
Exercices PCSI
É.Bouchet Relations asymptotiques
Exercice 1  (★). Déterminer un équivalent simple lorsque 𝑛 → +∞ de :

1. 𝑛 + 2 2. 1
𝑛 + 2 3. 3𝑒2𝑛 + 2𝑛4 4. 𝑒 1

𝑛 (cos( 1
𝑛2 ) − 1)

5. 1
2𝑛2 − 3

𝑛 + 𝑒−𝑛 6. (𝑛 + 2)𝑒𝑛+3 7. (𝑛2 + 𝑛 + 1) ln(𝑛) 8. 3
5𝑛2+1

9. (2𝑛 − ln(𝑛))3 10. ln(𝑛2+1)
ln(𝑛+1) 11. √4 − 4

𝑛
− 2 12. ( 𝑛+𝑒𝑛

1+𝑒2𝑛 )2

13. √ 2
𝑛4 + 2

𝑛2 14. 𝑛 ln(𝑛2+𝑛)+2𝑛
(𝑛+1)2 ln(𝑛5+1) 15. (1+𝑛)2

cos( 1
𝑛 )

(𝑒 1
𝑛 − 1) 16. ln(1 + 𝑛) − ln(𝑛)

Résultat attendu : On conjecture puis montre les équivalents en revenant à la définition :

1. 𝑛 2. 2 3. 3𝑒2𝑛 4. − 1
2𝑛4

5. − 3
𝑛 6. 𝑛𝑒𝑛+3 7. 𝑛2 ln(𝑛) 8. 3

5𝑛2

9. 8𝑛3 10. ln(𝑛2)
ln(𝑛) = 2 11. − 1

𝑛 12. 𝑒−2𝑛

13.
√

2
𝑛 14. 𝑛 ln(𝑛2)

𝑛2 ln(𝑛5) = 2
5𝑛 15. 𝑛 16. 1

𝑛

Exercice 2  (★). Déterminer un équivalent simple lorsque 𝑥 → +∞ puis lorsque 𝑥 → 0 (ou parfois 0+) de :

1. 2 + 3𝑥 2. 2𝑥2 − 5𝑥 + 7 3. 𝑥4 − 2 + 4
𝑥 4. 2

𝑥 − 3
𝑥2

5. 𝑥3+1
ln(1+𝑥2) 6. 5 ln(𝑥) + 2 7. 5 ln(𝑥) + 2𝑥 8. 5 ln(𝑥) + 2

𝑥

9. 1
2𝑥+3 10. 3𝑒𝑥 + 𝑥 − 1 11. 𝑥−3𝑥3

2𝑥2+𝑥4 12. 3𝑥2

𝑥2+𝑥3

13. 2𝑒𝑥+𝑥2+3
𝑒2𝑥+𝑥3 14. 𝑥2 ln(2+𝑥+𝑒𝑥)

𝑥+𝑥2 15. 1
3𝑥−2 16. (ln(2𝑥 + 4𝑥4))2

17. ln(1 + 2𝑥 + 3𝑥2)

Résultat attendu : On conjecture puis montre les équivalents en revenant à la définition, d’abord en +∞ :

1. 3𝑥 2. 2𝑥2 3. 𝑥4 4. 2
𝑥

5. 𝑥3

2 ln(𝑥) 6. 5 ln(𝑥) 7. 2𝑥 8. 5 ln(𝑥)
9. 1

2𝑥 10. 3𝑒𝑥 11. − 3
𝑥 12. 3

𝑥
13. 2𝑒−𝑥 14. 𝑥 15. 1

3𝑥 16. 16(ln(𝑥))2

17. 2 ln(𝑥)

Puis en 0 :

1. 2 2. 7 3. 4
𝑥 4. − 3

𝑥2

5. 1
𝑥2 6. 5 ln(𝑥) 7. 5 ln(𝑥) 8. 2

𝑥
9. 1

3 10. 2 11. 1
2𝑥 12. 3

13. 5 14. 𝑥 ln(3) 15. − 1
2 16. (ln(𝑥))2

17. 2𝑥

Exercice 3  (★★). Trouver un équivalent simple de ln (1 − sin ( 1
𝑛)).

