z 4 (- .
— pour tout = = (z1,75) € R?, y = (y;,y5) € R? et a € R,

o (z4y) =z + 1,2 +yp) = (@) + ayy, azy + ayy) = (axy, axy) + (ay, ayy) = -z +a-y.
— pour tout = (z,,,) € R? et pour tout (o, 3) € R?, a-(B-2) = a-(Bxy, Bry) = (afxy,afz,) = (af)-z.
— pour tout ¥ = (z,,79) €R%, 1.2 = (2,,7,) = .

Donc (R?, +,.) est un R-espace vectoriel.

Exemple. L’ensemble des vecteurs de ’espace, muni de ’addition de deux vecteurs et de la multiplication d’un
réel par un vecteur, est un R-espace vectoriel. Son élément neutre est le vecteur nul.

Remarque. Le symbole de l'opération externe - est parfois omis. Qu’il soit présent ou pas, il faut toujours placer
le scalaire a gauche du vecteur.

Remarque. L’élément neutre pour + est souvent noté O, ou 0 lorsqu’il n’y a pas de risque de confusion.
Proposition 1.2 (Cas d’un produit valant 0p)

Soit (E,+,-) un K-espace vectoriel. Alors Vz € Eet VA€ K, A- 2 =05 <= A=0o0ux =0p.

Démonstration. On montre successivement les deux implications, en commengant par la réciproque.
o Pour tout z € E, 0x = (0 + 0)z = 0z + O0x. D’olt en ajoutant —0z des deux cotés, 0z = 0p.
De méme, pour tout A € K, N0y = A(0g +0g) = A0 + A0p. D’ott A0 = 0p.
e Soit x € F et A € K tels que Ax = 0p. On suppose que A # 0. En calculant de deux manieres différentes,

1 1 1
XA&?—XOE—OE et X)\x—xx—lx—x.

PR _
Dot & = 0p.

O
Exemple. Soit z € R2 et A € R. Alors A -z = (0,0) <= A =0 ou z = (0,0).
Proposition 1.3 (Construction de 'opposé)
Soit (E,+,-) un K-espace vectoriel. Alors pour tout = € E, —x = (—1) - z, ol —z est 'opposé de = dans E.
Démonstration. Soit x € E, x4+ (—1)-z=1-2+(-1)-x=(1—1)-2=0-2 =0g. Donc —z = (—1) - . O

1.2 Espaces vectoriels de référence

Pour montrer les résultats qui suivent, on vérifie mécaniquement toutes les propriétés.
Proposition 1.4 (K™)

Soit n € N*. Muni des opérations usuelles, K™ est un K-espace vectoriel.

Remarque. L’élément neutre de K™ est le n-uplet (0, ...,0).

Proposition 1.5 (M, ,(K))

Soit (n,p) € (N*)2. Muni de 'addition de deux matrices et de la multiplication d’une matrice par un scalaire,

M, ,(K) est un K-espace vectoriel.



Remarque. L’élément neutre de M, ,(K) est la matrice nulle de taille n x p.
Proposition 1.6 (K[X])
Muni de Paddition de deux polynémes et de la multiplication d’un polynéme par un scalaire, K[ X] est un
K-espace vectoriel.
Remarque. L’élément neutre de K[X] est le polynéme nul.
Proposition 1.7 (E x F)
Soit F et F'sont deux K-espaces vectoriels. Muni des opérations usuelles, le produit cartésien E x F est aussi
un K-espace vectoriel.
Remarque. L’élément neutre de E X Fest (0g,0p).
Proposition 1.8 (F (2, F))
Soit € un ensemble non vide et F'un K-espace vectoriel. Muni des opérations usuelles, I’ensemble F (£, F)

des applications de Q2 dans I est un K-espace vectoriel.

Remarque. L’élément neutre de F (2, F') est I'application nulle de €2 dans F' (’application qui & tout élément de
Q) associe 0p).

Remarque. () n’a pas besoin d’étre un espace vectoriel pour que le résultat soit valide.

Exemple. L’ensemble KN des suites & valeurs dans K est un K-espace vectoriel. Son élément neutre est la suite
nulle.

Exemple. Soit A une partie de R. L’ensemble K# des applications de A dans K est un K-espace vectoriel. Son
élément neutre est la fonction nulle.

1.3 Combinaison linéaire

Définition 1.9 (Famille finie de vecteurs)
Soit E un espace vectoriel et p € N*. On dit que (eq, e,, ..., ep) est une famille finie de vecteurs de E
lorsque tous les e; appartiennent a E.
Exemple. (1,0), (0,1,3) et (1,2,2,4) sont trois familles finies de 1’espace vectoriel R.
((1,0),(2,3),(2,1)) est une famille finie de 1’espace vectoriel R?.
Définition 1.10 (Combinaison linéaire)

Soit E un K-espace vectoriel, p € N*, § = (e;,) une famille finie de vecteurs de F et x € E. On dit que

1<k<p
x est combinaison linéaire des vecteurs de § lorsqu’il existe p scalaires (o)

p
xr = E akek.
k=1

I<k<p de K tels que

Exemple. Soit n € N et P € K[X]| un polynéme de degré inférieur ou égal a n. Alors il existe des scalaires
n

(ag,...,a,) tels que P(X) = Zaka, donc P est combinaison linéaire de (1, X, ..., X™).
k=0



Exercice 1. Montrer que (4, 13) est combinaison linéaire de ((1,5),(2,3)).
Solution : On résout (au brouillon) I’équation (4,13) = «a;(1,5) + a5(2,3), d’inconnues a4 et s :

4 - Oél + 2062
=2 =1.

