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Dans tout le chapitre, on notera ℝ l’ensemble constitué de ℝ, +∞ et −∞. Les fonctions et suites considérées sont 
à valeurs réelles ou complexes.

1 Relation d’équivalence entre fonctions

1.1 Définition et premières propriétés

Définition 1.1 (Fonctions équivalentes au voisinage d’un point)

Soit 𝑎 ∈ ℝ et 𝑓 et 𝑔 deux fonctions définies sur un voisinage 𝑉𝑎 de 𝑎, telles que 𝑔 ne s’annule pas sur 𝑉𝑎. On 
dit que 𝑓 et 𝑔 sont équivalentes au voisinage de 𝑎 lorsque lim

𝑥→𝑎
𝑓(𝑥)
𝑔(𝑥) = 1. On note alors 𝑓(𝑥) ∼

𝑥→𝑎
𝑔(𝑥).

Exemple. On sait que lim
𝑥→0

sin(𝑥)
𝑥 = 1, donc sin(𝑥) ∼

𝑥→0
𝑥.

Exercice 1. Déterminer un équivalent simple en +∞ de 𝑥 + 𝑒𝑥.
Solution : On conjecture que l’équivalent sera 𝑒𝑥, puisque c’est le terme le plus « gros » au voisinage de +∞. 
Montrons-le :

lim
𝑥→+∞

𝑥 + 𝑒𝑥

𝑒𝑥 = lim
𝑥→+∞

( 𝑥
𝑒𝑥 + 1) = 0 + 1 = 1,

où on a conclu par croissances comparées. On a donc bien 𝑥 + 𝑒𝑥 ∼
𝑥→+∞

𝑒𝑥.

Proposition 1.2 (Transitivité des équivalents)

Soit 𝑎 ∈ ℝ, et 𝑓, 𝑔 et ℎ trois fonctions définies au voisinage de 𝑎. Si 𝑓(𝑥) ∼
𝑥→𝑎

𝑔(𝑥) et 𝑔(𝑥) ∼
𝑥→𝑎

ℎ(𝑥) alors 
𝑓(𝑥) ∼

𝑥→𝑎
ℎ(𝑥).

Démonstration. On se ramène à un calcul de limites : lim
𝑥→𝑎

𝑓(𝑥)
ℎ(𝑥) = lim

𝑥→𝑎
𝑓(𝑥)
𝑔(𝑥)

𝑔(𝑥)
ℎ(𝑥) = 1 × 1 = 1, d’où le résultat. ∎

Proposition 1.3 (Équivalents et limites)

Soit 𝑎 ∈ ℝ, et 𝑓 et 𝑔 deux fonctions définies au voisinage de 𝑎.

• Si lim
𝑥→𝑎

𝑓(𝑥) = ℓ ∈ ℝ∗, alors 𝑓(𝑥) ∼
𝑥→𝑎

ℓ.

• Si 𝑓(𝑥) ∼
𝑥→𝑎

𝑔(𝑥) et si lim
𝑥→𝑎

𝑔(𝑥) existe, alors lim
𝑥→𝑎

𝑓(𝑥) existe et ces deux limites sont égales.

Démonstration. On se ramène à des calculs de limites :

• Si lim
𝑥→𝑎

𝑓(𝑥) = ℓ ∈ ℝ∗, lim
𝑥→𝑎

𝑓(𝑥)
ℓ = ℓ

ℓ = 1, donc 𝑓(𝑥) ∼
𝑥→𝑎

ℓ.

• Si 𝑓(𝑥) ∼
𝑥→𝑎

𝑔(𝑥) et si lim
𝑥→𝑎

𝑔(𝑥) existe, lim
𝑥→𝑎

𝑓(𝑥) = lim
𝑥→𝑎

𝑓(𝑥)
𝑔(𝑥) 𝑔(𝑥) = 1 × lim

𝑥→𝑎
𝑔(𝑥) = lim

𝑥→𝑎
𝑔(𝑥).

∎

Remarque. Attention, le premier résultat ne fonctionne plus si ℓ = 0. Montrer un équivalent à 0 doit alerter, c’est 
le plus souvent signe d’une erreur dans l’application de cette propriété.