Résultat attendu : Les équivalents usuels donnent ln (1 − sin ( 1
𝑛)) ∼ − 1

𝑛

Exercice 4  (★★). Soit 𝑢 une suite telle que ∀𝑛 ∈ ℕ, 𝑢𝑛 > 0 qui vérifie ln ( 2
𝑢𝑛

) ∼ 1
𝑛2 . Montrer que 𝑢 converge 

vers une limite ℓ et donner un équivalent de (𝑢𝑛 − ℓ).
Résultat attendu : 𝑢 converge vers 2 et 𝑢𝑛 − 2 ∼ − 2

𝑛2 . 



Exercice 5  (★★). Soient 𝑢 et 𝑣 deux suites à valeurs strictement positives telles que 𝑢𝑛 ∼ 𝑣𝑛 et qui vérifient 
lim 𝑢𝑛 = lim 𝑣𝑛 = +∞.

1. Montrer que ln(𝑢𝑛) ∼ ln(𝑣𝑛).

2. Montrer qu’on n’a pas forcément 𝑒𝑢𝑛 ∼ 𝑒𝑣𝑛 .

3. Application : déterminer un équivalent de ln(𝑛2+3𝑛+2)
ln(𝑛)  et de 𝑛2+1

ln(𝑒𝑛+𝑛) .

Résultat attendu :

1. Retour à la définition 2. Contre exemple.
3. ln(𝑛2+3𝑛+2)

ln(𝑛) ∼ 2 et 𝑛2+1
ln(𝑒𝑛+𝑛) ∼ 𝑛.

Exercice 6  (★). Simplifier au maximum les expressions suivantes, en restant le plus précis possible.

1. 𝑛2𝑂(𝑛3) 2. 1
𝑛2 𝑜(𝑛) 3. 𝑜(𝑛2) × 𝑜 ( 1

𝑛3 )
4. 𝑜(𝑒−𝑛) × 𝑂(𝑛) 5. 𝑂(ln(𝑛)) × 𝑂 ( 1

𝑛3 ) 6. ( 3
ln(𝑛)) 𝑜(𝑛2) × 𝑜(𝑒−𝑛)

7. 2𝑜(
√

𝑛) + 𝑜(
√

𝑛) 8. 𝑂 ( 1
𝑛) − 𝑂 ( 1

𝑛) 9. 𝑜(𝑒−𝑛) − 2𝑂(𝑒−𝑛)
10. 1

𝑛 (𝑜(ln(𝑛)) − 𝑜(ln(𝑛))) 11. 𝑒𝑛 + 𝑂(𝑒𝑛) 12. 𝑜(𝑛2) + 𝑜(𝑛3)
13. 𝑜(𝑒−𝑛) + 𝑜(𝑒−2𝑛) 14. 1

𝑛3 + 𝑜 ( 1
𝑛) 15. 𝑛 + 𝑜(𝑛 ln(𝑛)) + 𝑜(ln(𝑛))

Résultat attendu :

1. 𝑂(𝑛5) 2. 𝑜 ( 1
𝑛) 3. 𝑜 ( 1

𝑛)
4. 𝑜(𝑛𝑒−𝑛) 5. 𝑂 ( ln(𝑛)

𝑛3 ) 6. 𝑜 (𝑛2𝑒−𝑛

ln(𝑛) )
7. 𝑜(

√
𝑛) 8. 𝑂 ( 1

𝑛) 9. 𝑂(𝑒−𝑛)
10. 𝑜 ( ln(𝑛)

𝑛 ) 11. 𝑂(𝑒𝑛) 12. 𝑜(𝑛3)
13. 𝑜(𝑒−𝑛) 14. 𝑜 ( 1

𝑛) 15. 𝑜(𝑛 ln(𝑛))

Exercice 7  (★). 