{ 13 =50, +3a, T2t ®
Rédaction finale : on remarque que (4,13) = 2(1,5) + (2, 3), donc (4, 13) est combinaison linéaire de ((1,5),(2,3)).

Exercice 2. Montrer que (1, 1) n’est pas combinaison linéaire de ((0,0), (0,1), (0,2)).

Solution : Supposons que (1, 1) soit combinaison linéaire des vecteurs. Alors il existe des réels (ay, sy, ;) tels que
(1,1) = & (0,0) + a5(0,1) + a5(0,2). Donc (1,1) = (0, g + 2cx3). Donc 1 = 0, ce qui est absurde.

Donc (1, 1) n’est pas combinaison linéaire de ((0,0), (0,1), (0,2)).

2 Sous-espaces vectoriels
2.1 Définition et caractérisation
Définition 2.1 (Sous-espace vectoriel)
Soit (E, +,-) un K-espace vectoriel et F une partie de E stable par combinaison linéaire. On dit que F est

un sous-espace vectoriel de E lorsque (F,+,-) est un K-espace vectoriel.

Remarque. Dire que F'est stable par combinaison linéaire signifie que toute combinaison linéaire d’éléments de F’
appartient a F.

Exemple. Si E est un K-espace vectoriel, {0y} (sous-espace nul) et E sont des sous-espaces vectoriels de F.
Proposition 2.2 (Cas de ’élément neutre)
Soit E un K-espace vectoriel et F'un sous-espace vectoriel de E. Alors Oy € F.

Démonstration. Par propriétés des espaces vectoriels, F' possede un élément neutre pour la loi 4+, qu’on note 0.
0 € K, donc la stabilité par combinaison linéaire donne 0- 0z € F. Or 0p € E, donc 0-0p = 0p. Donc 0y € F. [

Remarque. Si F'est un sous-espace vectoriel de E, 'unicité de ’élément neutre donne donc 0y = 0.
Proposition 2.3 (Caractérisation d’un sous-espace vectoriel)
Soit F un K-espace vectoriel et F' un sous-ensemble de E. Alors :

F est un sous-espace vectoriel de E < 0y € Fet Y(z,y) € F2,VaeK, (a-z)+y € F.

Démonstration. Montrons le sens direct, puis la réciproque.

o Si Fest un sous-espace vectoriel de E, il contient 0y d’apres le résultat précédent. De plus, il est stable par
combinaison linéaire, donc V(z,y) € F?, Ya € K, la combinaison linéaire (« - ) + y appartient a F. D’ou le
résultat annoncé.

« On suppose que 0z € Fet que V(z,y) € F?, Va €K, (a-z) +y € F. On revient & la définition :

— En prenant a = 1, la relation garantit que 'opération + définie sur F' x F'est a valeurs dans F.

— En prenant y = 05 € F, la relation garantit que ’opération - définie sur K x F'est a valeurs dans F.
— 0p € F, il existe donc un élément neutre dans F.

— Soit « € F. Comme —1 € K, alors —1 -z € F. Donc —x € F et x admet un opposé dans F.

— Les autres propriétés ne demandent aucune vérification car une relation vraie sur F 'est aussi sur F.



Donc F'est un K-espace vectoriel. La relation garantit de plus la stabilité par combinaison linéaire, donc F
est un sous-espace vectoriel de E.

O

Remarque. Pour montrer qu’un ensemble F' est un espace vectoriel, revenir a la définition est peu pratique. Il est
beaucoup plus rapide de montrer par la caractérisation ci-dessus que c’est un sous-espace vectoriel d’un espace
vectoriel connu.

Exercice 3. Montrer que I’ensemble F des suites réelles convergentes est un R-espace vectoriel.
Solution :

 La suite nulle converge (vers 0), donc est dans F.

o Soit ((Uy,)nens> (Vn)new) € E?, on note ¢4 et £, leurs limites réelles respectives. Soit A € R.
Alors (Au,, +v,,),en converge vers M, + ¢, € R. Donc (Au, +v,,),en € E.

Donc FE est un sous-espace vectoriel de ’espace vectoriel des suites réelles. Donc E est un R-espace vectoriel.

Exercice 4. Montrer que ’ensemble D des suites réelles divergentes n’est pas un R-espace vectoriel.
Solution : D est un sous-ensemble de R™ qui ne contient pas la suite nulle. Ce n’est donc pas un R-espace vectoriel.