Proposition 1.4 (Obtention d’un équivalent par encadrement)

Soit 𝑎 ∈ ℝ, et 𝑓, 𝑔 et ℎ trois fonctions définies au voisinage de 𝑎. Si 𝑓 ⩽ 𝑔 ⩽ ℎ au voisinage de 𝑎 et si 
ℎ(𝑥) ∼

𝑥→𝑎
𝑓(𝑥), alors 𝑔(𝑥) ∼

𝑥→𝑎
𝑓(𝑥).
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Démonstration. Soit 𝑥 au voisinage de 𝑎, on trouve par quotient que 𝑔(𝑥)
𝑓(𝑥)  est compris entre ℎ(𝑥)

𝑓(𝑥)  et 1 (le sens des 
inégalités dépend du signe de 𝑓(𝑥)). Or lim

𝑥→𝑎
ℎ(𝑥)
𝑓(𝑥) = 1. Donc par théorème d’encadrement, lim

𝑥→𝑎
𝑔(𝑥)
𝑓(𝑥) = 1, ce qui donne 

bien 𝑔(𝑥) ∼
𝑥→𝑎

𝑓(𝑥). ∎

Proposition 1.5 (Équivalents et signe de la fonction)

Soit 𝑎 ∈ ℝ, et 𝑓 et 𝑔 deux fonctions définies au voisinage de 𝑎.

• Si 𝑓(𝑥) ∼
𝑥→𝑎

𝑔(𝑥) et si 𝑔 ne s’annule pas au voisinage de 𝑎 alors 𝑓 non plus.

• Si 𝑓(𝑥) ∼
𝑥→𝑎

𝑔(𝑥) et si 𝑔 est positive au voisinage de 𝑎, alors 𝑓 l’est également.

Démonstration. On suppose que 𝑓(𝑥) ∼
𝑥→𝑎

𝑔(𝑥). Pour 𝑥 au voisinage de 𝑎, on pose 𝜑(𝑥) = 𝑓(𝑥)
𝑔(𝑥) . Cette expression 

converge vers 1 en 𝑎, on peut donc se ramener à un voisinage de 𝑎 où 𝜑(𝑥) > 0, et sur ce voisinage 𝑓(𝑥) = 𝜑(𝑥)𝑔(𝑥).
Donc si 𝑔 ne s’annule pas, 𝑓 non plus, et si 𝑔 est positive, 𝑓 l’est aussi comme produit de fonctions positives. ∎

1.2 Calculs et équivalents usuels

Proposition 1.6 (Produit et quotient d’équivalents)

Soit 𝑎 ∈ ℝ, et 𝑓1, 𝑓2, 𝑔1, 𝑔2 des fonctions définies au voisinage de 𝑎. Si 𝑓1(𝑥) ∼
𝑥→𝑎

𝑔1(𝑥) et si 𝑓2(𝑥) ∼
𝑥→𝑎

𝑔2(𝑥)
alors (𝑓1𝑓2)(𝑥) ∼

𝑥→𝑎
(𝑔1𝑔2)(𝑥). Si de plus 𝑔2 ne s’annule pas au voisinage de 𝑎, alors 𝑓1

𝑓2
(𝑥) ∼

𝑥→𝑎
𝑔1
𝑔2

(𝑥).

Démonstration. lim
𝑥→𝑎

(𝑓1𝑓2)(𝑥)
(𝑔1𝑔2)(𝑥) = lim

𝑥→𝑎
𝑓1(𝑥)
𝑔1(𝑥)

𝑓2(𝑥)
𝑔2(𝑥) = 1 × 1 = 1, donc (𝑓1𝑓2)(𝑥) ∼

𝑥→𝑎
(𝑔1𝑔2)(𝑥).

De même lim
𝑥→𝑎

𝑓1
𝑓2

(𝑥)
𝑔1
𝑔2

(𝑥)
= lim

𝑥→𝑎
𝑓1(𝑥)
𝑔1(𝑥)

𝑔2(𝑥)
𝑓2(𝑥) = 1 × 1

1 = 1, donc 𝑓1
𝑓2

(𝑥) ∼
𝑥→𝑎

𝑔1
𝑔2

(𝑥). ∎

Proposition 1.7 (Équivalents et passage à la puissance)

Soit 𝑎 ∈ ℝ, et 𝑓 et 𝑔 deux fonctions définies au voisinage de 𝑎. Soit 𝛼 ∈ ℝ. Si 𝑓(𝑥) ∼
𝑥→𝑎

𝑔(𝑥) alors 
𝑓(𝑥)𝛼 ∼

𝑥→𝑎
𝑔(𝑥)𝛼 dès que les puissances sont bien définies.

Démonstration. On se ramène à un calcul de limites : lim
𝑥→𝑎

𝑓(𝑥)𝛼

𝑔(𝑥)𝛼 = lim
𝑥→𝑎

(𝑓(𝑥)
𝑔(𝑥) )

𝛼
= 1𝛼 = 1 (le calcul est possible 

puisqu’on a supposé les puissances bien définies), ce qui donne bien 𝑓(𝑥)𝛼 ∼
𝑥→𝑎

𝑔(𝑥)𝛼. ∎

Remarque. Ce résultat est en particulier vrai pour toutes les fonctions si 𝛼 ∈ ℕ, pour toutes les fonctions ne 
s’annulant pas au voisinage de 𝑎 si 𝛼 ∈ ℤ ∖ ℕ et pour toutes les fonctions strictement positives au voisinage de 𝑎 si 
𝛼 ∈ ℝ.