1. Simplifier au maximum les expressions suivantes (les 𝑂 et 𝑜 sont en 𝑥 → +∞), en restant le plus précis 
possible.

(a) 𝑜(𝑥 + 1) (b) 𝑜(5𝑥2) − 𝑜(2𝑥3) (c) 𝑂(𝑥) − 𝑂(𝑥2)
(d) ln(𝑥) (𝑜(𝑥) + 𝑜(𝑥2)) (e) 𝑂(2 + 𝑥 − 3𝑥4) (f) 𝑜 ( 1

𝑥) + 𝑜(1)
(g) 𝑜 (𝑥2 − 2 − 1

𝑥3 ) (h) 𝑜 ( 1
𝑥2 + 1

𝑥3 ) (i) 𝑜 ( 1
𝑥+2)

2. Réaliser le même travail avec cette fois-ci les 𝑂 et 𝑜 en 𝑥 → 0 (0+ lorsqu’on utilise un logarithme).

Résultat attendu :

1. (a) 𝑜(𝑥) (b) 𝑜(𝑥3) (c) 𝑂(𝑥2)
(d) 𝑜(𝑥2 ln(𝑥)) (e) 𝑂(𝑥4) (f) 𝑜(1)
(g) 𝑜(𝑥2) (h) 𝑜 ( 1

𝑥2 ) (i) 𝑜 ( 1
𝑥)

2. (a) 𝑜(1) (b) 𝑜(𝑥2) (c) 𝑂(𝑥)
(d) 𝑜(𝑥 ln(𝑥)) (e) 𝑂(1) (f) 𝑜 ( 1

𝑥)
(g) 𝑜 ( 1

𝑥3 ) (h) 𝑜 ( 1
𝑥3 ) (i) 𝑜 (1)

2



Exercice 8  (★). Vrai ou faux ? Justifier.

1. 𝑛2 = 𝑜(𝑒𝑛) 2.
√

𝑛 = 𝑜(𝑛) 3. 𝑛5 = 𝑜(𝑒𝑛)
4. 1

𝑛2 = 𝑜 ( 1
𝑛) 5. 1

ln 𝑛 = 𝑜 ( 1
𝑛) 6. 5𝑛4 − 3𝑛2 − 1 = 𝑂(𝑛4)

7. 𝑜(𝑛2) = 𝑜(𝑛3) 8. 𝑜(𝑛3) = 𝑜(𝑛2)

Résultat attendu :

1. Vrai 2. Vrai 3. Vrai
4. Vrai 5. Faux 6. Vrai
7. Vrai 8. Faux

Exercice 9  (★). Simplifier au maximum (et sans perdre de précision) les expressions suivantes (les 𝑂 et 𝑜 sont 
en 𝑥 → 0) :

1. 1 + 2𝑥 − 𝑥2 + 𝑜(𝑥) 2. 5𝑥5 − 3𝑥2 + 𝑜(𝑥3) 3. −2 + 𝑥2 − 𝑥3 + 𝑜(𝑥 + 1)
4. 1 + 1

𝑥 − 𝑥2 + 𝑜(𝑥 − 𝑥2) 5. 1
𝑥2 + 1 − 𝑥 + 𝑜 ( 1

𝑥)

Résultat attendu :

1. 1 + 2𝑥 + 𝑜(𝑥) 2. −3𝑥2 + 𝑜(𝑥3) 3. −2 + 𝑜(1)
4. 1 + 1

𝑥 + 𝑜(𝑥) 5. 1
𝑥2 + 𝑜 ( 1

𝑥)

Exercice 10  (★★). Soit (𝑎, 𝑏, 𝑐) ∈ ℝ3, avec 𝑏 > 0. On considère la suite 𝑢 qui vérifie 𝑢𝑛 = 𝑎 + 𝑏
𝑛 + 𝑐

𝑛2 + 𝑜 ( 1
𝑛2 ). 

Est-elle monotone à partir d’un certain rang ?
Résultat attendu : La suite 𝑢 est décroissante à partir d’un certain rang. 

Exercice 11  (★★). Soit 𝑞 > 1. On pose pour tout 𝑛 ∈ ℕ : 𝜀𝑛 = 𝑞𝑛

𝑛! .

1. Soit 𝑛 ∈ ℕ. Exprimer 𝜀𝑛+1 en fonction de 𝜀𝑛.

2. En déduire que 𝑞𝑛 =
𝑛→+∞

𝑜(𝑛!)

Résultat attendu :

1. 𝜀𝑛+1 = 𝑞
𝑛+1𝜀𝑛

2. On montre que (𝜀𝑛)𝑛∈ℕ converge (décroissante à partir d’un certain rang et minorée par 0), puis on passe 
à la limite dans l’égalité de la question précédente pour montrer que sa limite vaut 0.