Exercice 5. L’ensemble E’ des fonctions f définies de R dans R et telles que f(0) = 0 est-il un R-espace vectoriel ?
Solution :

o La fonction nulle est dans E’ (car elle vaut 0 en 0).
e Soit (f,g) € (B')* et A € R. Alors (Af + ¢)(0) = Af(0) + g(0) = A0+ 0= 0. Donc \f +g € E’.

Donc E’ est un sous-espace vectoriel de I’espace vectoriel des applications de R dans R. Donc E’ est un R-espace
vectoriel.

Exercice 6. Soit n € N, ’ensemble C,,[X] des polynémes de degré au plus n est-il un C-espace vectoriel ?
Solution :

o deg(0) = < n, donc 0 € C,[X].

€ (C,[X])? et A € C. Alors deg(AP + Q) < max(deg(AP),deg(Q)). Or deg(Q) < n et deg(AP) <

e Soit (P, Q)
P) < n.Donc deg(AP + Q) <net AP+ Q € C,[X].

deg(

Donc C,,[X] est un sous-espace vectoriel de C[X]. Donc C,,[X] est un C-espace vectoriel.

Variante de ce raisonnement en utilisant les coefficients plutét que le degré :
_\\n k
« 0=3 ,0X" donc0€C,[X].
« Soit (P,Q) € (C,[X])? et X € C. Alors il existe (ag, ...,q,,) € C"™ et (B, ..., 3,) € C" tels que P(X) =
Sor X et Q(X) =" B X" Donc

n

(AP +Q)(X) = ) (A + B)(X).
k=0

Donc AP +Q € C,,[X].

Donc C,,[X] est un sous-espace vectoriel de C[X]. Donc C,[X] est un C-espace vectoriel.



2.2 Intersection de sous-espaces vectoriels
Proposition 2.4 (Intersection de sous-espaces vectoriels)

Soit E un K-espace vectoriel. L’intersection de deux sous-espaces vectoriels de E est un sous-espace vectoriel
de F.

Démonstration. Soit F' et G deux sous-espaces vectoriels de E.
o Par propriété des sous-espaces vectoriels de F, Oy, € F'et 0y € G. Donc 0, € FNG.

o Soit (z,y) € (FNG)% et X € K.
Comme z € F, y € F, A € K et F est un sous-espace vectoriel de F, alors Ax +y € F. De méme, Az +y € G.
Donc Az +y € FNG.

Donc F'N G est un sous-espace vectoriel de FE. O
Remarque. Ce résultat se généralise a 'intersection de plus de deux sous-espaces vectoriels.

Remarque. Attention : de maniere générale, la réunion de deux sous-espaces vectoriels de F n’est PAS un
sous-espace vectoriel de E.

Exercice 7. {0} x R et R x {0} sont deux sous-espaces vectoriels de R?. Montrer que ({0} x R) U (R x {0}) n’est
pas un sous-espace vectoriel de R2.
Solution : Il contient (0, 1) et (1,0), mais pas leur somme (1, 1), donc ce n’est pas un espace vectoriel.

2.3 Sous-espace vectoriel engendré par une famille
Définition 2.5 (Sous-espace vectoriel engendré)

Soit E un K-espace vectoriel, p € N* et § = (e;) une famille finie de vecteurs de E. On note Vect(S)

1<i<p
I’ensemble de toutes les combinaisons linéaires des vecteurs de S.

Vect(S) est un sous-espace vectoriel de E, appelé sous-espace vectoriel engendré par la famille .

Démonstration. On revient a la caractérisation des sous-espaces vectoriels :
P
e Op= ZOek, donc Og € Vect(8).
k=1

e Soit = et y deux vecteurs de Vect(S§), et A un scalaire. Donc 3(zy, ..., x,,) € KP et I(y;,...,y,) € KP tels que

P P
T = ze; ety = Zyiei. On peut alors écrire :
i=1 i=1
P P P
Ar+y = )‘Z%‘ei + Zyz P = Z (A\x; +y;) e; € Vect(S).
i=1 i=1 i=1
Donc Vect(S) est bien un sous-espace vectoriel de E. O

Exemple. D’apres le cours sur les polyndmes, Ry[X] = Vect(1, X, X?).

Exemple. Soit (a,b) € R\ {(0,0)}, Vect((a,b)) est un sous-espace vectoriel de R? appelé droite vectorielle :

Vect((a,b))



Exemple. Soit (aq,b;,c;) et (ay, by, cy) deux vecteurs non colinéaires de R3. Alors Vect((ay,by,¢;), (ag,bs,¢5))
est un sous-espace vectoriel de R, appelé plan vectoriel.

Exemple. Dans M, (K), Vect ((§9),(35),(59)) est I'ensemble des matrices triangulaires supérieures (qui forme
donc un espace vectoriel).