Proposition 1.8 (Équivalents et passage à la valeur absolue)

Soit 𝑎 ∈ ℝ, et 𝑓 et 𝑔 deux fonctions définies au voisinage de 𝑎. Si 𝑓(𝑥) ∼
𝑥→𝑎

𝑔(𝑥) alors |𝑓(𝑥)| ∼
𝑥→𝑎

|𝑔(𝑥)|.

Démonstration. Découle directement du résultat précédent puisque |𝑓(𝑥)| = √𝑓(𝑥)2. ∎

Proposition 1.9 (Équivalents et composition à droite)

Soit (𝑎, 𝑏) ∈ ℝ2. Soit 𝑓 et 𝑔 des fonctions définies au voisinage de 𝑎 et ℎ une fonction définie au voisinage de 
𝑏. Si 𝑓(𝑥) ∼

𝑥→𝑎
𝑔(𝑥) et lim

𝑥→𝑏
ℎ(𝑥) = 𝑎, alors 𝑓(ℎ(𝑥)) ∼

𝑥→𝑏
𝑔(ℎ(𝑥)).
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Démonstration. On suppose que 𝑓(𝑥) ∼
𝑥→𝑎

𝑔(𝑥) et lim
𝑥→𝑏

ℎ(𝑥) = 𝑎. Alors lim
𝑥→𝑏

𝑓(ℎ(𝑥))
𝑔(ℎ(𝑥)) = lim

𝑥→𝑎
𝑓(𝑥)
𝑔(𝑥) = 1 par composition 

de limites. Donc 𝑓(ℎ(𝑥)) ∼
𝑥→𝑏

𝑔(ℎ(𝑥)). ∎

Exemple. On a montré plus tôt dans le chapitre que 𝑥 + 𝑒𝑥 ∼
𝑥→+∞

𝑒𝑥. Or lim
𝑥→0+

1
𝑥 = +∞. Donc 1

𝑥 + 𝑒 1
𝑥 ∼

𝑥→0+
𝑒 1

𝑥 .

Remarque. ATTENTION ! Toute autre opération est interdite, notamment la composition à gauche d’un équivalent 
par une fonction et la somme d’équivalents.

Proposition 1.10 (Équivalents usuels au voisinage de zéro)

Soit 𝛼 ∈ ℝ∗ fixé,

ln(1 + 𝑥) ∼
𝑥→0

𝑥, 𝑒𝑥 − 1 ∼
𝑥→0

𝑥, sin(𝑥) ∼
𝑥→0

𝑥, cos(𝑥) − 1 ∼
𝑥→0

−1
2𝑥2, (1 + 𝑥)𝛼 − 1 ∼

𝑥→0
𝛼𝑥,

sh(𝑥) ∼
𝑥→0

𝑥, ch(𝑥) − 1 ∼
𝑥→0

1
2𝑥2, tan(𝑥) ∼

𝑥→0
𝑥, arctan(𝑥) ∼

𝑥→0
𝑥.

Démonstration. On utilise les limites des taux d’accroissement en 0 (sauf dans les cas de cos et ch).

• Soit 𝑓 ∶ 𝑥 ↦ ln(1 + 𝑥) (les autres cas se traitent de manière similaire), alors 𝑓 est dérivable sur ] − 1, +∞[ et :

lim
𝑥→0

ln(1 + 𝑥)
𝑥

= lim
𝑥→0

ln(1 + 𝑥) − ln(1 + 0)
𝑥 − 0

= 𝑓 ′(0) = 1
1 + 0

= 1,

ce qui montre ln(1 + 𝑥) ∼
𝑥→0

𝑥.

• Pour l’équivalent de cos, on commence par remarquer que ∀𝑥 ∈ ℝ, cos2(𝑥) − 1 = − sin2(𝑥). Or sin(𝑥) ∼
𝑥→0

𝑥
et le passage au carré est autorisé dans les équivalents, d’où :

(cos(𝑥) − 1)(cos(𝑥) + 1) = − sin2(𝑥) ∼
𝑥→0

−𝑥2.

Or cos(𝑥) + 1 ⟶
𝑥→0

2 ≠ 0. Donc cos(𝑥) + 1 ∼
𝑥→0

2, et par quotient d’équivalents : cos(𝑥) − 1 ∼
𝑥→0

−1
2𝑥2.

• Pour l’équivalent de ch, on procède de même en exploitant la relation ∀𝑥 ∈ ℝ, ch2(𝑥) − 1 = sh2(𝑥).

∎

Remarque. Par la suite, les développements limités fourniront un moyen plus rapide de retrouver ces résultats.