Exercice 12  (★★). Comparer asymptotiquement (c’est-à-dire déterminer qui est négligeable devant qui) les 
suites 𝑎, 𝑏, 𝑐 et 𝑑 définies pour tout entier 𝑛 par :

𝑎𝑛 = 𝑛! 𝑏𝑛 = 𝑛𝑛 𝑐𝑛 = (2𝑛)! 𝑑𝑛 = (2𝑛)𝑛.

Résultat attendu : 𝑛! = 𝑜(𝑛𝑛) puis 𝑛𝑛 = 𝑜((2𝑛)𝑛) puis (2𝑛)𝑛 = 𝑜((2𝑛)!). 

Exercice 13  (★). Déterminer le comportement lorsque 𝑛 → +∞ de :

1. (1 + 1
𝑛2 )𝑛 2. (1 + 1√

𝑛)
𝑛

3. (1 − 1
𝑛)𝑛 4. (1 − 1

𝑛2 )𝑛 5. (1 − 1√
𝑛)

𝑛

Résultat attendu : Les limites valent :

1. 𝑒0 = 1 2. +∞ 3. 𝑒−1 4. 𝑒0 = 1 5. 0

3



Exercice 14  (★★). Étudier les limites des fonctions suivantes (les équivalents et négligeabilités peuvent être 
nécessaires ou ne pas l’être) :

1. Limites en 1+ et +∞ de 𝑎(𝑥) = ln (
√

𝑥 − 1) − ln(𝑥 − 1),

2. Limites en −∞ et en +∞ de 𝑏(𝑥) = 𝑥2𝑥,

3. Limite en 8 de 𝑑(𝑥) = 𝑥−8
3√𝑥−2

,

4. Limites en 0+ et +∞ de 𝑓(𝑥) = 𝑥 ln ( 𝑥
𝑥+1).

Résultat attendu :

1. lim
𝑥→+∞

𝑎(𝑥) = −∞, lim
𝑥→1+

𝑎(𝑥) = ln (1
2
) = − ln(2).

2. lim
𝑥→+∞

𝑏(𝑥) = +∞, lim
𝑥→−∞

𝑏(𝑥) = 0.

3. lim
𝑥→8

𝑑(𝑥) = 12.

4. lim
𝑥→0+

𝑓(𝑥) = 0, lim
𝑥→+∞

𝑓(𝑥) = −1.

4



Exercice 15  (Type DS). 
On considère la fonction ℎ définie sur ℝ par : ∀𝑡 ∈ ℝ, ℎ(𝑡) = 1

𝑒𝑡+𝑒−𝑡 .

1. (a) Réaliser une étude complète de ℎ : parité, variations, limites, extremums et allure du graphe.
(b) Déterminer un équivalent simple de ℎ(𝑡) quand 𝑡 → +∞ et quand 𝑡 → −∞.

2. (a) Montrer que ℎ admet un unique point fixe ℓ.
(b) En utilisant l’étude de fonction réalisée en question 1, justifier que 0 ⩽ ℓ ⩽ 1

2 .

3. Montrer que pour tout 𝑡 ∈ ℝ, on a |ℎ′(𝑡)| ⩽ ℎ(𝑡) ⩽ 1
2 .

4. On considère la suite 𝑢 définie par 𝑢0 = 0 et la relation de récurrence : ∀𝑛 ∈ ℕ, 𝑢𝑛+1 = ℎ(𝑢𝑛).

(a) Montrer que 𝑢 est bien définie et à valeurs dans [0, 1
2 ].

(b) Justifier que pour tout 𝑛 ∈ ℕ, |𝑢𝑛+1 − ℓ| ⩽ 1
2 |𝑢𝑛 − ℓ|.

(c) En déduire que ∀𝑛 ∈ ℕ, |𝑢𝑛 − ℓ| ⩽ 1
2𝑛+1 . Que peut-on en conclure sur la convergence de la suite 𝑢 ?

(d) Déterminer un entier 𝑛0 tel que 𝑢𝑛0
 soit une valeur approchée de ℓ à 10−3 près.

5. Pour tout 𝑛 ∈ ℕ, on pose 𝜀𝑛 = 𝑢𝑛 − ℓ. Montrer que 𝜀𝑛+1 ∼
𝑛→+∞

ℎ′(ℓ)𝜀𝑛. Interpréter ce résultat.