Exercice 8. Montrer que Vect((1,2),(1,0)) = R2.
Solution : L’inclusion Vect((1,2),(1,0)) C R? est immédiate. Réciproquement, soit (z,y) € R?,

(z,y) = %(1, 2) + (1: — g) (1,0) € Vect((1,2), (1,0)),

d’ott R? C Vect((1,2),(1,0)). Par double inclusion, on a donc égalité des deux ensembles.
Proposition 2.6 (Sous-espace contenant une famille)

Soit E un K-espace vectoriel, p € N* et § = (e;). . une famille finie de vecteurs de E. Tout sous-espace
1/1<i<p

Itx

vectoriel de E contenant les e; contient Vect(§).

Démonstration. Soit F un sous espace vectoriel de E contenant tous les e; et soit z € Vect(S). Alors il existe

(Tqy ey p) € KP tels que x = Z xe;. On sait que Vi € [1,p], e; € F. Or F est un sous-espace vectoriel de E, donc

F est stable par combinaison hnealre Donc z € F. Cela montre Vect(§) C F, d’ou le résultat annoncé. O
Proposition 2.7 (Cas d’un vecteur combinaison linéaire)

Soit E un K-espace vectoriel et & une famille finie de vecteurs de E. Si x € § est combinaison linéaire des
autres vecteurs de &, alors Vect(S) = Vect(S8’), ou 8 est la famille obtenue en retirant x a §.
Démonstration. Soit z un vecteur de § qui est combinaison linéaire des autres vecteurs de § et 8" la famille obtenue
en retirant = a &.

o & contient tous les éléments de &', donc Vect(S”) C Vect(S).

o Réciproquement, Vect(S") est un espace vectoriel qui contient tous les éléments de &’ et leurs combinaisons
linéaires, donc qui contient x. Donc Vect($”) contient tous les éléments de §. Donc Vect(S) C Vect(S”).

Donc par double inclusion, Vect(S) = Vect(S”). O

Exemple. (3,6) = 3(1,2), donc Vect((1,2),(3,6)) = Vect((1,2)) = {(A,2X), A € R}.

3 Familles finies de vecteurs
3.1 Familles génératrices
Définition 3.1 (Famille génératrice)
Soit E un espace vectoriel et § une famille finie d’éléments de FE. La famille § est dite génératrice de

lorsque Vect(S) = E.

Remarque. L’inclusion Vect(S) C E est évidente. Pour prouver que § est génératrice de E, il suffit donc de
montrer que E C Vect(S§), c’est-a-dire de montrer que tout = € E peut s’écrire comme combinaison linéaire des
éléments de §.

Exemple. Si P(X) € Ky[X], alors il existe (a,b,c) € K3 tels que P(X) = aX? + bX + c. Les vecteurs X2, X et 1
sont bien dans K,[X], donc (1, X, X?) est une famille génératrice de K,[X].



Exercice 9. La famille ((1,0),(1,1)) est-elle une famille génératrice de R? ?
Solution : Soit (z,y) € R2. On peut écrire (z,y) = (x —y)(1,0) + y(1,1). De plus (1,0) et (1,1) sont bien des
éléments de R2. Donc ((1,0),(1,1)) est une famille génératrice de R?.

Exercice 10. La famille ((1,0)) est-elle une famille génératrice de R? ?

Solution : (0,1) € R?, montrons par I'absurde qu’il ne s’écrit pas comme combinaison linéaire des éléments de
la famille. On suppose qu'il existe A € R tel que (0,1) = A(1,0) = (A,0). Alors 1 = 0 : absurde. Donc la famille
((1,0)) n’est pas génératrice de R2.

Exercice 11. Soit E = {(x,y,2) € R*|z = 2y}. Montrer que c’est un R-espace vectoriel, dont on déterminera une
famille génératrice.
Solution :

Méthode 1 : on gere les deux objectifs successivement.

e 0=2x0,donc (0,0,0) € E.
o Soit a = (x,,Y,,2,) €t b= (2,Yp, 2,) deux éléments de F et A € R.

Alors Aa+b = (Az, + 24, Ay, + Yy A2, + ), €6 Az, + 2 = A2y, + 2y, = 2(\y, + yp,), puisque a et b
sont dans E. Donc Aa+b € E.

E est donc un sous-espace vectoriel de R3. C’est donc un R-espace vectoriel.

Soit (x,y,z) € E. Alors x = 2y. Donc
(z,y,2) = (2y,v,2) = (2y,9,0) + (0,0, 2) = y(2,1,0) + 2(0,0,1).
Or (2,1,0) € Eet (0,0,1) € E. Donc ((2,1,0),(0,0,1)) est une famille génératrice de E.
Méthode 2 : on gere les deux objectifs simultanément. Soit u = (z,y, 2) € R3,
ueE<=r=2y<=u=2y,y,2) = u=1y(2,1,0)+2(0,0,1) <= u € Vect((2,1,0), (0,0,1)),
car on a bien (2,1,0) € Eet (0,0,1) € E. Donc E = Vect((2,1,0),(0,0,1)) ce qui redonne le méme résultat.
Proposition 3.2 (Famille contenant une famille génératrice)

Toute famille de vecteurs qui contient une famille génératrice de I’espace vectoriel E est une famille génératrice
de ’espace vectoriel E.

