Exercices PCSI . .
£ Bouchet Relations asymptotiques

Exercice 1 (%). Déterminer un équivalent simple lorsque n — 400 de :

1. n+2 2. 142 3. 3¢2" + 2n 4. ew (cos() —1)
5. gz —pte” 6. (n+2)e" s 7. (n? +n+1)In(n) 8. smrt
In(n2+1 4 no\2
9. (2n —In(n))3 10. Pl 1., /4—2 -2 12, (&en)
2 2 nln(n2+n)+2n 1+n)? 1
13 /2 +2 14, s 15. % (em —1) 16. In(1 + n) — In(n)

Résultat attendu : On conjecture puis montre les équivalents en revenant a la définition :

1. n 2. 2 3. 32 4. -3
5 -3 6. nemt3 7. n?In(n) 8. 2

3 In(n?) 1 om
9. 8n 10. () =2 1. —= 12. e

Exercice 2 (k). Déterminer un équivalent simple lorsque z — +oco puis lorsque x — 0 (ou parfois 01) de :

1 2+ 3z 2. 227 —bx 47 3.2t —2+4 4. 2_ 35

5. 1n”ffiiz> 6. 5In(z) + 2 7. 5In(z) 4 2z 8. 5In(z) + 2
9. 1 10. 3¢* + o — 1 1. 253 12. B
13. 222123 14. % 15. 15 16. (ln(2x+4x4))2

17. In(1 + 2z + 32?)

Résultat attendu : On conjecture puis montre les équivalents en revenant a la définition, d’abord en +oo :

1. 3z 2. 222 3. 2t 4. 2
:ES
5 i) 6. 5ln(x) 7. 2% 8. 5ln(x)
9. 5 10. 3e” 1. -3 12. 2
13. 2e7® 4. x 15. & 16. 16(In(z))?
17. 21n(x)
Puis en O :
1. 2 2.7 3.4 4. -3
5 % 6. 5ln(x) . 5In(x) 8. 2
9. & 10. 2 11. 5= 12. 3
13. 5 14. x1n(3) 15. —1 16. (In(z))?
17. 2x

Exercice 3 (%%). Trouver un équivalent simple de In (1 —sin (1)).
Résultat attendu : Les équivalents usuels donnent In (1 — sin (%)) ~ —

3=

Exercice 4 (% %). Soit u une suite telle que Vn € N, u,, > 0 qui vérifie In (ul) ~ # Montrer que u converge
vers une limite ¢ et donner un équivalent de (u,, — ¢).
Résultat attendu : u converge vers 2 et u, —2 ~ —-%.




Exercice 5 (% %). Soient u et v deux suites & valeurs strictement positives telles que w,, ~ v,, et qui vérifient
limw,, = limv,, = +o0.

1. Montrer que In(u,,) ~ In(v,,).

2. Montrer qu’on n’a pas forcément e"n ~ e¥n.

3. Application : déterminer un équivalent de wii?m et de lnzle?itrln)
Résultat attendu :

1. Retour a la définition 2. Contre exemple.

3. BT ~ 2 e i ~

Exercice 6 (). Simplifier au maximum les expressions suivantes, en restant le plus précis possible.

1. n20(n3) 2. Lo(n) 3. o(n?) x o()
4. o(e™™) x O(n) 5. O(In(n)) x O (%) 6. <ln?n )o(nz) x o(e™™)
7. 20(y/n) + o(y/n) 8. 0O()-0(%) 9. o(e™) —20(e™™)
10. X(o(In(n)) — o(In(n))) 11. e™ 4+ O(e™) 12. o(n?) + o(n?)
13. o(e™™) +o(e™?") 14. L 4+0(L) 15. n+o(nln(n)) + o(In(n))

Résultat attendu :

. O(n®) co(d) 3. 0(1)

. ofne™) o () 6 o)
7. o(y/n . 0(3) 9. O(e™)
10. o (1)) 11. O(e™) 12. o(n?)
13. o(e™™) 14. o(1) 15. o(nIn(n))

Exercice 7 (%).

1. Simplifier au maximum les expressions suivantes (les O et o sont en © — +00), en restant le plus précis

possible.