Indication : on admet que si ℎ est dérivable en un point ℓ, alors ℎ(𝑡) =
𝑡→ℓ

ℎ(ℓ) + ℎ′(ℓ)(𝑡 − ℓ) + 𝑜(𝑡 − ℓ).

Résultat attendu :

1. (a) ℎ est paire car ∀𝑡 ∈ ℝ, ℎ(−𝑡) = 1
𝑒−𝑡+𝑒𝑡 = ℎ(𝑡). De plus, ℎ est dérivable sur ℝ et ∀𝑡 ∈ ℝ, ℎ′(𝑡) = 𝑒−𝑡−𝑒𝑡

(𝑒𝑡+𝑒−𝑡)2 .

Soit 𝑡 ∈ ℝ, ℎ′(𝑡) ⩾ 0 ⟺ 𝑒𝑡 ⩽ 𝑒−𝑡 ⇔ 𝑡 ⩽ −𝑡 ⇔
𝑡 ⩽ 0. Donc ℎ est croissante sur ℝ− et décroissante 
sur ℝ+. Elle admet un maximum en 0, qui vaut 
ℎ(0) = 1

2 . Enfin, lim
𝑡→+∞

ℎ(𝑡) = 0 et lim
𝑡→−∞

ℎ(𝑡) = 0.

𝑦 = ℎ(𝑡)

0

−1

(b) ∀𝑡 ∈ ℝ, 𝑒𝑡+𝑒−𝑡

𝑒𝑡 = 1 + 𝑒−2𝑡 ⟶
𝑡→+∞

1, donc 𝑒𝑡 + 𝑒−𝑡 ∼
𝑡→+∞

𝑒𝑡 et ℎ(𝑡) ∼
𝑡→+∞

1
𝑒𝑡 = 𝑒−𝑡.

∀𝑡 ∈ ℝ, 𝑒𝑡+𝑒−𝑡

𝑒−𝑡 = 𝑒2𝑡 + 1 ⟶
𝑡→+∞

1, donc 𝑒𝑡 + 𝑒−𝑡 ∼
𝑡→−∞

𝑒−𝑡 et ℎ(𝑡) ∼
𝑡→−∞

1
𝑒−𝑡 = 𝑒𝑡.

2. (a) Soit 𝑡 < 0, alors ℎ(𝑡) > 0 d’après 1.a. Donc ℎ(𝑡) ≠ 𝑡. Soit 𝑡 ∈ ℝ+, on pose 𝑔(𝑡) = ℎ(𝑡) − 𝑡. Elle est 
dérivable sur ℝ+ et 1.a donne ∀𝑡 ∈ ℝ+, 𝑔′(𝑡) = ℎ′(𝑡) − 1 ⩽ −1 < 0. La fonction 𝑔 est donc strictement 
décroissante sur ℝ+. Comme elle est aussi continue, on peut appliquer le théorème de la bijection : 
𝑔 réalise une bijection de ℝ+ dans 𝑔(ℝ+). Or 𝑔(0) = 1

2  et lim
𝑡→+∞

𝑔(𝑡) = −∞, donc 𝑔(ℝ+) =] − ∞, 1
2 ]. 

Comme 0 ∈] − ∞, 1
2 ], ∃!ℓ ∈ ℝ+ tel que 𝑔(ℓ) = 0 ⟺ ℎ(ℓ) = ℓ. Donc ℎ admet un unique point fixe.

(b) On a vu en question 1.a que ℎ est bornée par 0 et 1
2 , donc 0 ⩽ ℎ(ℓ) ⩽ 1

2 , ce qui donne 0 ⩽ ℓ ⩽ 1
2 .

3. Soit 𝑡 ∈ ℝ, |ℎ′(𝑡)| = | 𝑒−𝑡−𝑒𝑡

(𝑒𝑡+𝑒−𝑡)2 | = |𝑒−𝑡−𝑒𝑡|
(𝑒𝑡+𝑒−𝑡)2 ⩽ |𝑒−𝑡|+|𝑒𝑡|

(𝑒𝑡+𝑒−𝑡)2 = 𝑒−𝑡+𝑒𝑡

(𝑒𝑡+𝑒−𝑡)2 = 1
𝑒𝑡+𝑒−𝑡 = ℎ(𝑡) par propriétés de la valeur 

absolue. L’étude de ℎ effectuée en 1.a garantit par ailleurs que ℎ(𝑡) ⩽ 1
2 , ce qui permet de conclure.