Démonstration. Soit & une famille génératrice de F et 8" une famille de vecteurs qui contient les vecteurs de §. Les
propriétés des sous-espaces vectoriels engendrés donnent directement Vect(S) C Vect($8”) C E. Or Vect(S) = E
puique § est une famille génératrice de E. Donc Vect(S') = E et 8’ est aussi une famille génératrice de E. O

Proposition 3.3 (Cas d’un élément combinaison linéaire des autres)

Soit E un espace vectoriel et § est une famille génératrice de F. Si x € § est combinaison linéaire des autres
vecteurs de &, alors la famille 8’ obtenue en retirant x & § est aussi génératrice de F.

Démonstration. Les propriétés des sous-espaces vectoriels engendrés et des familles génératrices donnent directement
E = Vect(8) = Vect(8”). Donc 8 est génératrice de E. O



3.2 Familles libres
Définition 3.4 (Famille libre, famille liée)

Une famille (eq, ey, ..., ep) de I'espace vectoriel E est dite libre lorsque pour tout p-uplet (o) . de scalaires
de KP,
p
Zakek =0p = Vke[l,p], a=0.
k=1
On dit alors que les vecteurs ey, ey, .., €, sont linéairement indépendants. Une famille qui n’est pas libre
est dite liée.

Remarque. Si x € F et © # 0p, alors la famille (z) est libre. En effet, soit A\ € K, si on suppose Az = 05, comme
x # 0p, alors A = 0.

P
v € KP, on suppose que Zakek =0y et on
k=1

Remarque. Pour montrer qu'une famille est libre, on fixe (a;), _._

cherche & en déduire que tous les o, sont nuls.

Exercice 12. Montrer que la famille ((2,1,0), (0,0, 1)) obtenue précédemment est une famille libre de R3.
Solution : Soit (), i) € R2. On suppose que (2, 1,0) + p(0,0,1) = (0,0,0). Alors (2\, A, 1) = (0,0, 0), ce qui donne
A= p=0. Donc ((2,1,0),(0,0,1)) est une famille libre de R3.

Exercice 13. Montrer que ((1,2),(3,6)) est une famille liée.
Solution : —3-(1,2) +1-(3,6) = (0,0), alors que ni —3 ni 1 ne sont nuls, la famille est donc liée.

Proposition 3.5 (Unicité de la décomposition dans une famille libre)

Soit E un K-espace vectoriel. Une famille (eq, e,,...,¢,) de E est libre si et seulement si pour tous scalaires

p p
A, Qg ey Oép, 517 525 ey Bp de [Ka Zakek = Zﬂkek = Vk € [[1,]7]], O = ﬁk
k=1 k=1

Démonstration. Soit oy, ag, .., a,, By, By, . , B, des scalaires. Le résultat annoncé découle directement de
I’équivalence suivante :

=

P P
(Z Qpep = Zﬁkek = Vke[l,p], o= 5k) — (Z(ak —Brler =0p = VEk € [L,p], (o —B) = 0)
k=1 k=1

k=1

O

Remarque. La liberté d’une famille permet donc d’identifier les coefficients dans une égalité.

Exercice 14. Soit f et g les fonctions définies sur R par Vo € R, f(x) = € et g(x) = 2. La famille (f,g) est-elle
libre dans I'espace vectoriel des fonctions réelles ?

Solution : Soit (A, ) € R?. Supposons que \f + ug = 0. Alors pour tout = réel, Ae® + pe®® = 0. En particulier,
on peut diviser par ¥ > 0 : Vo € R, A + pe® = 0. En prenant la limite pour x — —oo, on obtient A = 0. Donc
Vr € R, ue® = 0. La valeur en x = 0 donne g = 0. On a montré que A = y = 0, la famille est donc libre.

Exercice 15. Montrer que la famille (X + 2, X + 1, X?) est libre dans R[X].
Solution : Soit (ay, g, a3) € R3. On suppose que a; (X +2) +ay(X +1) + a3 X2 = 0. En regroupant les coefficients,
on trouve :

(20, + ay) + (g + ay) X + a3 X2 = 0.

Par identification des coefficients du polynoéme (0 = 0+0X +0X?), on obtient 2a; +ay = 0, a3 + a5 = 0 et a3 = 0,
ce qui donne en résolvant le systéme linéaire a; = ay = a3 = 0. La famille (1, X + 1, X?) est donc libre dans R[X].
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Proposition 3.6 (Famille de polynémes échelonnée en degré)

Soit n € N* et (Py,..., P,) une famille de polynémes de K[X]. Si la famille est échelonnée en degré
(c’est-a-dire si 0 < deg(P;) < ... < deg(P,)), alors elle est libre.

n
Démonstration. Soit (Aq, ..., A,) € K", on suppose que Z AP (X) =0.

k=1
Supposons que les A, ne sont pas tous nuls. On peut alors définir i = max{k € [1,n]|\; # 0}, ce qui donne
ZZ;: L kB (X) = 0. Or la famille est échelonnée en degré, donc P, est de degré strictement supérieur aux autres

polynoémes de la somme. De plus, A\, # 0, donc deg(zzzl A P(X)) = deg(P;(X)) > 0. Or cette somme est égale
au polynéme nul, qui est de degré —oo : absurde.
Donc tous les A\, sont nuls, donc la famille est libre. O

Exemple. La famille (1, (X + 1)%, (X — 2)7) est échelonnée en degrés, donc libre dans R[X].
Proposition 3.7 (Sous-famille d’une famille libre)

Toute sous-famille d’une famille libre est libre.