Remarque. Écrire 𝑒𝑥 − 1 ∼
𝑥→0

𝑥 et 𝑒𝑥 ∼
𝑥→0

1 + 𝑥 sont deux choses très différentes (on a de la chance qu’elles soient 
vraies toutes les deux, puisqu’il est interdit de sommer des équivalents et donc de rajouter +1 des deux côtés).
La première relation donne la vitesse à laquelle exponentielle converge vers 1 en 0. La deuxième signifie seulement 
que 𝑒𝑥 ∼

𝑥→0
1 (puisque lim𝑥→0

1+𝑥
1 = 1), ce qui donne la limite, mais pas la vitesse de convergence.

Exercice 2. Soit 𝑓 la fonction définie sur ℝ∗ par ∀𝑥 ∈ ℝ∗, 𝑓(𝑥) = sin(2𝑥)
𝑥2 . Déterminer un équivalent de 𝑓 au 

voisinage de 0.
Solution : Comme lim

𝑥→0
2𝑥 = 0, les équivalents précédents donnent sin(2𝑥) ∼

𝑥→0
2𝑥. En divisant par 𝑥2, on trouve 

sin(2𝑥)
𝑥2 ∼

𝑥→0
2
𝑥 .

Exercice 3. Soit 𝑔 la fonction définie sur ℝ∗
+ par ∀𝑥 ∈ ℝ∗

+, 𝑔(𝑥) = ln (1 + 1
𝑥). Déterminer un équivalent de 𝑔 au 

voisinage de +∞.
Solution : Comme lim

𝑥→+∞
1
𝑥 = 0, les équivalents précédents donnent directement 𝑔(𝑥) ∼

𝑥→+∞
1
𝑥 .
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1.3 Adaptation au cas des suites

Définition 1.11 (Suites équivalentes)

Soit 𝑢 et 𝑣 deux suites. Si 𝑣 ne s’annule pas à partir d’un certain rang, on dit que les suites 𝑢 et 𝑣 sont 
équivalentes quand lim

𝑛→∞
𝑢𝑛
𝑣𝑛

= 1. On note alors 𝑢𝑛 ∼ 𝑣𝑛.

Remarque. On peut aussi écrire 𝑢𝑛 ∼
𝑛→+∞

𝑣𝑛, mais comme la limite d’une suite s’effectue toujours en +∞, la 
précision est superflue.

Remarque. Les propriétés sont les mêmes que dans le cas des fonctions : transitivité, gestion des limites, 
conservation du signe, possibilité de réaliser des produits/quotients, de passer à la puissance 𝛼 ou de composer à 
droite.
ATTENTION ! Toute autre opération sur les équivalents est interdite, notamment la composition à gauche et la 
somme.

Exercice 4. Calculer la limite de la suite définie sur ℕ∗ par 𝑢𝑛 = (1 + 1
𝑛)𝑛.

Solution : On ne peut pas utiliser (1 + 𝑥)𝛼 − 1 ∼
𝑥→0

𝛼𝑥 car 𝛼 ne peut pas dépendre de 𝑛. On passe alors sous forme 
exponentielle :

∀𝑛 ⩾ 1, (1 + 1
𝑛

)
𝑛

= exp (𝑛 ln (1 + 1
𝑛

)) .

On est donc ramenés à étudier la limite de 𝑛 ln(1 + 1
𝑛). Comme 1

𝑛  converge vers 0 et que ln(1 + 𝑥) ∼
𝑥→0

𝑥, on trouve 
ln (1 + 1

𝑛) ∼ 1
𝑛 . Un produit avec 𝑛 donne alors :

𝑛 ln (1 + 1
𝑛

) ∼ 𝑛 1
𝑛

= 1.

Donc lim
𝑛→+∞

𝑛 ln (1 + 1
𝑛) = 1 et par composition avec l’exponentielle (continue en 1), lim

𝑛→+∞
𝑢𝑛 = 𝑒1 = 𝑒.

Exercice 5. Calculer la limite de la suite définie pour 𝑛 ⩾ 3 par 𝑢𝑛 = (1 − 2
𝑛)3𝑛.

Solution : On passe sous forme exponentielle : ∀𝑛 ⩾ 3, (1 − 2
𝑛)3𝑛 = exp (3𝑛 ln (1 − 2

𝑛)). On est donc ramenés à 
étudier la limite de 3𝑛 ln(1 − 2

𝑛). Comme − 2
𝑛  converge vers 0 et par produit d’équivalents :

3𝑛 ln (1 − 2
𝑛

) ∼ 3𝑛 (−2
𝑛

) = −6.

Donc lim
𝑛→+∞

3𝑛 ln (1 − 2
𝑛) = −6 et par composition avec l’exponentielle (continue en −6), lim

𝑛→+∞
𝑢𝑛 = 𝑒−6.