4. (a) D’après 1.a, ℎ est minorée par 0 et majorée par 1
2 . Donc l’intervalle [0, 1

2 ] est stable par ℎ. Or, 
𝑢0 = 0 ∈ [0, 1

2 ]. Donc 𝑢 est bien définie et à valeurs dans [0, 1
2 ].

(b) ℎ est dérivable sur ℝ. De plus, d’après 3., |ℎ′| est majorée par 1
2 . L’inégalité des accroissements finis 

donne alors que ∀(𝑥, 𝑦) ∈ ℝ2, |ℎ(𝑥) − ℎ(𝑦)| ⩽ 1
2 |𝑥 − 𝑦|.

Soit 𝑛 ∈ ℕ, prendre 𝑥 = 𝑢𝑛 et 𝑦 = ℓ donne |ℎ(𝑢𝑛) − ℎ(ℓ)| ⩽ 1
2 |𝑢𝑛 − ℓ|, càd |𝑢𝑛+1 − ℓ| ⩽ 1

2 |𝑢𝑛 − ℓ|.
(c) Soit 𝑛 ∈ ℕ, on pose 𝑃(𝑛) : « |𝑢𝑛 − ℓ| ⩽ 1

2𝑛+1  ». On a |𝑢0 − ℓ| = |0 − ℓ| = ℓ ⩽ 1
2  donc 𝑃(0) est vraie.

Soit 𝑛 ∈ ℕ, on suppose 𝑃(𝑛) vraie. 4b. donne |𝑢𝑛+1 − ℓ| ⩽ 1
2 |𝑢𝑛 − ℓ| ⩽ 1

2 × 1
2𝑛+1 = 1

2𝑛+2 . Donc 𝑃(𝑛+1)
est vraie. Donc ∀𝑛 ∈ ℕ |𝑢𝑛 − ℓ| ⩽ 1

2𝑛+1 ⟶ 0. Donc 𝑢 converge vers ℓ (par encadrement).
(d) ∀𝑛 ∈ ℕ, |𝑢𝑛 − ℓ| ⩽ 1

2𝑛+1 . Pour avoir |𝑢𝑛 − ℓ| ⩽ 10−3, il suffit donc de vérifier 1
2𝑛+1 ⩽ 10−3. Or 

1
2𝑛+1 ⩽ 10−3 ⟺ 2𝑛+1 ⩾ 103 ⟺ ln(2𝑛+1) ⩾ ln(103) ⟺ (𝑛 + 1) ln(2) ⩾ 3 ln(10) ⟺ 𝑛 ⩾ 3 ln(10)

ln(2) − 1, 
où on a utilisé la stricte croissance de ln sur ℝ∗

+ et ln(2) > 0. Donc 𝑛0 = ⌊ 3 ln(10)
ln(2) ⌋ convient.

5. D’après l’indication, ℎ(𝑡) =
𝑡→ℓ

ℓ+ℎ′(ℓ)(𝑡−ℓ)+𝑜(𝑡−ℓ) car ℎ(ℓ) = ℓ. Or ∀𝑛 ∈ ℕ, 𝜀𝑛+1 = 𝑢𝑛+1 −ℓ = ℎ(𝑢𝑛)−ℓ. 
Comme 𝑢 converge vers ℓ, ℎ(𝑢𝑛) =

𝑛→+∞
ℓ + ℎ′(ℓ)(𝑢𝑛 − ℓ) + 𝑜(𝑢𝑛 − ℓ). Donc 𝜀𝑛+1 =

𝑛→+∞
ℎ′(ℓ)𝜀𝑛 + 𝑜(𝜀𝑛), 

donc 𝜀𝑛+1 ∼ ℎ′(ℓ)𝜀𝑛. Interprétation : 𝜀𝑛 représente la précision de l’approximation de ℓ par 𝑢𝑛. Cette 
précision s’améliore d’un facteur ℎ′(ℓ) à chaque nouveau terme de la suite.5
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