Démonstration. Soit (eq, ey, ...,e,) une famille libre. On va montrer que (ey, ey, ...,e, 1) reste libre, le résultat
général se montre ensuite par récurrence décroissante.
p—1 p—1
Soit a, .., ay, | des scalaires, on suppose que : Zakek = 0. Alors Zakek +0-e, =0g. Comme la famille
k=1
(€1,€9, ..., p) est libre, alors pour tout k € [1,p — 1]] oy, = 0. Donc (ey, eq,...,€,_1) est une famille libre. O

Proposition 3.8 (Cas d’un vecteur combinaison linéaire des autres)

Soit E un K-espace vectoriel. Une famille (e, e, ..., p) de E est liée si et seulement si 'un des vecteurs de
cette famille peut s’écrire comme une combinaison linéaire des autres vecteurs.

Remarque. En particulier toute famille qui contient 'élément neutre est liée, car si e; = 0g, e; = Oey + ... 4 Oe,,.

Démonstration. On fait la preuve en deux temps :

P
* Supposons que (€, €y, ...,€,) est liée. Alors il existe (a;);er1 ) € KP et j € [1,p] tels que Zaiei =0p et

) i=1
Jj—1 p
, . (6% a;
a; # 0. On peut donc écrire e;=— E —e; — g —e;.
=1 Y =51 Y

7—1
o Réciproquement, on suppose qu’il existe j € [1, p] et (51)16[[1 Gy € KT 1 tels que e; = Z,B + Z B;e;-
=1 i=j+1

En posant 8; = —1 # 0, on obtient Z B;e; = 0, ot les 3; ne sont pas tous nuls. La famille est donc liée.
i=1

O

Remarque. Si on ajoute a une famille libre un vecteur qui n’est pas combinaison linéaire de ses éléments, on
obtient donc une nouvelle famille libre.

Exercice 16. La famille ((0,1,2),(0,2,1),(0,1,1)) est-elle libre ?
Solution : On cherche a montrer que la famille est libre. Soit A, Ay et A3 trois réels, on suppose que :

A (0,1,2) 4+ Ay (0,2,1) + A5(0,1,1) = (0,0,0).
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On aurait alors (0, A} + 2y + 5,2\, + Ay + A3) = (0,0,0), et donc :

)\1+2)\2+A3 :0 _>\1+)\2 :O N )\1 :>\2
20+ At A3 =0 20 + A+ A3 =0 A3 = —3X,

Cela ne permet pas de conclure directement, mais permet de construire un contre-exemple.
Rédaction finale : (0,1,1) = $(0,1,2) + (0,2, 1), donc la famille est lie.

3.3 Bases

Définition 3.9 (Base, coordonnées)

Soit E un K-espace vectoriel. Une famille (e;) est une base de FE lorsque tout vecteur x de E peut

1<i<p
s’écrire d’une maniere unique comme une combinaison linéaire des vecteurs e;, ey, .., €

On appelle alors coordonnées de x les coefficients de cette combinaison linéaire.

-

Exemple. (1, X, X?) est une base de Ry[X] et les coefficients de 1 + 3X? dans cette base sont 1, 0 et 3.
Proposition 3.10 (Caractérisation des bases)

Soit E un K-espace vectoriel. Une famille finie d’éléments de E est une base de E si et seulement si elle est a
la fois libre et génératrice de F.

Démonstration. Soit § = (e;), i<p UDC famille finie d’éléments de E.

g\

e On suppose que S est une base de FE. La famille § est composée d’éléments de F et tout vecteur de E peut
étre écrit comme combinaison linéaire de vecteurs de &, donc § est une famille génératrice de E.

P p
Soit (xq,...,2,) € KP, on suppose que Zajiei = 0p. Comme 0y = Z()ei, I'unicité de la décomposition
' i=1

i=1
donne z; =z = ... = x, = 0, donc § est une famille libre.

p

e On suppose que & est une famille libre et génératrice de E. Soit x € E. Comme S est génératrice, x peut s’écrire
comme combinaison linéaire des vecteurs de §. Et comme & est libre, cette décomposition en combinaison
linéaire est unique. Donc & est une base de FE.

O
Exercice 17. Dans K", on pose e; = (1,0,...,0), .., e, = (0, ..., 1 oo 0), ey e, = (0,...,0,1). Montrer

que (eq, €y, ..., ¢,) forme une base de K".
Solution :

e Soit (ay, g, ...,a,) € K" On suppose que ZZ—1 a;e; = Ogn. Alors (o, 9, ...,a,) = (0,0,...,0), et par

identification des coefficients les a; sont tous nuls. La famille (e, e, ..., e,,) est donc libre.

o Soit z = (x,29,...,x,) € K. Onaalors x = )
donc génératrice de K™.

oy i€ Or Vi € [1,n], e; € K™ La famille (e, e, ..., €,,) est

La famille est libre et génératrice, c’est donc une base de K.