Exercice 6. Soit 𝑘 ∈ ℕ (fixé). Montrer que (𝑛
𝑘) ∼ 𝑛𝑘

𝑘! .
Solution : ∀𝑛 ⩾ 𝑘, (𝑛

𝑘) = 1
𝑘!𝑛(𝑛 − 1)(𝑛 − 2) … (𝑛 − 𝑘 + 1). Or ∀𝑖 ∈ ℕ, lim

𝑛→+∞
𝑛−𝑖

𝑛 = 1, donc 𝑛 − 𝑖 ∼ 𝑛. Donc par 
produit d’équivalents, 𝑛(𝑛 − 1)(𝑛 − 2) … (𝑛 − 𝑘 + 1) ∼ 𝑛𝑘. Il suffit alors de diviser par 𝑘! pour obtenir le résultat 
annoncé.

2 Relations de domination et de négligeabilité entre fonctions

2.1 Définitions et premières propriétés

Définition 2.1 (Fonction négligeable devant une autre fonction)

Soit 𝑎 ∈ ℝ et 𝑓 et 𝑔 deux fonctions définies sur un voisinage 𝑉𝑎 de 𝑎, telles que 𝑔 ne s’annule pas sur 𝑉𝑎. On 
dit que 𝑓 est négligeable devant 𝑔 au voisinage de 𝑎 lorsque lim

𝑥→𝑎
𝑓(𝑥)
𝑔(𝑥) = 0. On note alors 𝑓(𝑥) =

𝑥→𝑎
𝑜(𝑔(𝑥)).
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Définition 2.2 (Fonction dominée par une autre fonction)

Soit 𝑎 ∈ ℝ et 𝑓 et 𝑔 deux fonctions définies sur un voisinage 𝑉𝑎 de 𝑎, telles que 𝑔 ne s’annule pas sur 𝑉𝑎. 
On dit que 𝑓 est dominée par 𝑔 au voisinage de 𝑎 lorsque 𝑓

𝑔  est bornée au voisinage de 𝑎. On note alors 
𝑓(𝑥) =

𝑥→𝑎
𝑂(𝑔(𝑥)).

Exemple. lim
𝑥→+∞

𝑥2

𝑥4 = 0, donc 𝑥2 =
𝑥→+∞

𝑜(𝑥4). À l’inverse, lim
𝑥→0

𝑥4

𝑥2 = 0, donc 𝑥4 =
𝑥→0

𝑜(𝑥2).

D’autre part, 5𝑥4+𝑥
𝑥4  est borné au voisinage de +∞ (puisque lim

𝑥→+∞
5𝑥4+𝑥

𝑥4 = 5), donc 5𝑥4 + 𝑥 =
𝑥→+∞

𝑂(𝑥4).

Remarque. Si 𝑓(𝑥) ∼
𝑥→𝑎

𝑔(𝑥) ou 𝑓(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥)), alors 𝑓(𝑥) =
𝑥→𝑎

𝑂(𝑔(𝑥)). En effet, si 𝑓(𝑥)
𝑔(𝑥)  admet une limite finie 

en 𝑎, elle est bornée au voisinage de ce point. La réciproque est par contre fausse.

Proposition 2.3 (Comparaisons avec 1)

Soit 𝑎 ∈ ℝ et 𝑓 une fonction définie au voisinage de 𝑎.

𝑓(𝑥) =
𝑥→𝑎

𝑜(1) ⟺ lim
𝑥→𝑎

𝑓(𝑥) = 0,

𝑓(𝑥) =
𝑥→𝑎

𝑂(1) ⟺ 𝑓 est bornée au voisinage de 𝑎.

Démonstration. On raisonne par équivalences :

𝑓(𝑥) =
𝑥→𝑎

𝑜(1) ⟺ lim
𝑥→𝑎

𝑓(𝑥)
1

= 0 ⟺ lim
𝑥→𝑎

𝑓(𝑥) = 0,

𝑓(𝑥) =
𝑥→𝑎

𝑂(1) ⟺ 𝑓
1
 est bornée au voisinage de 𝑎 ⟺ 𝑓 est bornée au voisinage de 𝑎.

∎

Exercice 7. Simplifier au maximum la relation 𝑜(1) + 𝑂(1) (pour 𝑥 → 0), en restant le plus précis possible.
Solution : Au voisinage de 0, sommer un terme qui converge vers 0 et un terme borné donne un terme borné. Donc 
𝑜(1) + 𝑂(1) =

𝑥→0
𝑂(1).

Exercice 8. Simplifier au maximum la relation 𝑂(1) − 𝑂(1) (pour 𝑥 → 0), en restant le plus précis possible.
Solution : Soustraire deux termes bornés donne un terme borné. Donc 𝑂(1) − 𝑂(1) =

𝑥→0
𝑂(1).