( ) 0( +1) (b) o(52%) — o(22?) (c) O(z) —O(a?)
In(z) (o(z) + o(x?)) (e) O(2+z — 32*) (f) o(%) +o(1)

(g) o(z®—2— %) (h) o(3z + %) (i) o(72

2. Réaliser le méme travail avec cette fois-ci les O et 0 en  — 0 (0F lorsqu’on utilise un logarithme).

Résultat attendu :

L. (a) o(z) (b) o(z?) (c) O(z?)
(d) o(z*In(x)) (e) O(z*) (f) o(1
(g) o(z?) (h) o(%) (i) o(3)

2. (a) o(1) (b) o(z?) (c) O(z)
(d) o(zIn(x)) (e) O(1) (f) o(3)
(2) o() (1) o (%) (@) o()



Exercice 8 (). Vrai ou faux? Justifier.

1. n® =o(e") 2. /n=o(n) 3. n® =o(e")
4.7%:0 L) 5. - =o(2 6. 5n* —3n? —1=0(n%)
7. o(n?) = o(n?) 8. o(n?) = o(n?)
Résultat attendu :
1. Vrai 2. Vrai 3. Vrai
4. Vrai 5. Faux 6. Vrai
7. Vrai 8. Faux

Exercice 9 (%). Simplifier au maximum (et sans perdre de précision) les expressions suivantes (les O et o sont
enz —0):

1. 1422 — 2% +o(x) 2. 525 — 322 + o(x?) 3. 2+ 22 —x3+o(x+1)
4. 141 22 +o(z —2?) 5. L+1l—z+o0(d)

Résultat attendu :

1. 1422+ o(x) 2. =322 + o(2?) 3. =2+ o(1)
4. 141 +o(x) 5. L +o0(d)

Exercice 10 (k%). Soit (a,b,c) € R, avec b > 0. On considére la suite u qui vérifie u,, = a + % +-5+o(%)
Est-elle monotone a partir d’un certain rang?
Résultat attendu : La suite u est décroissante a partir d’'un certain rang.

Exercice 11 (%%). Soit ¢ > 1. On pose pour tout n € N : ¢,, = %.

1. Soit n € N. Exprimer ¢, ,, en fonction de ¢,,.
2. En déduire que ¢" = o(n!)
n—-+0oo

Résultat attendu :

)
1. E77,—0—1 - n.»,.lgn

2. On montre que (g,,),,cn converge (décroissante a partir d’'un certain rang et minorée par 0), puis on passe
a la limite dans I’égalité de la question précédente pour montrer que sa limite vaut 0.

Exercice 12 (% %). Comparer asymptotiquement (c’est-a-dire déterminer qui est négligeable devant qui) les
suites a, b, ¢ et d définies pour tout entier n par :
=nl b, =n" ¢, = (2n)! d, = (2n)".

Résultat attendu : n! = o(n™) puis n” = o((2n)™) puis (2n)" = o((2n)!).

Exercice 13 (%). Déterminer le comportement lorsque n — 400 de :

Lo(1+%)" 2 (1+%)" 3. (1-1)" 4 (1— L) 5. (1-%)"

Résultat attendu : Les limites valent :

1. e9=1 2. +o00 3. ¢! 4. V=1 5.0



Exercice 14 (% %). Etudier les limites des fonctions suivantes (les équivalents et négligeabilités peuvent étre
nécessaires ou ne pas ’étre) :

1. Limites en 17 et +oo de a(z) =In(y/z —1) — In(z — 1),

2. Limites en —oo et en +oo de b(x) = 22%,

i _ a8
3. Limite en 8 de d(z) = Vo

4. Limites en 07 et 400 de f(z) = zIn (%).

Résultat attendu :

z+00 a1t

1. lim a(z) =—oc0, lim a(z)=1In (1) = —1In(2).

2. lim b(z) =400, lim b(z)=0.

r—+00 T——00

3. limd(x) = 12.
r—8

4. lim f(x)=0, lim f(z)=—1.

x—0+ T—+00



Exercice 15 (Type DS).

On cousideére la fonction h définie sur R par : Vt € R, h(t) =

1.

w

a

a
b

. Montrer que pour tout t € R, on a |h/(t)| < h(t) < 3

(a)
(b)
(a)
(b)

et
Réaliser une étude complete de h : parité, variations, limites, extremums et allure du graphe.

Déterminer un équivalent simple de h(t) quand t — +o0 et quand t — —occ.

Montrer que A admet un unique point fixe /.
En utilisant I’étude de fonction réalisée en question 1, justifier que 0 < ¢ < %

R

. On consideére la suite u définie par uy = 0 et la relation de récurrence : Vn € N, u,,; = h(u,).

(a
(b
(c

)
)
)
(d)

Montrer que u est bien définie et a valeurs dans [0, 3].
Justifier que pour tout n € N, |u, ; — | < 3|u, —|.
En déduire que Vn € N, |u,, — £ < Qn% Que peut-on en conclure sur la convergence de la suite u ?