Remarque. Plusieurs ensembles usuels ont des bases « naturelles », appelées bases canoniques :

Espace vectoriel ‘ Base canonique associée
K™ ((1,0,...,0),(0,1,0,...,0),...(0, ...,0, 1))
K, [X] (1,X,X2,...,X")
My (K) (Bij)i.d)eltm] (1]

On rappelle que E; ; désigne la matrice dont tous les coefficients sont nuls a I’exception de celui placé a la i-eme
ligne et j-iéme colonne, qui vaut 1.

12



Exemple. La famille ((1,0,0), (0,1,0), (0,0,1)) est la base canonique de R3 ou de C3.

Exercice 18. Soit E I'ensemble des suites réelles qui vérifient la relation de récurrence : Vn € N, u,, o = u, 1 +u,.
1. Montrer que E est un espace vectoriel.
2. En déterminer une base.

Solution :

1.  « La suite nulle vérifie la relation de récurrence proposée, donc appartient a E.

e Soit u et v deux suites de F, et A € R. Alors Vn € N,
()\’LL + U>n+2 = A<un+1 + un) + Un+1 + Up = (Aun+1 + Un+1) + (Aun + Un) = (Au + U)nJrl + ()‘u + U)n'

Donc Au+v € E.

Donc F est un sous-espace vectoriel de ’ensemble des suites réelles. Donc c¢’est un R-espace vectoriel.

2. Soit u € E, c’est une suite récurrente linéaire d’ordre deux, d’équation caractéristique X2 = X + 1, dont
les solutions sont 1+2\/g et gy = % D’apres le cours sur les suites réelles, il existe donc deux réels o et

B tels que

1+v5) 1-v5\"
7)o (%)

Or e N, (5555)" + (555)"" — (1565)" (14 25) = (155)" (155)° = (255)"™ (ear 258
1

Vn €N, un:oz<

(1+72\/5>2 _ 1+x@2+

est solution de I’équation caractéristique, donc

2
On montre de méme que ((1_2‘/5)n)new € E. Donc (((H‘/g) )new,((l_‘/g) Jnen) st une famille
génératrice de F.

e

2
pourn=0etn=1que A+ pu=0et )\1+T\/g+u1_2—\/g:(). Donc)\:—uetu(l_Q—‘/g—Hz—‘/g) = 0. Cela
donne A =y = 0. Donc (((H\/g)n)neN, <(1,\/g)”)n€N) est une famille libre de E.

e Soit A et u deux réels, on suppose que Vn € N, A (HT\/g)n +u (1_‘/5)71 = 0. On trouve en particulier

2 2

Donc (((Hz\/g)n)new, <(172\/3)”)HEN) est une base de E.

4 Somme de sous-espaces vectoriels
4.1 Définitions et premieres propriétés
Définition 4.1 (Somme de deux sous-espaces vectoriels)

Soit E un espace vectoriel et F' et G deux sous-espaces vectoriels de E. L’ensemble des éléments de F

s’écrivant sous la forme de la somme d’un élément de F et d’un élément de G est un sous-espace vectoriel de

E appelé somme des sous-espaces vectoriels F' et G. On note F' + G = {z + y|(z,y) € F x G}.
Démonstration. Montrons qu’il s’agit bien d’un sous-espace vectoriel de F :

e Oy € Fet 0y € G, puisque F et G sont des sous-espaces vectoriels de E. Donc 0y =05+ 05 € F 4+ G.

o Soit (u,v) € (F + G)? et \ un scalaire. Alors 3(up, ug) € F x G tels que u = up + ug et I(vpvg) € F X G
tels que v = vy + vg. Donc

M4v=Nup+ug) + (Vp+vg) = Aup+vp) + (Aug + vg).
Or Mup+vp € Fet Aug +v, € G puisque F'et G sont stables par combinaison linéaire. Donc Au+wv € F+G.

Donc F' + G est un sous-espace vectoriel de FE. O
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Proposition 4.2 (Somme d’espaces vectoriels engendrés)

Soit F un K-espace vectoriel et &, &5 deux familles finies d’éléments de E. On note § la famille qui juxtapose
les vecteurs de 8§ et 8. Alors Vect(S;) + Vect(S5) = Vect(S).

Démonstration. 1l suffit de revenir & la définition. O

Remarque. Si Fet G sont deux sous-espaces vectoriels de F, on obtient donc une famille génératrice de F'+ G en
juxtaposant des familles génératrices de F et de G.

Exercice 19. On se place dans R[X]. Que vaut R, [X] + Vect(X?)?
Solution : R;[X] + Vect(X?) = Vect(1, X) + Vect(X?) = Vect(1, X, X?) = R,[X].