Proposition 2.4 (Lien entre équivalence et négligeabilité)

Soit 𝑎 ∈ ℝ et 𝑓, 𝑔 deux fonctions définies au voisinage de 𝑎. Alors :

𝑓(𝑥) ∼
𝑥→𝑎

𝑔(𝑥) ⟺ 𝑓(𝑥) − 𝑔(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥)).

Démonstration. Les définitions donnent directement :

𝑓(𝑥) ∼
𝑥→𝑎

𝑔(𝑥) ⟺ lim
𝑥→𝑎

𝑓(𝑥)
𝑔(𝑥)

= 1 ⟺ lim
𝑥→𝑎

𝑓(𝑥) − 𝑔(𝑥)
𝑔(𝑥)

= 0 ⟺ 𝑓(𝑥) − 𝑔(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥)).

∎

Remarque. Dans un souci de simplification des calculs et des écritures, on peut écrire 𝑓(𝑥) =
𝑥→𝑎

𝑔(𝑥) + 𝑜(𝑔(𝑥)) en 
lieu et place de 𝑓(𝑥) − 𝑔(𝑥) =

𝑥→𝑎
𝑜(𝑔(𝑥)).
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Remarque. Ce résultat est extrêmement utile pour contourner l’interdiction de sommer des équivalences, d’autant 
plus que les développements limités fourniront un moyen facile d’obtenir des relations exploitables.

Exemple. On admet pour le moment que 𝑒𝑥 =
𝑥→0

1 + 𝑥 + 𝑥2

2 + 𝑜(𝑥2

2 ). Alors 𝑒𝑥 − 1 − 𝑥 ∼
𝑥→0

𝑥2

2 .

Dans la suite, on se concentrera sur l’étude des négligeabilités (davantage utilisées), mais les résultats suivants 
restent valables si on remplace les 𝑜 par des 𝑂 dans leurs énoncés.

Proposition 2.5 (Équivalents dans une négligeabilité)

Soit 𝑎 ∈ ℝ et 𝑓, 𝑔, ℎ des fonctions définies au voisinage de 𝑎. Si 𝑓(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥)) et 𝑔(𝑥) ∼
𝑥→𝑎

ℎ(𝑥) alors 
𝑓(𝑥) =

𝑥→𝑎
𝑜(ℎ(𝑥)).

Démonstration. On suppose que 𝑓(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥)) et 𝑔(𝑥) ∼
𝑥→𝑎

ℎ(𝑥). On a alors : lim
𝑥→𝑎

𝑓(𝑥)
ℎ(𝑥) = lim

𝑥→𝑎
𝑓(𝑥)
𝑔(𝑥)

𝑔(𝑥)
ℎ(𝑥) = 0×1 = 0. 

Donc 𝑓(𝑥) =
𝑥→𝑎

𝑜(ℎ(𝑥)). ∎

Exercice 9. Simplifier au maximum la relation 𝑜(𝑥2 + 2𝑥) (pour 𝑥 → +∞), en restant le plus précis possible.
Solution : lim

𝑥→+∞
𝑥2+2𝑥

𝑥2 = 1, donc 𝑥2 + 2𝑥 ∼
𝑥→+∞

𝑥2. Donc 𝑜(𝑥2 + 2𝑥) =
𝑥→+∞

𝑜(𝑥2).

Proposition 2.6 (Transitivité des fonctions négligeables)

Soit 𝑎 ∈ ℝ et 𝑓, 𝑔 et ℎ trois fonctions définies au voisinage de 𝑎. Si 𝑓(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥)) et 𝑔(𝑥) =
𝑥→𝑎

𝑜(ℎ(𝑥))
alors 𝑓(𝑥) =

𝑥→𝑎
𝑜(ℎ(𝑥)).

Démonstration. On suppose que 𝑓(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥)) et 𝑔(𝑥) =
𝑥→𝑎

𝑜(ℎ(𝑥)). Alors : lim
𝑥→𝑎

𝑓(𝑥)
ℎ(𝑥) = lim

𝑥→𝑎
𝑓(𝑥)
𝑔(𝑥)

𝑔(𝑥)
ℎ(𝑥) = 0 × 0 = 0. 

Donc 𝑓(𝑥) =
𝑥→𝑎

𝑜(ℎ(𝑥)). ∎

2.2 Calculs et relations classiques

Proposition 2.7 (Somme de fonctions négligeables)

Soit 𝑎 ∈ ℝ et 𝑓1, 𝑓2, 𝑔 des fonctions définies au voisinage de 𝑎. Si 𝑓1(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥)) et 𝑓2(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥))
alors 𝑓1(𝑥) + 𝑓2(𝑥) =

𝑥→𝑎
𝑜(𝑔(𝑥)).