Déterminer un entier n, tel que Uy, SOit une valeur approchée de £ & 1073 pres.

5. Pour tout n € N, on pose ¢, = u,, —£. Montrer que €, ; ~ h'({)c,. Interpréter ce résultat.

n—+oo

Indication : on admet que si h est dérivable en un point €, alors h(t) = h(€)+h (0)(t—2€)+o(t—10).

Résultat attendu :

1.

3. Soit t € R, |W ()| =

4.

(a)

(b)

h est paire car Vi € R, h(—t) = —~— = h(t). De plus, h est dérivable sur R et Vt € R, h/(t) = =%

et (CETaE
Soitt e R, /(1) >0« el <elt et —te 1iy:h(t)

t < 0. Donc h est croissante sur R_ et décroissante /\

sur R_. Elle admet un maximum en 0, qui vaut

h(0) = . Enfin, tLiHloo h(t) =0 et tii{noo h(t) = 0.

VteR, €t = 14e2 — 1, doncel +et ~ eleth(t) ~ L=et
t—+o00

et t—+o00 t—+00

vt € R, et:jft =e?+1 — I,doncel +et ~ eteth(t) ~ L =el.
t—+o00 t——o00 t——o00

Soit t < 0, alors h(t) > 0 d’apres l.a. Donc h(t) # t. Soit t € R, on pose g(t) = h(t) — t. Elle est
dérivable sur R, et 1.a donne Vt € R, ¢'(t) = h'(t) — 1 < —1 < 0. La fonction g est donc strictement

décroissante sur R,. Comme elle est aussi continue, on peut appliquer le théoreme de la bijection :

g réalise une bijection de R, dans g(R,). Or g(0) = § et tli_rgl g(t) = —oo, donc g(R,) =] — o0, 3].
—+00

Comme 0 €] — o0, 3], 3¢ € R, tel que g(¢) = 0 <= h({) = £. Donc h admet un unique point fixe.

On a vu en question 1.a que h est bornée par 0 et %, donc 0 < h(f) < %, ce qui donne 0 < /£ < %

t ‘e tfe"‘ ‘e t|+‘et‘ e tiet 1 csi
= lorene < CTe? = e ? = ahiet = h(t) par propriétés de la valeur

e t—et
(ef+e1)2

absolue. L’étude de h effectuée en 1.a garantit par ailleurs que h(t) < %, ce qui permet de conclure.

(a)
(b)

D’apres 1.a, h est minorée par 0 et majorée par % Donc lintervalle |0, %] est stable par h. Or,

uy =0 € [0, 1]. Donc u est bien définie et & valeurs dans [0, 1].

h est dérivable sur R. De plus, d’apres 3., |h’| est majorée par % L’inégalité des accroissements finis
donne alors que V(z,y) € R?, |h(z) — h(y)| < § |z —yl.

Soit n € N, prendre z = u,, et y = ¢ donne |h(u,) —h(€)| < 3 |u, — €], cad |u, 4 — €] < 3 |u, — .
Soit n € N, on pose P(n) : « |u, — €| < 52+ » Ona |uy — €| = [0 — | = £ < § donc P(0) est vraie.
Soit n € N, on suppose P(n) vraie. 4b. donne |u,,,; —¢| < 1 |u, — (| < 1 x 715 = 515. Donc P(n+1)
est vraie. Donc Vn € N |u,, — | < 577x — 0. Donc u converge vers ¢ (par encadrement).

vn € N, |u, —{| < 5. Pour avoir |u, —¢| < 1073, il suffit donc de vérifier 5~ < 1073, Or

g <1073 <= 2771 > 103 = In(2"*1) > In(10%) <= (n+ 1)In(2) > 3In(10) <= n > 2200 1

In(2)
3 112((;)0 ) J convient.

ol on a utilisé la stricte croissance de In sur R et In(2) > 0. Donc n, = L

5. D’apres l'indication, h(t) =, C+1 () (t—C)+o(t—L) car h({) = L. OrVn € N, e, = u, 1 —¢ = h(u,)—~.
—
Comme u converge vers ¢, h(u,,) = L+ h' (0)(u, —£)+ o(u, — ). Donc ¢, = W (e, +o(e,),
n—-+o0o n—+00

donc ¢, ~ h'(€)e,,. Interprétation : ¢,, représente la précision de 'approximation de ¢ par u,,. Cette
précision s’améliore d’un facteur h’(¢) & chaque nouveau terme de la suite.
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