Définition 4.3 (Somme directe de deux sous-espaces vectoriels)

Soit F un K-espace vectoriel et F et G deux sous-espaces vectoriels de E. On dit que la somme F + G est
une somme directe lorsque tout élément u de F' + G s’écrit de maniére unique sous la forme u = = + y,
avec (z,y) € F' x G. La somme est alors notée F'® G.

Remarque. La définition de F'+ G donne l'existence de cette décomposition, il suffit donc de montrer 'unicité
pour conclure que la somme est directe.

Proposition 4.4 (Caractérisation des sommes directes)

Soit E un K-espace vectoriel et F et G deux sous-espaces vectoriels de F. La somme F' 4 G est une somme
directe si et seulement si F NG = {0g}.

Démonstration. On procede en deux temps :

e Supposons que FFNG = {0gz}. Soit u € F' + G, supposons qu'il existe (z1,y;) € F' x G et (x4,y,) € F x G
tels que u =z +y; = x5 + y,. Alors :
Ly =Ty =Y — Y-
—_————— R
eF €G
Donc z; — x5 € FNG = {0z}, clest-a-dire ; = x,. De méme, y; = y,. La décomposition de u est donc
unique. Donc F' 4+ G est une somme directe.

e Réciproquement, supposons que F'+ G est une somme directe. Soit u € F'N G, on peut le décomposer comme
u=u+0 et comme v = 0+ u. L'unicité de la décomposition donne u = 0p. Donc F NG C {0y}, donc

O

Remarque. Comme F et G sont des sous-espaces vectoriels de E, on a toujours {0z} C F N G. Il suffit donc de
montrer que F'N G C {0z} pour montrer qu’une somme est directe.

Exercice 20. Montrer que la somme R, [X] 4+ Vect(X?) est directe.

Solution : Soit P(X) € R,[X]NVect(X?). Alors 3(a,b) € R? tel que P(X) = aX +bet I\ € R tel que P(X) = AX
Donc aX + b = AX?, et par identification des coefficients des polynémes a = b = XA = 0. Donc P(X) = 0. On e
déduit que R,[X] N Vect(X?) = {0}, c’est-a-dire que la somme est directe.

Remarque : avec I'exercice |19, on a donc montré que Ry[X] = R;[X] @ Vect(X?).
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4.2 Sous-espaces vectoriels supplémentaires
Définition 4.5 (Sous-espaces vectoriels supplémentaires)

Soit E un K-espace vectoriel et F et G deux sous-espaces vectoriels de E. On dit que F et G sont supplé-
mentaires dans F lorsque £ = F & G.

Remarque. Des méthodes pratiques de construction de supplémentaire seront étudiées dans un prochain chapitre.
Remarque. Un méme espace vectoriel peut avoir plusieurs supplémentaires différents.

Exemple. Vect(X?) et Vect(X?2 + 1) sont deux supplémentaires de R, [X] dans Ry[X]
(on a montré R,[X] = R, [X] @ Vect(X?) dans I'exercice |20, 1’égalité Ry[X] = R,[X] @ Vect(X? + 1) s’établit de la
méme maniere).

Exemple. Les supplémentaires d’une droite du plan passant par 0 sont toute autre droite du plan passant
par 0. Par exemple, les supplémentaires de Vect((1,0)) dans R? sont les ensembles de la forme Vect((a,b)) avec
(a,b) € R x R*.

1 ect((1,1))

>
/ :
Supplémentaires possibles

Exemple. Les supplémentaires d'un plan P de R? passant par 0 sont toute droite du plan passant par 0 et non
incluse dans le plan P.

Exercice 21. Soit n un entier naturel non nul, on se place dans M, (R). Montrer que 8, (R) et A,,(R) sont deux
sous-espaces vectoriels supplémentaires.
Solution :

o La matrice nulle est symétrique. De plus, soit (4,B) € 8,,(R) et A€ R, (M + B)" = A" + BT = M + B,
donc AA + B € §,(R). Donc §,,(R) est un sous-espace vectoriel de M, (R).

e On montre de méme (en changeant les signes des transposées) que A, (R) est un sous-espace vectoriel de
M, (R).

e Montrons par analyse-synthese que toute matrice s’écrit de maniére unique comme somme d’une matrice
symétrique et d’une antisymétrique. Soit A € M, (R).

— Analyse : on suppose qu'il existe B € §,(R) et C € A,(R) tels que A = B+ C. Alors :

AT=B"T+CT=B-_C.

Sommer les deux relations donne A + AT = 2B, et donc B = A+TAT. On en déduit ensuite C = A}AT.

— Synthese : on pose B = AJ’TAT et C'= A_2AT. Il est immédiat que A = B + C. De plus,

T T _
:A.27+A:BetCT:A.27A:—C,

BT
donc B est symétrique et C' antisymétrique. Ces valeurs de B et C sont donc solution du probléme.

Il existe donc bien une unique décomposition de A comme somme d’une matrice symétrique et d’une
antisymétrique, donc M, (R) =8, (R) & A, (R).
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