Démonstration. On suppose que 𝑓1(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥)) et 𝑓2(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥)). Alors :

lim
𝑥→𝑎

𝑓1(𝑥) + 𝑓2(𝑥)
𝑔(𝑥)

= lim
𝑥→𝑎

(𝑓1(𝑥)
𝑔(𝑥)

+ 𝑓2(𝑥)
𝑔(𝑥)

) = 0 + 0 = 0.

Donc 𝑓1(𝑥) + 𝑓2(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥)). ∎

Exercice 10. Simplifier au maximum la relation 𝑜(𝑥) + 𝑜(𝑥2) (pour 𝑥 → 0), en restant le plus précis possible.
Solution : Comme lim

𝑥→0
𝑥2

𝑥 = 0, on a 𝑥2 =
𝑥→0

𝑜(𝑥). Donc 𝑜(𝑥) + 𝑜(𝑥2) =
𝑥→0

𝑜(𝑥) + 𝑜(𝑥) =
𝑥→0

𝑜(𝑥).

Proposition 2.8 (Produit de fonctions négligeables)

Soit 𝑎 ∈ ℝ et 𝑓1, 𝑓2, 𝑔1, 𝑔2 des fonctions définies au voisinage de 𝑎.
Si 𝑓1(𝑥) =

𝑥→𝑎
𝑜(𝑔1(𝑥)) et 𝑓2(𝑥) =

𝑥→𝑎
𝑜(𝑔2(𝑥)) alors 𝑓1(𝑥)𝑓2(𝑥) =

𝑥→𝑎
𝑜(𝑔1(𝑥)𝑔2(𝑥)).
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Démonstration. On suppose que 𝑓1(𝑥) =
𝑥→𝑎

𝑜(𝑔1(𝑥)) et 𝑓2(𝑥) =
𝑥→𝑎

𝑜(𝑔2(𝑥)). Alors :

lim
𝑥→𝑎

𝑓1(𝑥)𝑓2(𝑥)
𝑔1(𝑥)𝑔2(𝑥)

= lim
𝑥→𝑎

(𝑓1(𝑥)
𝑔1(𝑥)

𝑓2(𝑥)
𝑔2(𝑥)

) = 0 × 0 = 0.

Donc 𝑓1(𝑥)𝑓2(𝑥) =
𝑥→𝑎

𝑜(𝑔1(𝑥)𝑔2(𝑥)). ∎

Remarque. On montre de même que si 𝑓, 𝑔 et ℎ sont définies au voisinage de 𝑎 et si 𝑓(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥)), alors on a 
aussi 𝑓(𝑥)ℎ(𝑥) =

𝑥→𝑎
𝑜(𝑔(𝑥)ℎ(𝑥)).

Remarque. Il est par contre interdit de quotienter des relations de négligeabilité (puisque l’inverse d’un terme qui 
converge vers 0 diverge).

Proposition 2.9 (Cas d’une constante multiplicative)

Soit 𝑎 ∈ ℝ, 𝜆 une constante et 𝑓, 𝑔 des fonctions définies au voisinage de 𝑎.
Si 𝑓(𝑥) =

𝑥→𝑎
𝑜(𝑔(𝑥)), alors 𝜆𝑓(𝑥) =

𝑥→𝑎
𝑜(𝑔(𝑥)).

Démonstration. On suppose que 𝑓(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥)). Alors lim
𝑥→𝑎

𝜆𝑓(𝑥)
𝑔(𝑥) = lim

𝑥→𝑎
𝜆𝑓(𝑥)

𝑔(𝑥) = 𝜆 × 0 = 0. Donc 𝜆𝑓(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥)). ∎

Exemple. 𝑜(2𝑥) =
𝑥→0

𝑜(𝑥).

Proposition 2.10 (Fonctions négligeables et passage à la puissance)

Soit 𝑎 ∈ ℝ et 𝑓 et 𝑔 deux fonctions définies au voisinage de 𝑎. Soit 𝛼 ∈ ℝ∗
+. Si 𝑓(𝑥) =

𝑥→𝑎
𝑜(𝑔(𝑥)) alors 

𝑓(𝑥)𝛼 =
𝑥→𝑎

𝑜(𝑔(𝑥)𝛼) dès que les puissances sont bien définies.

Démonstration. On suppose que 𝑓(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥)) et que les puissances sont bien définies. Alors, comme 𝛼 > 0,

lim
𝑥→𝑎

𝑓(𝑥)𝛼

𝑔(𝑥)𝛼 = lim
𝑥→𝑎

(𝑓(𝑥)
𝑔(𝑥)

)
𝛼

= 0𝛼 = 0.

Donc 𝑓(𝑥)𝛼 =
𝑥→𝑎

𝑜(𝑔(𝑥)𝛼) ∎

Remarque. Attention : contrairement au cas des équivalences, il faut 𝛼 > 0 pour que cela fonctionne.

Remarque. Comme dans le cas des fonctions équivalentes, ce résultat permet de passer à la valeur absolue dans 
des relations de négligeabilité.

Proposition 2.11 (Fonctions négligeables et composition à droite)

Soit (𝑎, 𝑏) ∈ ℝ2. Soit 𝑓 et 𝑔 des fonctions définies au voisinage de 𝑎 et ℎ une fonction définie au voisinage de 
𝑏. Si 𝑓(𝑥) =

𝑥→𝑎
𝑜(𝑔(𝑥)) et lim

𝑥→𝑏
ℎ(𝑥) = 𝑎, alors 𝑓(ℎ(𝑥)) =

𝑥→𝑏
𝑜(𝑔(ℎ(𝑥))).

Démonstration. On suppose que 𝑓(𝑥) =
𝑥→𝑎

𝑜(𝑔(𝑥)) et lim
𝑥→𝑏

ℎ(𝑥) = 𝑎. Alors par composition de limites,

lim
𝑥→𝑏

𝑓(ℎ(𝑥))
𝑔(ℎ(𝑥))

= lim
𝑥→𝑎

𝑓(𝑥)
𝑔(𝑥)

= 0.

Donc 𝑓(ℎ(𝑥)) =
𝑥→𝑏

𝑜(𝑔(ℎ(𝑥))). ∎

Remarque. La composition à gauche est toujours interdite.
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Proposition 2.12 (Négligeabilités classiques)

Soit 𝛼, 𝛽, 𝑎 et 𝑏 des réels. Alors :

𝑥𝛼 =
𝑥→+∞

𝑜(𝑥𝛽)  lorsque 𝛼 < 𝛽,
𝑥𝛽 =

𝑥→0
𝑜(𝑥𝛼)  lorsque 𝛼 < 𝛽,

(ln(𝑥))𝛽 =
𝑥→+∞

𝑜(𝑥𝛼)  lorsque 𝛼 > 0 et 𝛽 > 0,
(ln |𝑥|)𝛽 =

𝑥→0
𝑜( 1

𝑥𝛼 )  lorsque 𝛼 > 0 et 𝛽 > 0,
𝑥𝛼 =

𝑥→+∞
𝑜(𝑎𝑥)  lorsque 𝛼 > 0 et 𝑎 > 1,

𝑎𝑥 =
𝑥→+∞

𝑜(𝑏𝑥)  lorsque |𝑎| < |𝑏| .

Démonstration. Découle directement des croissances comparées ou des propriétés des puissances. ∎

2.3 Adaptation au cas des suites

Définition 2.13 (Suites négligeables)

Soit 𝑢 et 𝑣 deux suites. On suppose que 𝑣 ne s’annule pas à partir d’un certain rang. On dit que 𝑢 est
négligeable devant 𝑣 lorsque lim

𝑛→∞
𝑢𝑛
𝑣𝑛

= 0. On note alors 𝑢𝑛 = 𝑜(𝑣𝑛).

Définition 2.14 (Suites dominées)

Soit 𝑢 et 𝑣 deux suites. On suppose que 𝑣 ne s’annule pas à partir d’un certain rang. On dit que 𝑢 est
dominée par 𝑣 lorsque 𝑢

𝑣  est bornée. On note alors 𝑢𝑛 = 𝑂(𝑣𝑛).

Remarque. Les propriétés sont les mêmes que dans le cas des fonctions : comparaison à 1, relation entre 
équivalences et négligeabilité, transitivité, possibilité de réaliser des sommes/produits, de passer à la puissance 
𝛼 > 0 ou de composer à droite.
ATTENTION ! Toute autre opération est interdite, notamment la composition à gauche et le quotient.

Exercice 11. Soit (𝑢𝑛) une suite qui vérifie 𝑢𝑛 = −2 + 3
𝑛 + 4

𝑛 ln(𝑛) + 𝑜 ( 1
𝑛2 ).

Déterminer les limites de (𝑢𝑛), ((𝑢𝑛 + 2)𝑛) et ((𝑢𝑛 + 2 − 3
𝑛) 𝑛2).

Solution : On sait que 𝑜 ( 1
𝑛2 ) = 1

𝑛2 𝑜(1), donc ce terme converge vers 0 (par produit de termes qui convergent vers 
0). Par somme de limites, on en déduit que 𝑢 converge vers −2. De même,

(𝑢𝑛 + 2)𝑛 = 3 + 4
ln(𝑛)

+ 𝑜 ( 1
𝑛

) ⟶
𝑛→+∞

3.

Et par croissances comparées : (𝑢𝑛 + 2 − 3
𝑛

) 𝑛2 = 4𝑛
ln(𝑛)

+ 𝑜 (1) ⟶
𝑛→+∞

+∞.
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